Defeating Macro Document Static Analysis with Pictures
of My Cat

E billdemirkapi.me/defeating-macro-document-static-analysis-with-pictures-of-my-cat

Bill Demirkapi September 16, 2020

Over the past few weeks I've spent some time learning Visual Basic for Applications (VBA),
specifically for creating malicious Word documents to act as an initial stager. When taking
operational security into consideration and brainstorming ways of evading macro detection, |
had the question, how does anti-virus detect a malicious macro?

The hypothesis | came up with was that anti-virus would parse out macro content from the
word document and scan the macro code for a variety of malicious techniques, nothing
crazy. A common pattern I've seen attackers counter this sort-of detection is through the use
of macro obfuscation, which is effectively scrambling macro content in an attempt to evade
the malicious patterns anti-virus looks for.

The questions | wanted answered were:

1. How does anti-virus even retrieve the macro content?
2. What differences are there for the retrieval of macro content between the
implementation in Microsoft Word and anti-virus?

Discovery

According to Wikipedia,Open Office XML (OOX) "is a zipped, XML-based file format
developed by Microsoft for representing spreadsheets, charts, presentations and word
processing documents”. This is the file format used for the common Microsoft Word
extensions docx and docm. The fact that Microsoft Office documents were essentially a zip
file of XML files certainly piqued my interest.

Since the OOX format is just a zip file, | found that parsing macro content from a Microsoft
Word document was simpler than you might expect. All an anti-virus would need to do is:

1. Extract the Microsoft Office document as a ZIP and look for the file
word\vbaProject.bin.
2. Parse the OLE binary and extract the macro content.

The differences | was interested in was how the methods would handle errors and
corruption. For example, common implementations of ZIP extraction will often have error
checking such as:

1. Does the local file header begin with the signature 6x04034b507

1/9

https://billdemirkapi.me/defeating-macro-document-static-analysis-with-pictures-of-my-cat/
https://en.wikipedia.org/wiki/Visual_Basic_for_Applications
https://github.com/sevagas/macro_pack
https://en.wikipedia.org/wiki/Office_Open_XML

2. Is the minimum version bytes greater than what is supported?

What | was really after was finding ways to break the ZIP parser in anti-virus without

breaking the ZIP parser used by Microsoft Office.

Before we get into corrupting anything, we need a base sample first. As an example, | simply

wrote a basic macro "Hello World!" that would appear when the document was opened.

For the purposes of testing detection of macros,

| needed another sample document that was
heavily detected by anti-virus. After a quick

google search, | found a few samples shared by

@malware_traffic here. The sample named

HSOTN2JI.docm had the highest detection rate,

coming in at 44/61 engines marking_the
document as malicious.

4 4 (1) 44 engines detected this file

4dat0d4278f499616315ffa28196919369d4ca365245¢ce8c60dc46bdPdB16667

4das0d4278f4996163f5a28196919369d4cal3s5245ceBoa0dc46bd9da 16667 bin

create-ole docx enum-windows exe-patiern handle-file

DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY

Ad-Aware

AhnLab-V3

AlYac

Arcabit

macros

2] Testmacro - ThisDecument (Code)

|Do-c:ument

Private Suk Document Cpen()
MsgBox "Hello World!"™
End Sub

Microsoft Word X

Hello World!
53.88 KB 2019-08-24 23:34:41 UTC

DOCX

obfuscated open-file write-file

AegisLab

Allbaba

Antiy-AVL

Avast

To ensure that detections were specifically based on the malicious macro inside the

document's vbaProject.bin OLE file, I...

1. Opened both my "Hello World" and the HSOTN2JI macro documents as ZIP files.

2. Replaced the vbaProject.bin OLE file in my "Hello World" macro document with the

vbaProject.bin from the malicious HSOTN2JI macro document.

Running the scan again resulted in the following_detection rate:

2/9

https://i.imgur.com/6EyHgBz.png
https://twitter.com/malware_traffic
https://www.malware-traffic-analysis.net/2017/05/16/index.html
https://www.virustotal.com/gui/file/4da60d4278f4996163f5ffa28196919369d4ca365245ce8c60dc46bd9d816667/detection
https://i.imgur.com/RKMJX6X.png
https://www.virustotal.com/gui/file/aa0c0663d8e601456b6327e06f56d31a701f1047085dae3846fb1c9c81a4cd09/detection

