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Introduction

With fileless malware becoming a ubiquitous feature of most modern Red Teams, knowledge
in the domain of memory stealth and detection is becoming an increasingly valuable skill to
add to both an attacker and defender’s arsenal. I've written this text with the intention of
further improving the skill of the reader as relating to the topic of memory stealth on Windows
both when designing and defending against such malware. First by introducing my open
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source memory scanner tool Moneta (on Github here), and secondly by exploring the topic of
legitimate dynamic code allocation, false positives and stealth potential therein discovered
through use of this scanner.

This is the second in a series of posts on malware forensics and bypassing defensive
scanners, the part one of which can be found here. It was written with the assumption that
the reader understands the basics of Windows internals, memory scanners and malware

design.

Moneta

In order to conduct this research | wrote a memory scanner in C++ which I've named
Moneta. It was designed both as an ideal tool for a security researcher designing malware to
visualize artifacts relating to dynamic code operations, as well as a simple and effective tool
for a defender to quickly pick up on process injections, packers and other types of malware
in memory. The scanner maps relationships between the PEB, stack, heaps, CLR, image
files on disk and underlying PE structures with the regions of committed memory within a
specified process. It uses this information to identify anomalies, which it then uses to identify
IOCs. It does all of this without scanning the contents of any of the regions it enumerates,
which puts it in stark contrast to tools such as pe-sieve, which is also a usermode/runtime
memory |OC scanner but which relies on byte patterns in addition to memory characteristics
as its input. Both Moneta and pe-sieve have the shared characteristic of being usermode
scanners designed for runtime analysis, as opposed to tools based on the Volatility
framework which rely on kernel objects and which are generally intended to be used
retrospectively on a previously captured memory dump file.

Moneta focuses primarily on three areas for its IOCs. The first is the presence of
dynamic/unknown code, which it defines as follows:

1. Private or mapped memory with executable permissions.
2. Modified code within mapped images.
3. PEB image bases or threads with start addresses in non-image memory regions.

4. Unmodified code within unsigned mapped images (this is a soft indicator for hunting
not a malware 10C).
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Secondly, Moneta focuses on suspicious characteristics of the mapped PE image regions
themselves:

1. Inconsistent executable permissions between a PE section in memory and its
counterpart on disk. For example a PE with a section which is +RX in memory but
marked for +R in its PE header on disk.

2. Mapped images in memory with modified PE headers.

3. Mapped images in memory whose FILE_OBJECT attributes cannot be queried (this is
an indication of phantom DLL hollowing).

Thirdly, Moneta looks at IOCs related to the process itself:

1. The process contains a mapped image whose base address does not have a
corresponding entry in the PEB.

2. The process contains a mapped image whose base address corresponds to an entry in
the PEB but whose name or path (as derived from its FILE_OBJECT) do not match
those in the PEB entry.

To illustrate the attribute-based approach to I0Cs utilized by Moneta, a prime example can
be found in the first part of this series, where classic as well as phantom DLL hollowing were
described in detail and given as examples of lesser known and harder to detect alternatives
to classic dynamic code allocation. In the example below, I've pointed Moneta at a process
containing a classic DLL hollowing artifact being used in conjunction with a shellcode
implant.

Administrator: Command Prompt - o x

d\Malicious Memory Artifacts Part II\Demo>Monetab64.exe -p 5740 -m ioc --option suppress-ba

Part II\Demo\ArtifactKit64.e

ory Artifacts Part II\Demo>

Figure 1 - Moneta being used to select all committed memory regions associated with IOCs
within a process containing a DLL hollowing artifact with a shellcode implant
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The module aadauthhelper.dll at 0x00007FFC91270000 associated with the triggered 10C
can be further enumerated by changing the selection type of Moneta from ioc to region and
providing the exact address to select. The from-base option enumerates the entire region
(from its allocation base) associated with specified address, not only its subregion (VAD).

