
1/29

By Yarden Shafir

Exploiting a “Simple” Vulnerability – In 35 Easy Steps or
Less!

windows-internals.com/exploiting-a-simple-vulnerability-in-35-easy-steps-or-less

Introduction

In September MS issued a patch that fixed the CVE-2020-1034 vulnerability. This is a pretty

cool and relatively simple vulnerability (increment by one), so I wanted to use it as a case

study and look at a side of exploitation that isn’t talked about very often. Most public talks

and blog posts related to vulnerabilities and exploits go into depth about the vulnerability

itself, its discovery and research, and end with a PoC showing a successful “exploitation” –

usually a BSOD with some kernel address being set to 0x41414141 . This type of analysis is

cute and splashy, but I wanted to look at the step after the crash – how to take a vulnerability

and actually build a stable exploit around it, preferably one that isn’t detected easily?

This post will go into a bit more detail about the vulnerability itself, as when it’s been

explained by others it was mainly with screenshots of assembly code, and data structures

with magic numbers and uninitialized stack variables. Thanks to tools such as the public

symbol files (PDB) from Microsoft, SDK header files, as well as Hex-rays Decompiler from

IDA, a slightly easier to understand analysis can be made, revealing the actual underlying

cause(s). Then, this post will focus on exploring the Windows mechanisms involved in the

vulnerability and how they can be used to create a stable exploit that results in local privilege

escalation without crashing the machine (which is what a naïve exploitation of this

vulnerability will eventually result in, for reasons I’ll explain).

The Vulnerability

In short, CVE-2020-1034 is an input validation bug in EtwpNotifyGuid that allows an

increment of an arbitrary address. The function doesn’t account for all possible values of a

specific input parameter (ReplyRequested) and for values other than 0 and 1 will treat

an address inside the input buffer as an object pointer and try to reference it, which will

result in an increment at ObjectAddress - offsetof(OBJECT_HEADER, Body) . The root

cause is essentially a check that applies the BOOLEAN logic of “!= FALSE” in one case,

while then using “== TRUE” in another. A value such as 2 incorrectly fails the second

check, but still hits the first.

NtTraceControl receives an input buffer as its second parameter. In the case leading to

this vulnerability, the buffer will begin with a structure of type

ETWP_NOTIFICATION_HEADER . This input parameter is passed into EtwpNotifyGuid ,

where the following check happens:

https://windows-internals.com/exploiting-a-simple-vulnerability-in-35-easy-steps-or-less/
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-1034

2/29

If NotificationHeader->ReplyRequested is 1 , the ReplyObject field of the structure

will be populated with a new UmReplyObject . A little further down the function, the

notification header, or actually a kernel copy of it, is passed to EtwpSendDataBlock and

from there to EtwpQueueNotification , where we find the bug:

If NotificationHeader->ReplyRequested is not 0 , ObReferenceObject is called,

which is going to grab the OBJECT_HEADER that is found right before the object body and

increment PointerCount by 1 . Now we can see the problem – ReplyRequested is not a

single bit that can be either 0 or 1 . It’s a BOOLEAN , meaning it can be any value from 0

to 0xFF . And any non-zero value other than 1 will not leave the ReplyObject field

untouched but will still call ObReferenceObject with whichever address the (user-mode)

caller supplied for this field, leading to an increment of an arbitrary address. Since

PointerCount is the first field in OBJECT_HEADER , this means that the address that will be

incremented is the one in NotificationHeader->ReplyObject -

offsetof(OBJECT_HEADER, Body) .

The fix of this bug is probably obvious to anyone reading this and involved a very simple

change in EtwpNotifyGuid :

if (notificationHeader->ReplyRequested != FALSE)

{

 status = EtwpCreateUmReplyObject((ULONG_PTR)etwGuidEntry,

 &Handle,

 &replyObject);

 if (NT_SUCCESS(status))

 {

 notificationHeader->ReplyObject = replyObject;

https://windows-internals.com/wp-content/uploads/2020/11/etwpnotifyguid_replyrequested_check.png
https://windows-internals.com/wp-content/uploads/2020/11/etwpqueuenotification_bug.png

3/29

 goto alloacteDataBlock;
 }

}

else

{

 ...

}

Any non-zero value in ReplyRequested will lead to allocating a new reply object that will

overwrite the value passed in by the caller.

On the surface this bug sounds very easy to exploit. But in reality, not so much. Especially if

we want to make our exploit evasive and hard to detect. So, let’s begin our journey by looking

at how this vulnerability is triggered and then try to exploit it.