(1) 42 engines detected this file

42 -

aa0c0663d8e601456b6327206f56d31270111047085dae38446fb1cPcB1a4cd0? 29.20KB 2020-09-06 06:23:46 UTC
DOCX
bad-macro-sample.docm Fd

docx enum-windows exe-pattern handle-file Macros obfuscated open-file write-file

DETECTION DETAILS RELATIONS COMMUNITY

Ad-Aware (D) W97M.Downloader.FUF AegisLab (D) TrojanvBs.Agent.elc
AhnLab-V3 Q/ WM/Downloade Antiy-AVL (1) Trojan[Cownloader]/MSWord. Agent.bim

Arcabit (1) We7M.Downloader.FUF Avast (D) SNH:Script [Dropper]

Fortunately, these anti-virus products were detecting the actual macro and not solely relying
on conventional methods such as blacklisting the hash of the document. Now with a base
malicious sample, we can begin tampering with the document.

Exploitation

The methodology | used for the methods of corruption is:

1. Modify the original base sample file with the corruption method.

2. Verify that the document still opens in Microsoft Word.

3. Upload the new document to VirusTotal.

4. If good results, retry the method on my original "Hello World" macro document and
verify that the macro still works.

Before continuing, it's important to note that the methods discussed in this blog post does
come with drawbacks, specifically:

1. Whenever a victim opens a corrupted document, they will receive a prompt asking
whether or not they'd like to recover the document:

Micresoft Word X

| Waord found unreadable content in bad-macro-sample-prepend-random.docm. Do you want to recover the contents of this document? If you trust the source of this document, click Yes,

1. Before the macro is executed, the victim will be prompted to save the recovered

document. Once the victim has saved the recovered document, the macro will execute.

Although adding any user interaction certainly increases the complexity of the attack, if a
victim was going to enable macros anyway, they'd probably also be willing to recover the
document.

General Corruption

3/9

https://i.imgur.com/6gUQuby.png
https://i.imgur.com/mQ9QBRp.png

We'll first start with the effects of general corruption on a Microsoft Word document. What |
mean by this is I'll be corrupting the file using methods that are non-specific to the ZIP file
format.

First, let's observe the impact of adding random bytes to the beginning of the file.

offset (h) 00

[]
i

02 03 04 05 06 07 0B 0% Q& OB OC OD QOE OF Decoded text

00000000 3F 90 FD E1 1D 2B 8C 03 FE 56 56 56 TA A3 61 55 7?.va.+E.pVVvzial
00000010 FE 4% 66 F1 EF 3F DS 5F 46 CF 05 1F 14 &7 &4 A0 prﬁi?é_Fi...g’
00000020 CT 23 4F F5 C3 DF 63 02 20 E5 5E %2 SE ET 683 26 G#Dﬁiﬁc. a~r~gche
00000030 DB 85 E2 7F 53 1D DO B2 37 4C 7B 66 73 FF AD 7B U._4.5.B,7L{fs¥.{
00000040 55 66 23 DC CD 07 BB 4E 02 75 Be 70 Bl C3 12 E7 Uf#ﬁi.:ﬂ.u{piﬁ.g
00000050 3F Fé 94 79 C2 1C DD 32 21 44 7C F7 C4 4D 9D 3F ?a3vh.¥210|zEM.7
00000060 F2 BS 35 54 0D 36 72 30 70 EO F8 45 34 74 18 C9 ouST.érOpasE:z. K
00000070 1E €4 5D RE 3C 1D 74 4C 5B D4 E3 1E 36 LB 62 C4 .j1®<.tL[D3.6«bl
00000080 C9 SB 08 F9 F1 Dl 6C C3 C4 F3 BE 92 41 FD 26 E5 E».uAaf1iio, rayszd
00000090 FD 2C 94 FB EC 84 B7 B7 07 26 9F 99 9F 78 17 56 v, 30i5--.+¥=¥{.v
000000R0 7B 28 OB 91 BD 1C 2E C9 F9 OB 46 73 43 D4 FE CD {{.'%..Eu.Fsclpil
000000BO DB FS 5B 7C 1E OE 96 90 E4 &7 E2 42 22 C8 14 18 U&[]..-.38aJ"E..
0QQQoQoCco 81 3B SE FB TF Z1 D& 45 8E C5 26 4E 00 &7 1D 52 .:iﬁ.!@¥fﬁ&ﬂ.g.2
QoQoQooDD TE 3A D3 40 43 ES 56 CA F6 €E Fe 4B &7 C5 38 13 ~:é@Cé¥fﬁnﬁKgﬁB.
00C0000EQD 01 CC 77 OE 21 34 54 10 40 BAZ 83 0B 9D CO 5& 3C .Iw.14Z.@°f..AFC
000000F0 96 A3 D1 2E 5B 4B Bl 95 6E 73 6B RS F7 €8 EE 41 -£N.[K; nsk¥zhid
00000100 ﬁg 48 03 04 14 00 O6 OO0 08 00 00 00 21 00 TE 38 FK '.~8
00000110 EC 7A 87 01 00 OO0 AD 05 00 00 13 00 08 02 5B 43 iz#........... [c
00000120 &F €E 74 €5 6E 74 5F 54 79 70 &5 73 5D ZE 78 €D ontent_Types] .xm
00000130 eC 20 A2 04 02 25 A0 00 02 00 00 00 00 00 00 00 L ..o vovevunnn
(1) 28 engines detected this file v Zl;
25693a80d39dbéa54fled116a36ac83581bé3e3497e%aaldedd12c0d4746fdb1 29.45KB 2020-0%-06 07:47:04 UTC
bad-macro-sample-prepend-random.docm Size amoment ago
DETECTION DETAILS COMMUNITY
Ad-Aware (_\) We7M.DownloaderFUF AegisLab @ TrojanVBS.Agent.alc
AlYac @ W97M. Downloader FUF Arcabit @ W97M.Downloader FUF
Avast (1) SNH:Script [Dropper] AVG (1) SNH:Script [Dropper]
Avira (no cloud) (_\) W2000M/Agent. 4582217 BitDefender @ W97M.Downloader.FUF