BN Administrator: Command Prompt — O ™

licious Memory Artifacts Part II\Demo>Monetat

n --option sup

Malicious Memory Artifacts Part II\Demo:»

Figure 2 - Moneta being used to enumerate the memory region associated with a hollowed
DLL containing a shellcode implant

The two suspicions in Figure 2 illustrate the strategy used by Moneta to detect DLL

hollowing, as well as other (more common) malware stealth techniques such as Lagos Island

(a technique often used to bypass usermode hooks). The aadauthhelper.dll module itself,
having been mapped with NTDLL.DLL!NtCreateSection and
NTDLL.DLL!NtMapViewOfSection as opposed to legitimately using NTDLL.DLL!LdrLoadDIl,
lacks an entry in the loaded modules list referenced by the PEB. In the event that the module
had been legitimately loaded and added to the PEB, the shellcode implant would still have
been detected due to the 0x1000 bytes (1 page) of memory privately mapped into the
address space and retrieved by Moneta by querying its working set - resulting in a modified
code I0OC as seen above.

The C code snippet below, loosely based upon Moneta, illustrates the detection of classic
DLL hollowing through use of both PEB discrepancy and working set I0Cs:
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uint8_t *pAddress = ...

MEMORY_BASIC_INFORMATION Mbi;

if (VirtualQueryEx(hProcess, pAddress, &Mbi, sizeof MEMORY_BASIC_INFORMATION)) ==
sizeof(MEMORY_BASIC_INFORMATION)) {

if(Mbi. Type == MEM_IMAGE && IsExecutable(&Mbi)) {

wchar_t ModuleName[MAX _PATH + 1]={0};

if (!GetModuleBaseNameW/(hProcess, (static_cast<HMODULE>(Mbi.AllocationBase),
ModuleName, MAX_PATH + 1)) {

// Detected missing PEB entry...

}

if (Mbi.State == MEM_COMMIT && Mbi.Protect I= PAGE_NOACCESS) {
uint32_t dwPrivateSize = 0;
PSAPI_WORKING_SET_EX INFORMATION WorkingSets={ 0 };

uint32_t dwWorkingSetsSize = sizeof(PSAPI_WORKING_SET_EX_INFORMATION);

for (uint32_t dwPageOffset = 0; dwPageOffset < Mbi.RegionSize; dwPageOffset += 0x1000)
{

WorkingSets. VirtualAddress = (static_cast<uint8_t *>(Mbi.BaseAddress) + dwPageOffset);
if (K32QueryWorkingSetEx(this->ProcessHandle, &WorkingSets, dwWorkingSetsSize)) {
if (IWorkingSets. VirtualAttributes.Shared) {

dwPrivateSize += 0x1000;

}

}

5/31



if(dwPrivateSize) {

// Detected modified code...

In the example below, I've pointed Moneta at a process containing a phantom DLL hollowing
artifact used in conjunction with a shellcode implant.

E¥ Administrator: Command Prompt - a X

ts Part II\Demo>Moneta64.exe -p 9544 -m ioc --option suppress-ba

n comple

s\Forrest\ WM cious Memory Artifacts Part II\Demo>

Figure 4 - Moneta being used to enumerate the memory region associated with a hollowed
phantom DLL containing a shellcode implant

Notably in the image above, the missing PEB module suspicion persists (since the region in
question is technically image memory without a corresponding PEB module entry) but the
image itself is unknown. This is because TxF isolates its transactions from other processes,
including in this case Moneta. When attempting to query the name of the file associated with
the image region from its underlying FILE_OBJECT using the
PSAPI.DLL!GetMappedFileNameW API, external processes will fail in the unique instance
that the section underlying the image mapping view was generated using a transacted
handle created by an external process. This is the most robust method I’ve devised to
reliably detect phantom DLL hollowing and process doppelganging. This also results in
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the subregions of this image mapping region (distinguished by their unique VAD entries in
the kernel) being unable to be associated with PE sections as they are in Figure 2. Notably,
phantom DLL hollowing has done a very nice job of hiding the shellcode implant itself. In the
highlighted region of Figure 4 above, the private bytes associated with the region (which
should be 0x1000, or 1 page, due to the shellcode implant) is zero. There is no other method
| am aware of powerful enough to hide modified ranges of executable image memory from
working set scans. This is why the Moneta scan of the classic DLL hollowing artifact process
seen in Figure 2 yields a “modified code” suspicion, while phantom DLL hollowing does not.