How to Trigger

This vulnerability is triggered through NtTraceControl, which has this signature:

NTSTATUS

NTAPI

NtTraceControl (

 In ULONG Operation,

 In PVOID InputBuffer,

 In ULONG InputSize,

 In PVOID OutputBuffer,

 In ULONG OutputSize,

 Out PULONG BytesReturned

);

If we look at the code inside NtTraceControl we can learn a few things about the

arguments we need to send to trigger the vulnerability:

http://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/etw/traceapi/control/index.htm

4/29

The function has a switch statement for handling the Operation parameter – to reach

EtwpNotifyGuid we need to use EtwSendDataBlock (17). We also see some

requirements about the sizes we need to pass in, and we can also notice that the

NotificationType we need to use should not be EtwNotificationTypeEnable as that

will lead us to EtwpEnableGuid instead. There are a few more restrictions on the

NotificationType field, but we’ll see those soon.

It’s worth noting that this code path is called by the Win32 exported function

EtwSendNotification , which Geoff Chappel documented on his blog post. The

information on Notify GUIDs is also valuable where Geoff corroborates the parameter

checks shown above.

Let’s look at the ETWP_NOTIFICATION_HEADER structure to see what other fields we need to

consider here:

typedef struct _ETWP_NOTIFICATION_HEADER

{

 ETW_NOTIFICATION_TYPE NotificationType;

 ULONG NotificationSize;

 LONG RefCount;

 BOOLEAN ReplyRequested;

https://windows-internals.com/wp-content/uploads/2020/11/nttracecontrol_arguments.png
http://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/etw/traceapi/control/sendnotification.htm
http://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/etw/notify/notification_header.htm

5/29

 union
 {

 ULONG ReplyIndex;

 ULONG Timeout;

 };

 union

 {

 ULONG ReplyCount;

 ULONG NotifyeeCount;

 };

 union

 {

 ULONGLONG ReplyHandle;

 PVOID ReplyObject;

 ULONG RegIndex;

 };

 ULONG TargetPID;

 ULONG SourcePID;

 GUID DestinationGuid;

 GUID SourceGuid;

} ETWP_NOTIFICATION_HEADER, *PETWP_NOTIFICATION_HEADER;

Some of these fields we’ve seen already and others we didn’t, and some of these don’t matter

much for the purpose of our exploit. We’ll begin with the field that required the most work –

DestinationGuid :

Finding the Right GUID

ETW is based on providers and consumers, where the providers notify about certain events

and the consumers can choose to be notified by one or more providers. Each of the providers

and consumers in the system is identified by a GUID .

Our vulnerability is in the ETW notification mechanism (which used to be WMI but now it is

all part of ETW). When sending a notification, we are actually notifying a specific GUID , so

we need to be careful to pick one that will work.

The first requirement is picking a GUID that actually exists on the system:

6/29

One of the first things that happens in EtwpNotifyGuid is a call to

EtwpFindGuidEntryByGuid , with the DestinationGuid passed in, followed by an access

check on the returned ETW_GUID_ENTRY .

What GUIDs are Registered?

To find a GUID that will successfully pass this code we should first go over a bit of ETW

internals. The kernel has a global variable named PspHostSiloGlobals , which is a pointer

to a ESERVERSILO_GLOBALS structure. This structure contains a EtwSiloState field,

which is a ETW_SILODRIVERSTATE structure. This structure has lots of interesting

information that is needed for ETW management, but the one field we need for our research

is EtwpGuidHashTables . This is an array of 64 ETW_HASH_BUCKETS structures. To find

the right bucket for a GUID it needs to be hashed this way: (Guid->Data1 ^ (Guid-

>Data2 ^ Guid->Data4[0] ^ Guid->Data4[4])) & 0x3F . This system was probably

implemented as a performant way to find the kernel structures for GUID s, since hashing the

GUID is faster than iterating a list.

Each bucket contains a lock and 3 linked lists, corresponding to the 3 values of

ETW_GUID_TYPE :

https://windows-internals.com/wp-content/uploads/2020/11/etwpnotifyguid_find_guid.png

7/29

These lists contain structures of type ETW_GUID_ENTRY , which have all the needed

information for each registered GUID :

As we can see in the screenshot earlier, EtwpNotifyGuid passes EtwNotificationGuid

type as the ETW_GUID_TYPE (unless NotificationType is

EtwNotificationTypePrivateLogger , but we will see later that we should not be using

that). We can start by using some WinDbg magic to print all the ETW providers registered on

my system under EtwNotificationGuidType and see which ones we can choose from:

When EtwpFindGuidEntryByGuid is called, it receives a pointer to the

ETW_SILODRIVERSTATE , the GUID to search for and the ETW_GUID_TYPE that this GUID

should belong to, and returns the ETW_GUID_ENTRY for this GUID . If a GUID is not found,

it will return NULL and EtwpNotifyGuid will exit with STATUS_WMI_GUID_NOT_FOUND .

dx -r0 @$etwNotificationGuid = 1

dx -r0 @$GuidTable = ((nt!_ESERVERSILO_GLOBALS*)&nt!PspHostSiloGlobals)-

>EtwSiloState->EtwpGuidHashTable

dx -g @$GuidTable.Select(bucket => bucket.ListHead[@$etwNotificationGuid]).Where(list