With a few bytes at the beginning of the document, we were able to decrease detection by
about 33%. This made me confident that future attempts could reduce this even further.

Result: 33% decrease in detection

Prepending My Cat

This time, let's do the same thing except prepend a JPG file, in this case, a photo of my cat!

4/9

https://i.imgur.com/dQ8lrKt.png
https://i.imgur.com/KG7Mlya.png

You might think that prepending some
random data should result in the
same detection rate as an image, but
some anti-virus marked the file as
clean as soon as they saw an image.

® 21engines detected this file

eea592867c29ebcBedcidd fefedbadfffPa2bbeeebSibBi1e67c93081a84bbbl

bad-macro-sample-prepend-cat dacm

Ipeg
Community
Score

DETECTION DETAILS COMMUNITY
AegisLab @ TrojanVBS.Agent.alc
Avast @ SMNH:Script [Dropper]
Avira (e cloud) (1) W2000MiAgent. 4582217
ClamAv () Doc.Downloader. Jaff-6329915-0

Arcabit

AVG

BitDefender

Cynet

~ 3
(ﬁ.

215.44 KB 2020-09-06 07:54:55 UTC :

Size amoment ago PG

(D) W97M.DownloaderFUF
@ SNH:Script [Dropper]
(D) W97M.DownloaderFUF

@ Malicious (score: 85)

To aid in future research, the anti-virus engines that marked the random data document as
malicious but did not mark the cat document as malicious were:

5/9

https://i.imgur.com/hWfh1Nl.png
https://i.imgur.com/J911XpJ.png

Ad-Aware
ALYac
DrWeb
eScan
McAfee
Microsoft
Panda
Qihoo-360
Sophos ML
Tencent
VBA32

The reason this list is larger than the actual difference in detection is because some engines
strangely detected this cat document, but did not detect the random data document.

Result: 50% decrease in detection

Prepending + Appending My Cat

Purely appending data to the end of a macro document barely impacts the detection rate,
instead we'll be combining appending data with other methods starting with my cat.

5 (1) 5engines detected this file
“— .-
a152253e71c25064d9c5769a9926223aff83609b344274bad feelfcdObf7718 401.68 KB 2020-09-06 08:12:08 UTC Aa
bad-macro-sample-append-cat.docm PG
Ipeg
DETECTION DETAILS COMMUNITY

Avast {1} SN AVG (1) SNH:Seript [Dropper]

ClamAVY {1} Doc.Do

Cyren (1) PP97M/Donoff
Fortinet (D) vBAAgent.DGTir.didr Ad-Aware (%) Undetected

Aegislab () Undetected AhnlLab-V3 () Undetected

What was shocking about all of this was even when the ZIP file was in the middle of two
images, Microsoft's parser was able to reliably recover the document and macro! With only
extremely basic modification to the document, we were able to essentially prevent most
detection of the macro.

Result: 88% decrease in detection

Zip Corruption

Microsoft's fantastic document recovery is not just exclusive to general methods of file
corruption. Let's take a look at how it handles corruption specific to the ZIP file format.