The code snippet below, loosely based upon Moneta, illustrates the detection of phantom
DLL hollowing through TxF file object queries:

uint8_t *pAddress = ...

MEMORY_BASIC_INFORMATION Mbi;

if (VirtualQueryEx(hProcess, pAddress, &Mbi, sizeof(MEMORY _BASIC_INFORMATION)) ==
sizeof(MEMORY_BASIC_INFORMATION)) {

if(Mbi. Type == MEM_IMAGE) {
wchar _t DevFilePath[MAX _PATH + 1]={0};

if (!GetMappedFileNameW/(hProcess, static_cast<HMODULE>(Mbi.AllocationBase),
DevFilePath, MAX_PATH + 1)) {

// Detected phantom DLL hollowing...
}
}
}

Filters and False Positivies
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With an understanding of the IOC criteria described in the previous section, a scan of my full
Windows 10 OS would be expected to yield no IOCs, yet this is far from the reality in
practice.

B8 Command Prompt — O >

Figure 5 - I0C statistics generated by Moneta given a full OS memory space

With an astounding 3,437 |IOCs on a relatively barren Windows 10 OS it quickly becomes
clear why so many existing memory scanners rely so heavily on byte patterns and other less
broad IOC criteria. | found these results fascinating when | first began testing Moneta, and |
discovered many quirks, hidden details and abnormalities inherent to many subsystems in
Windows which are of particular interest when designing both malware and scanners.

Let’s begin by examining the 1202 missing PEB module I0Cs. These |IOCs are only
generated when a PE is explicitly mapped into a process as an image using SEC_IMAGE
with NTDLL.DLL!NtCreateSection and is not added to the loaded modules list in the PEB -
something which would be done automatically if the PE had been loaded how it is supposed
to be loaded via NTDLL.DLL!L drl oadDII.
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BN Administrator: C\Windows'\system32\cmd.exe — O x
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Figure 6 - The metadata false positive results of an IOC scan made by Moneta

The region at 0x000001D6EDDDO0000 corresponds to the base of a block of image memory
within an instance of the Microsoft.Photos.exe process. At a glance, it shares
characteristics in common with malicious DLL hollowing and Lagos Island artifacts. Further
details of this region can be obtained through a subsequent scan of this exact address with a
higher detail verbosity level:

BN Administrator: C:\Windows\system32\cmd.exe — O x

s.Phot

inMetadat

Mapped file : CriWindow inMetadatat\Windows. tem.winmd
hit

mapped: no
es [Embedded]
gning lev
PEB module

8x886000060
xB6888668
exeeeeeoo0
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Figure 7 - Detailed scan of the specific region associated with the metadata image

There are several interesting characteristics of this region. Prime among them, is the Non-
executable attribute (queried through the NTDLL.DLL!NtQueryVirtualMemory API) set to
false despite this image clearly not having been loaded with the intention of executing code.
Non-executable image regions are a unique and undocumented feature of the
NNTDLL.DLL!NtCreateSection API, which causes the resulting image to be immutably
readonly but still of type MEM_IMAGE. Furthermore, use of the
SEC_IMAGE_NO_EXECUTE flag when creating new sections allows for a bypass of the
image load notification routine in the kernel. We would expect such a feature to have been
used in the case of this metadata file, but it was not. There is a single VAD associated with
the entire region, with PTE attributes of read-only even though the image was clearly loaded
as a regular executable image (also evidenced by the initial permissions of
PAGE_EXECUTE_WRITECOPY) and contains a .text section which would normally contain
executable code.