=> list.Flink != &list).Select(list => (nt!_ETW_GUID_ENTRY*)(list.Flink)).Select(Entry =>

new { Guid = Entry->Guid, Refs = Entry->RefCount, SD = Entry->SecurityDescriptor, Reg =

(nt!_ETW_REG_ENTRY*)Entry->RegListHead.Flink})

https://windows-internals.com/wp-content/uploads/2020/11/etw_guid_type.png
https://windows-internals.com/wp-content/uploads/2020/11/silo_globals_to_guid_entry_diagram.png

8/29

Only one active GUID is registered on my system! This GUID could be interesting to use for

our exploit, but before we do, we should look at a few more details related to it.

In the diagram earlier we can see the RegListHead field inside the ETW_GUID_ENTRY . This

is a linked list of ETW_REG_ENTRY structures, each describing a registered instance of the

provider, since the same provider can be registered multiple times, by the same process or

different ones. We’ll grab the “hash” of this GUID (25) and print some information from

its RegList :

dx -r0 @$guidEntry = (nt!_ETW_GUID_ENTRY*)(@$GuidTable.Select(bucket =>

bucket.ListHead[@$etwNotificationGuid])[25].Flink)

dx -g Debugger.Utility.Collections.FromListEntry(@$guidEntry->RegListHead,

"nt!_ETW_REG_ENTRY", "RegList").Select(r => new {Caller = r.Caller, SessionId =

r.SessionId, Process = r.Process, ProcessName = ((char[15])r.Process->ImageFileName)-

>ToDisplayString("s"), Callback = r.Callback, CallbackContext = r.CallbackContext})

There are 6 instances of this GUID being registered on this system by 6 different

processes. This is cool but could make our exploit unstable – when a GUID is notified, all of

its registered entries get notified and might try to handle the request. This causes two

complications:

1. We can’t predict accurately how many increments our exploit will cause for the target

address, since we could get one increment for each registered instance (but not

guaranteed to – this will be explained soon).

2. Each of the processes that registered this provider could try to use our fake notification

in a different way that we didn’t plan for. They could try to use the fake event, or read

some data that isn’t formatted properly, and cause a crash. For example, if the

notification has NotificationType = EtwNotificationTypeAudio , Audiodg.exe

will try to process the message, which will make the kernel free the ReplyObject .

Since the ReplyObject is not an actual object, this causes an immediate crash of the

system. I didn’t test different cases, but it’s probably safe to assume that even with a

different NotificationType this will still crash eventually as some registered process

tries to handle the notification as a real one.

https://windows-internals.com/wp-content/uploads/2020/11/windbg_registered_guids_fixed-2.png
https://windows-internals.com/wp-content/uploads/2020/11/windbg_registered_providers_fixed.png

9/29

Since the goal we started with was creating a stable and reliable exploit that doesn’t randomly

crash the system, it seems that this GUID is not the right one for us. But this is the only

registered provider in the system, so what else are we supposed to use?

A Custom GUID

We can register our own provider! This way we are guaranteed that no one else is going to

use it and we have full control over it. EtwNotificationRegister allows us to register a

new provider with a GUID of our choice.

And again, I’ll save you the trouble of trying this out for yourself and tell you in advance that

this just doesn’t work. But why?

Like everything on Windows, an ETW_GUID_ENTRY has a security descriptor, describing

which actions different users and groups are allowed to perform on it. And as we saw in the

screenshot earlier, before notifying a GUID EtwpNotifyGuid calls EtwpAccessCheck to

check if the GUID has WMIGUID_NOTIFICATION access set for the user which is trying to

notify it.

To test this, I registered a new provider, which we can see when we dump the registered

providers the same way we did earlier:

And use the !sd command to print its security descriptor nicely (this is not the full list, but

I trimmed it down to the relevant part):

https://docs.microsoft.com/en-us/windows/win32/secauthz/security-descriptors
https://windows-internals.com/wp-content/uploads/2020/11/windbg_registered_guids_2.png

10/29

A security descriptor is made up of groups (SID) and an ACCESS_MASK (ACL). Each group

is represented by a SID , in the form of “S-1-...” and a mask describing the actions this

group is allowed to perform on this object. Since we are running as a normal user with an

integrity level of medium, we are usually pretty limited in what we can do. The main groups

that our process is included in are Everyone (S-1-1-0) and Users (S-1-5-32-545). As we

can see here, the default security descriptor for an ETW_GUID_ENTRY doesn’t contain any

specific access mask for Users, and the access mask for Everyone is 0x1800

(TRACELOG_JOIN_GROUP | TRACELOG_REGISTER_GUIDS). Higher access masks are reserved

https://windows-internals.com/wp-content/uploads/2020/11/windbg_sd.png

11/29

for more privileges groups, such as Local System and Administrators. Since our user doesn’t

have WMIGUID_NOTIFICATION privileges for this GUID , we will receive

STATUS_ACCESS_DENIED when trying to notify it and our exploit will fail.