Corrupting the ZIP Local File Header

6/9

https://i.imgur.com/7qjlH93.png

The only file we care about preventing access to is the vbaProject.bin file, which contains
the malicious macro. Without corrupting the data, could we corrupt the file header for the
vbaProject.bin file and still have Microsoft Word recognize the macro document?

Let's take a look at the structure of a local file header from Wikipedia:

Offset Bytes

0
4
6
8
10
12
14
18
22
26
28
30
30+n

4

i L B e T A ™= S e S T

=

m

Local file header

Description>’!

Local file header signature = 0x04034b50 (read as a little-endian number)

Version needed to extract {(minimum)

General purpose bit flag

Compression method

File last modification time

File last modification date

CRC-32 of uncompressed data

Compressed size

Uncompressed size

File name length (n)

Extra field length (mm)

File name

Extra field

| decided that the local file header signature would be the least likely to break file parsing,
hoping that Microsoft Word didn't care whether or not the file header had the correct magic
value. If Microsoft Word didn't care about the magic, corrupting it had a high chance of
interfering with ZIP parsers that have integrity checks such as verifying the value of the

magic.

After corrupting only the file header signature of the vbaProject.bin file entry, we get the
following result:

offset (h)

QOOOOBFOQ
QOQaQCo0
QOQooCLo
QOQooCZ0o
QOQaoCs0
QOoaoCa0

oa

C2
14
oag
B2
aC

0

[= I I

L I S

23 2

1

=]

BE

a0

a7]

D7

04

& Fo C
Oe 00
o0 1

0g
oag
&F
3E

a4 TE

05

a0
a0
=
33

aC

Oe

Qo
oag
13
83
BB
EF

o7

R N =T =

o L

La)]

FF

“l

10

Fe

OR

03 00
33 B

TT

E 62
B 3B
CF !

oC O OE OF
D2 DO TB 05
T2 84 2ZF Te
6E EC 58 35D
3B 4E 94 04
CT Co- BB B3

Decoded text

RN T¥T
.......... word/v
baProject.biniX]

L.W.>3av0.;]:H5.
S.xi~-\ivvaI[Ch»>

7/9

https://en.wikipedia.org/wiki/Zip_(file_format)
https://i.imgur.com/aZqIjWO.png
https://i.imgur.com/2F5Zhry.png

-y
4 (1) 4 engines detected this file

4d5e7eb79dibcch5957767d12b224dc8302cd132cdd599e1b409b59dc5ebs 29.20KB 2020-09-07 20:36:29 UTC
bad-macro-sample-corrupt-magic.docm) DOCX

docx

DETECTION DETAILS RELATIONS COMMUNITY

F-Secure 1) Malware W2000M/iAgent 4582217 Sophos AV (1) Troj/DocDI-RZZ

O] Troj/DocDI-RZZ Tencent (1) OLEWIn32.Macro.703747

Sophos ML W

Ad-Aware () Undetected AegisLab (&) Undetected
With a ZIP specific corruption method, we almost completely eliminated detection.

Result: 90% decrease in detection

Combining Methods

With all of these methods, we've been able to reduce static detection of malicious macro
documents quite a bit, but it's still not 100%. Could these methods be combined to achieve
even lower rates of detection? Fortunately, yes!

Method Detection Rate Decrease
Prepending Random Bytes 33%

Prepending an Image 50%

Prepending and Appending an Image 88%

Corrupting ZIP File Header 90%
Prepending/Appending Image and Corrupting ZIP File 100%

Header

Interested in trying out the last corruption method that reduced detection by 100%? | made a
script to do just that! To use it, simply execute the script providing document filename as the
first argument and a picture filename for the second parameter. The script will spit out the
patched document to your current directory.

As stated before, even though these methods can bring down the detection of a macro
document to 0%, it comes with high costs to attack complexity. A victim will not only need to
click to recover the document, but will also need to save the recovered document before the
malicious macro executes. Whether or not that added complexity is worth it for your team will
widely depend on the environment you're against.

8/9

https://i.imgur.com/ucMpYUK.png
https://gist.github.com/D4stiny/3429852f2fe8b7f7725e7f5cc18cafbd

Regardless, one must heavily applaud the team working on Microsoft Office, especially those
who designed the fantastic document recovery functionality. Even when compared to tools
that are specifically designed to recover ZIP files, the recovery capability in Microsoft Office
exceeds all expectations.

9/9