That is, unless you are running it on a machine that has Visual Studio installed. Then the

default Security Descriptor changes and Performance Log Users (which are basically any

logged in user) receive all sorts of interesting privileges, including the two we care about. But

let’s pretend that your exploit is not running on a machine that has one of the most popular

Windows tools installed on it and focus on clean Windows machines without weird

permission bugs.

Well, not all GUID s use the default security descriptor. It is possible to change the access

rights for a GUID , through the registry key

HKLM:\SYSTEM\CurrentControlSet\Control\WMI\Security :

This key contains all the GUID s in the system using non-default security descriptors. The

data is the security descriptor for the GUID , but since it is shown here as a REG_BINARY it

is a bit difficult to parse this way.

Ideally, we would just add our new GUID here and a more permitting configuration and go

on to trigger the exploit. Unfortunately, letting any user change the security descriptor of a

GUID will break the Windows security model, so access to this registry key is reserved for

SYSTEM , Administrators and EventLog :

https://twitter.com/tiraniddo/status/1098961330298597381?s=20
https://posts.specterops.io/data-source-analysis-and-dynamic-windows-re-using-wpp-and-tracelogging-e465f8b653f7
https://windows-internals.com/wp-content/uploads/2020/11/wmi_reg_key_fixed.png

12/29

If our default security descriptor is not strong enough and we can’t change it without a more

privileged process, it looks like we can’t actually achieve much using our own GUID .

Living Off the Land

Luckily, using the one registered GUID on the system and registering our own GUID are

not the only available choices. There are a lot of other GUID s in that registry key that already

have modified permissions. At least one of them must allow WMIGUID_NOTIFICATION for a

non-privileged user.

Here we face another issue – actually, in this case WMIGUID_NOTIFICATION is not enough.

Since none of these GUID s is a registered provider yet, we will first need to register them

before being able to use them for our exploit. When registering a provider through

EtwNotificationRegister , the request goes through NtTraceControl and reaches

EtwpRegisterUMGuid , where this check is done:

https://windows-internals.com/wp-content/uploads/2020/11/wmi_reg_key_permissions_fixed.png

13/29

To be able to use an existing GUID , we need it to allow both WMIGUID_NOTIFICATION and

TRACELOG_REGISTER_GUIDS for a normal user. To find one we’ll use the magic of

PowerShell, which manages to have such an ugly syntax that it almost made me give up and

write a registry parser in C instead (if you didn’t notice the BOOLEAN AND so far, now you

did. Yes, this is what it is. I’m sorry). We’ll iterate over all the GUID s in the registry key and

check the security descriptor for Everyone (S-1-1-0), and print the GUID s that allow at

least one of the permissions we need:

$RegPath = "HKLM:\SYSTEM\CurrentControlSet\Control\WMI\Security"

foreach($line in (Get-Item $RegPath).Property) { $mask = (New-Object

System.Security.AccessControl.RawSecurityDescriptor ((Get-ItemProperty $RegPath | select

-Expand $line), 0)).DiscretionaryAcl | where SecurityIdentifier -eq S-1-1-0 | select

AccessMask; if ($mask -and [Int64]($mask.AccessMask) -band 0x804) { $line;

$mask.AccessMask.ToString("X")}}

https://windows-internals.com/wp-content/uploads/2020/11/etwpregisterumguid.png

14/29

Not much luck here. Other than the GUID we already know about nothing allows both the

permission we need to Everyone.

But I’m not giving up yet! Let’s try the script again, this time checking the permissions for

Users (S-1-5-32-545):

foreach($line in Get-Content C:\Users\yshafir\Desktop\guids.txt) { $mask = (New-Object

System.Security.AccessControl.RawSecurityDescriptor ((Get-ItemProperty $RegPath | select

-Expand $line), 0)).DiscretionaryAcl | where SecurityIdentifier -eq S-1-5-32-545 | select

AccessMask; if ($mask -and [Int64]($mask.AccessMask) -band 0x804) { $line;

$mask.AccessMask.ToString("X")}}

https://windows-internals.com/wp-content/uploads/2020/11/powershell_guid_permissions_everyone.png

15/29

Now this is much better! There are multiple GUID s allowing both the things we need; we

can choose any of them and finally write an exploit!

For my exploit I chose to use the second GUID in the screenshot – {4838fe4f-f71c-4e51-

9ecc-8430a7ac4c6c} – belonging to “Kernel Idle State Change Event”. This was a pretty

random choice and any of the other ones than enable both needed rights should work the

same way.

What Do We Increment?

https://windows-internals.com/wp-content/uploads/2020/11/powershell_guid_permissions_users.png

16/29

Now starts the easy part – we register our shiny new GUID , choose an address to increment,

and trigger the exploit. But what address do we want to increment?

The easiest choice for privilege escalation is the token privileges:

dx ((nt!_TOKEN*)(@$curprocess.KernelObject.Token.Object & ~0xf))->Privileges

((nt!_TOKEN*)(@$curprocess.KernelObject.Token.Object & ~0xf))->Privileges [Type:

_SEP_TOKEN_PRIVILEGES]

[+0x000] Present : 0x602880000 [Type: unsigned __int64]

[+0x008] Enabled : 0x800000 [Type: unsigned __int64]

[+0x010] EnabledByDefault : 0x40800000 [Type: unsigned __int64]

When checking if a process or a thread can do a certain action in the system, the kernel

checks the token privileges – both the Present and Enabled bits. That makes privilege

escalation relatively easy in our case: if we want to give our process a certain useful privilege

– for example SE_DEBUG_PRIVILEGE , which allows us to open a handle to any process in the

system – we just need to increment the privileges of the process token until they contain the

privilege we want to have.

There are a few simple steps to achieve that:

1. Open a handle to the process token.

2. Get the address of the token object in the kernel – Use NtQuerySystemInformation

with SystemHandleInformation class to receive all the handles in the system and

iterate them until we find the one matching our token and save the Object address.

3. Calculate the address of Privileges.Present and Privileges.Enabled based on

the offsets inside the token.

4. Register a new provider with the GUID we found.

5. Build the malicious ETWP_NOTIFICATION_HEADER structure and call

NtTraceControl the correct number of times (0x100000 for

SE_DEBUG_PRIVILEGE) to increment Privileges.Present , and again to increment

Privileges.Enabled .

Like a lot of things, this sounds great until you actually try it. In reality, when you try this you

will see that your privileges don’t get incremented by 0x100000 . In fact, Present

privileges only gets incremented by 4 and Enabled stays untouched. To understand why

we need to go back to ETW internals…

Slots and Limits

Earlier we saw how the GUID entry is represented in the kernel and that each GUID can

have multiple ETW_REG_ENTRY structures registered to it, representing each registration

instance. When a GUID gets notified, the notification gets queues for all of its registration

instances (since we want all processes to receive a notification). For that, the

17/29

ETW_REG_ENTRY has a ReplyQueue , containing 4 ReplySlot entries. Each of these is

pointing to an ETW_QUEUE_ENTRY structure, which contains the information needed to

handle the request – the data block provided by the notifier, the reply object, flags, etc:

This is not relevant for this exploit, but the ETW_QUEUE_ENTRY also contains a linked list of

all the queued notifications waiting for this process, from all GUID s. Just mentioning it here

because this could be a cool way to reach different GUID s and processes and worth

exploring

Since every ETW_REG_ENTRY only has 4 reply slots, it can only have 4 notifications

waiting for a reply at any time. Any notification that arrives while the 4 slots are full will not

be handled – EtwpQueueNotification will reference the “object” supplied in

ReplyObject , only to immediately dereference it when it sees that the reply slots are full:

https://windows-internals.com/wp-content/uploads/2020/11/etw_notification_queue.png

18/29

Usually this is not an issue since notifications get handled pretty quickly by the consumer

waiting for them and get removed from the queue almost immediately. However, this is not

the case for our notifications – we are using a GUID that no one else is using, so no one is

waiting for these notifications. On top of that, we are sending “corrupted” notifications,

which have the ReplyRequested field set to non-zero, but don’t have a valid ETW

registration object set as their ReplyObject (since we are using an arbitrary pointer that we

want to increment). Even if we reply to the notifications ourselves, the kernel will try to treat

our ReplyObject as a valid ETW registration object, and that will most likely crash the

system one way or another.

Sounds like we are blocked here — we can’t reply to our notifications and no one else will

either, and that means we have no way to free the slots in the ETW_REG_ENTRY and are

limited to 4 notifications. Since freeing the slots will probably result in crashing the system,

it also means that our process can’t exit once it triggers the vulnerability – when a process

exits all of its handles get closed and that will lead to freeing all the queued notifications.

Keeping our process alive is not much of an issue, but what can we do with only 4

increments?

https://windows-internals.com/wp-content/uploads/2020/11/etwpqueuenotification_slots.png

19/29

The answer is, we don’t really need to limit ourselves to 4 increments and can actually use

just one – if we use our knowledge of how ETW works.

Provider Registration to the Rescue

Now we know that every registered provider can only have up to 4 notifications waiting for

a reply. The good news is that there is nothing stopping us from registering more than one

provider, even for the same GUID . And since every notification gets queued for all registered

instances for the GUID , we don’t even need to notify each instance separately – we can

register X providers and only send one notification, and receive X increments for our

target address! Or we can send 4 notifications and get 4X increments (for the same target

address, or up to 4 different ones):

Knowing that, can we register 0x100000 providers, then notify them once with a “bad”

ETW notification and get SE_DEBUG_PRIVILEGE in our token and finally have an exploit?

Not exactly.

https://windows-internals.com/wp-content/uploads/2020/11/etw_notification_queue_diagram.png

20/29

When registering a provider using EtwNotificationRegister , the function first needs to

allocate and initialize an internal registration data structure that will be sent to

NtTraceControl to register the provider. This data structure is allocated with

EtwpAllocateRegistration , where we see the following check:

Ntdll only allows the process to register up to 0x800 providers. If the current number of

registered providers for the process is 0x800 , the function will return and the operation will

fail.

Of course, we can try to bypass this by figuring out the internal structures, allocating them

ourselves and calling NtTraceControl directly. However, I wouldn’t recommend it — this

is complicated work and might cause unexpected side effects when ntdll will try to handle

a reply for providers that it doesn’t know of.

Instead, we can do something much simpler: we want to increment our privileges by

0x100000 . But if we look at the privileges as separate bytes and not as a DWORD , we’ll see

that actually, we only want to increment the 3 byte by 0x10 :
rd

https://windows-internals.com/wp-content/uploads/2020/11/etwpallocateregistration.png

21/29

To make our exploit simpler and only require 0x10 increments, we will just add 2 bytes to

our target addresses for both Privileges.Present and Privileges.Enabled . We can

further minimize the amount of calls we need to make to NtTraceControl if we register

0x10 providers using the GUID we found, then send one notification with the address of

Privileges.Present as a target, and another one with the address of

Privileges.Enabled .

Now we only have one thing left to do before writing our exploit – building our malicious

notification.

Notification Header Fields

ReplyRequested

As we’ve seen in the beginning of this post (so to anyone who made it this far, probably 3 –

4 days ago), the vulnerability is triggered through a call to NtTraceControl with an

ETWP_NOTIFICATION_HEADER structure where ReplyRequested is a value other than 0

and 1 . For this exploit I’ll use 2 , but any other value between 2 and 0xFF will work.

NotificationType

Then we need to pick a notification type out of the ETW_NOTIFICATION_TYPE enum :

typedef enum _ETW_NOTIFICATION_TYPE

{

 EtwNotificationTypeNoReply = 1,
 EtwNotificationTypeLegacyEnable = 2,

 EtwNotificationTypeEnable = 3,

 EtwNotificationTypePrivateLogger = 4,

 EtwNotificationTypePerflib = 5,

 EtwNotificationTypeAudio = 6,

 EtwNotificationTypeSession = 7,

 EtwNotificationTypeReserved = 8,

https://windows-internals.com/wp-content/uploads/2020/11/token_privileges_dword_bytes.png

22/29

 EtwNotificationTypeCredentialUI = 9,
 EtwNotificationTypeMax = 10,
} ETW_NOTIFICATION_TYPE;

We’ve seen earlier that our chosen type should not be EtwNotificationTypeEnable , since

that will lead to a different code path that will not trigger our vulnerability.

We also shouldn’t use EtwNotificationTypePrivateLogger or

EtwNotificationTypeFilteredPrivateLogger . Using these types changes the

destination GUID to PrivateLoggerNotificationGuid and requires having access

TRACELOG_GUID_ENABLE , which is not available for normal users. Other types, such as

EtwNotificationTypeSession and EtwNotificationTypePerflib are used across the

system and could lead to unexpected results if some system component tries to handle our

notification as belonging to a known type, so we should probably avoid those too.

The two safest types to use are the last ones – EtwNotificationTypeReserved , which is

not used by anything in the system that I could find, and

EtwNotificationTypeCredentialUI , which is only used in notifications from consent.exe

when it opens and closes the UAC popup, with no additional information sent (what is this

notification good for? It’s unclear. And since there is no one listening for it I guess MS is not

sure why it’s there either, or maybe they completely forgot it exists). For this exploit, I chose

to use EtwNotificationTypeCredentialUI .

NotificationSize

As we’ve seen in NtTraceControl , the NotificationSize field has to be at least

sizeof(ETWP_NOTIFICATION_HEADER) . We have no need for any more than that, so we will

make it this exact size.

ReplyObject

This will be the address that we want to increment + offsetof(OBJECT_HEADER, Body) –

the object header contains the first 8 bytes of the object it in, so we shouldn’t include them

in our calculation, or we’ll have an 8 -byte offset. And to that we will add 2 more bytes to

directly increment the third byte, which is the one we are interested in.

This is the only field we’ll need to change between our notifications – our first notification

will increment Privileges.Present , and the second will increment

Privileges.Enabled .

Other than DestinationGuid , which we already talked about a lot, the other fields don’t

interest us and are not used in our code paths, so we can leave them at 0 .

Building the Exploit

23/29

Now we have everything we need to try to trigger our exploit and get all those new privileges!

Registering Providers

First, we’ll register our 0x10 providers. This is pretty easy and there’s not much to explain

here. For the registration to succeed we need to create a callback. This will be called

whenever the provider is notified and can reply to the notification. I chose not to do anything

in this callback, but it’s an interesting part of the mechanism that can be used to do some

interesting things, such as using it as an injection technique.

But this blog post is already long enough so we will just define a minimal callback that does

nothing:

ULONG

EtwNotificationCallback (

 In ETW_NOTIFICATION_HEADER* NotificationHeader,

 In PVOID Context

)

{

 return 1;

}

And then register our 0x10 providers with the GUID we picked:

REGHANDLE regHandle;

for (int i = 0; i < 0x10; i++)

{

 result = EtwNotificationRegister(&EXPLOIT_GUID,

 EtwNotificationTypeCredentialUI,

 EtwNotificationCallback,

 NULL,

 ®Handle);

 if (!SUCCEEDED(result))
 {

 printf("Failed registering new provider\n");

 return 0;

 }

}

I’m reusing the same handle because I have no intention of closing these handles – closing

them will lead to freeing the used slots, and we’ve already determined that this will lead to a

system crash.

The Notification Header

https://modexp.wordpress.com/2020/04/08/red-teams-etw/

24/29

After all this work, we finally have our providers and all the notification fields that we need,

we can build our notification header and trigger the exploit! Earlier I explained how to get

the address of our token and it mostly just involves a lot of code, so I won’t show it here

again, let’s assume that getting the token was successful and we have its address.

First, we calculate the 2 addresses we will want to increment:

presentPrivilegesAddress = (PVOID)((ULONG_PTR)tokenAddress +

 offsetof(TOKEN, Privileges.Present) + 2);

enabledPrivilegesAddress = (PVOID)((ULONG_PTR)tokenAddress +

 offsetof(TOKEN, Privileges.Enabled) + 2);

Then we will define our data block and zero it:

ETWP_NOTIFICATION_HEADER dataBlock;

RtlZeroMemory(&dataBlock, sizeof(dataBlock));

And populate all the needed fields:

dataBlock.NotificationType = EtwNotificationTypeCredentialUI;

dataBlock.ReplyRequested = 2;

dataBlock.NotificationSize = sizeof(dataBlock);

dataBlock.ReplyObject = (PVOID)((ULONG_PTR)(presentPrivilegesAddress) +

 offsetof(OBJECT_HEADER, Body));

dataBlock.DestinationGuid = EXPLOIT_GUID;

And finally, call NtTraceControl with our notification header (we could have passed

dataBlock as the output buffer too, but I decided to define a new

ETWP_NOTIFICATION_HEADER and use that for clarify):

status = NtTraceControl(EtwSendDataBlock,

 &dataBlock,

 sizeof(dataBlock),

 &outputBuffer,

 sizeof(outputBuffer),

 &returnLength);

We will then repopulate the fields with the same values, set ReplyObject to (PVOID)

((ULONG_PTR)(enabledPrivilegesAddress) + offsetof(OBJECT_HEADER, Body)) and

call NtTraceControl again to increment our Enabled privileges.

Then we look at our token:

25/29

And we have SeDebugPrivilege !

Now what do we do with it?

Using SeDebugPrivilege

https://windows-internals.com/wp-content/uploads/2020/11/token_sedebugprivilege_fixed.png

26/29

Once you have SeDebugPrivilege you have access to any process in the system. This gives

you plenty of different ways to run code as SYSTEM , such as injecting code to a system

process.

I chose to use the technique that Alex and I demonstrated in faxhell – Creating a new process

and reparenting it to have a non-suspicious system-level parent, which will make the new

process run as SYSTEM . As a parent I chose to use the same one that we did in Faxhell – the

DcomLaunch service.

The full explanation of this technique can be found in the blog post about faxhell, so I will

just briefly explain the steps:

1. Use the exploit to receive SeDebugPrivilege .

2. Open the DcomLaunch service, query it to receive the PID and open the process with

PROCESS_ALL_ACCESS .

3. Initialize process attributes and pass in the

PROC_THREAD_ATTRIBUTE_PARENT_PROCESS attribute and the handle to

DcomLaunch to set it as the parent.

4. Create a new process using these attributes.

I implemented all those steps and…

Got a cmd process running as SYSTEM under DcomLaunch !

Forensics

https://windows-internals.com/faxing-your-way-to-system/
https://windows-internals.com/wp-content/uploads/2020/11/cmd_system.png

27/29

Since this exploitation method leaves queued notifications that will never get removed, it’s

relatively easy to find in memory – if you know where to look.

We go back to our WinDbg command from earlier and parse the GUID table. This time we

also add the header to the ETW_REG_ENTRY list, and the number of items on the list:

dx -r0 @$GuidTable = ((nt!_ESERVERSILO_GLOBALS*)&nt!PspHostSiloGlobals)-

>EtwSiloState->EtwpGuidHashTable

dx -g @$GuidTable.Select(bucket => bucket.ListHead[@$etwNotificationGuid]).Where(list

=> list.Flink != &list).Select(list => (nt!_ETW_GUID_ENTRY*)(list.Flink)).Select(Entry =>

new { Guid = Entry->Guid, Refs = Entry->RefCount, SD = Entry->SecurityDescriptor, Reg =

(nt!_ETW_REG_ENTRY*)Entry->RegListHead.Flink, RegCount =

Debugger.Utility.Collections.FromListEntry(Entry->RegListHead,

"nt!_ETW_REG_ENTRY", "RegList").Count()})

As expected, we can see here 3 GUID s – the first one, that was already registered in the

system the first time we checked, the second, which we are using for our exploit, and the test

GUID , which we registered as part of our attempts.

Now we can use a second command to see the who is using these GUID s. Unfortunately,

there is no nice way to view the information for all GUID s at once, so we’ll need to pick one

at a time. When doing actual forensic analysis, you’d have to look at all the GUID s (and

probably write a tool to do this automatically), but since we know which GUID our exploit is

using we’ll just focus on it.

We’ll save the GUID entry in slot 42 :

dx -r0 @$exploitGuid = (nt!_ETW_GUID_ENTRY*)(@$GuidTable.Select(bucket =>

bucket.ListHead[@$etwNotificationGuid])[42].Flink)

And print the information about all the registered instances in the list:

dx -g @$regEntries = Debugger.Utility.Collections.FromListEntry(@$exploitGuid-

>RegListHead, "nt!_ETW_REG_ENTRY", "RegList").Select(r => new {ReplyQueue =

r.ReplyQueue, ReplySlot = r.ReplySlot, UsedSlots = r.ReplySlot->Where(s => s !=

0).Count(), Caller = r.Caller, SessionId = r.SessionId, Process = r.Process, ProcessName =

((char[15])r.Process->ImageFileName)->ToDisplayString("s"), Callback = r.Callback,

CallbackContext = r.CallbackContext})

https://windows-internals.com/wp-content/uploads/2020/11/windbg_registered_guids_3.png

28/29

We can see that all instances are registered by the same process (conveniently named

“exploit_part_1”). This fact by itself is suspicious, since usually a process will not have a

reason to register the same GUID more than once and tells us we should probably look

further into this.

If we want to investigate these suspicious entries a bit more, we can look at one of the

notification queues:

dx -g @$regEntries[0].ReplySlot

These look even more suspicious – their Flags are

ETW_QUEUE_ENTRY_FLAG_HAS_REPLY_OBJECT (2) but their ReplyObject fields don’t

look right – they are not aligned the way objects are supposed to be.

We can run !pool on one of the objects and see that this address is actually somewhere

inside a token object:

And if we check the address of the token belonging to the exploit_part_1 process:

dx @$regEntries[0].Process->Token.Object & ~0xf

@$regEntries[0].Process->Token.Object & ~0xf : 0xffff908912ded0a0

? 0xffff908912ded112 - 0xffff908912ded0a0

Evaluate expression: 114 = 00000000`00000072

We’ll see that the address we see in the first ReplyObject is 0x72 bytes after the token

address, so it is inside this process’ token. Since a ReplyObject should be pointing to an

ETW registration object, and definitely not somewhere in the middle of a token, this is

https://windows-internals.com/wp-content/uploads/2020/11/etw_registered_providers.png
https://windows-internals.com/wp-content/uploads/2020/11/etw_reply_slots.png
https://windows-internals.com/wp-content/uploads/2020/11/pool_token.png

29/29

obviously pointing towards some suspicious behavior done by this process.

Show Me The Code

The full PoC can be found in the GitHub repository.

Conclusion

One of the things I wanted to show in this blog post is that there is almost no such thing as a

“simple” exploit anymore. And 5000 words later, I think this point should be clear enough.

Even a vulnerability like this, which is pretty easy to understand and very easy to trigger, still

takes a significant amount of work and understanding of internal Windows mechanisms to

turn into an exploit that doesn’t immediately crash the system, and even more work to do

anything useful with.

That being said, these kinds of exploits are the most fun — because they don’t rely on any

ROP or HVCI violations, and have nothing to do with XFG or CET or page tables or

PatchGuard . Simple, effective, data-only attacks, will always be the Achille’s heel of the

security industry, and will most likely always exist in some form.

This post focused on how we can safely exploit this vulnerability, but once we got our

privileges, we did pretty standard stuff with them. In future posts, I might showcase some

other interesting things to do with arbitrary increments and token objects, which are more

interesting and complicated, and maybe make attacks harder to detect too.

Read our other blog posts:

https://github.com/yardenshafir/CVE-2020-1034