H Windows, System. winmd | x
’a . . . . . .
Name Virtual Size Virtual Address | Raw Size Raw Address | Reloc A, |Linenu... |Relo.. |Linen... | Characteristics
@3?:::::'5’“’"'"'"“ 00000138 00000140 00000144 00000148 0000014C 00000150 | 00000154 | 0000... | 00000...| 0000015C
|&) Nt Headers Byte[8] Dword Dword Dword Dword Dword Dword Word | Werd | Dword
|&) File H
@ C::tin::ldl-el;a o text 0002471C 00001000 00024800 00000200 00000000 000DDDDO 000D 0000 |400D0020
|4 Data Directories [x] NES 00000360 00026000 00000400 00024400 0ODOOO0D | OOOODODO 0000 | 0000 | 40000040
raclata o 0 b
e View @ || [] 15 shareable
P ) B || Is executable
% Cut i3 Open Select all ;_{= Is readable
. ; x J |\/| 15 writeable
W Copy path SEE : Edit Select none = Containg axtandsd ralacation
Move Copy Delete Rename New Properties o . | -OMAING ExtENCed relocations
|#] Paste shorteut to to v folder v History (5 Invert selection || Can be discarded
Is not cachable
d Organize Mew Open Select =l 1s not pageable
N
.ocal Disk (C:) » Windows » System32 » WinMetadata [ J) Search WinMetadata o w7 CEHDt:ﬁﬂs code
B : Contains initialized data
MName Date modified Type Size || Contains Uninitialized data
T || Contains information
| | Windows.Alwinmd 10/4/2019 2:13 PM WINMD File 56 KB || Contents won't become part of image
[l Windows.ApplicationModel.winmd 10/4/2019 2:13 PM WINMD File 772 KB L] Contents comdat

Figure 8 - PE sections and .text section attributes of Windows.System.winmd file in CFF
explorer

As its name implies, this does appear to be a genuine metadata file which was not ever
intended to be executed (despite being a valid PE, being loaded as an executable image and
containing a .text section).
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w' CFF Explorer VIl - [Windows.System,winmd]

File Settings 7

5§

Windows.System. winmd

B [= Fle: Windows.System winmd
— (=] Dos Header

[=] Mt Headers
(= File Header
[Z] Optional Header
£ Data Directories [x]

— (2 Section Headers [x]
— |2 Resource Directory

(2 .NET Directory
|=] MetaData Header
(2] MetaData Streams

Member Offset Size Value Meaning

Magic 00000058 Woerd 010B PE32
MajorLinkerVersion 0000005A Byte 0B

MinorLinkerVersion 00000058 Byte 00

SizeOfCode 0000005C Dword 00000000

SizeOflnitializedData 00000060 Dword 00000400

SizeOfUninitializedData 00000064 Dword 00000000

AddressOfEntryPoint 00000068 Dweord 00000000 _

Figure 9 - The optional PE header of the Windows.System.winmd file in CFF explorer

The image above provides a definitive confirmation of the fact that this is a PE file which was
never meant to execute: its IMAGE _OPTIONAL_HEADER.AddressOfEntryPoint is zero.
With no entry point and no exports, there are no conventional methods of executing this DLL,
which explains why it was manually mapped in a way which made it appear as a malicious
DLL hollowing or Lagos Island artifact.

Combining the criteria explored above, a filter rule was created within Moneta which removes
missing PEB module |IOCs associated with signed Windows metadata files with blank entry
points. This methodology was repeated throughout the development of the scanner to

eliminate false positives from its I0Cs.

Windows metadata files are not alone in imitating Lagos Island IOCs: standard .NET
assemblies have this same I0C as well, as they are not loaded via NTDLL.DLL!LdrLoadDI|
but rather are directly mapped using NTDLL.DLL!NtCreateSection with SEC_IMAGE. The
exception to this rule is Native Image Generated (NGEN) .NET assemblies, which are loaded

as standard native DLLs and therefore have corresponding links in the PEB. This
phenomenon was first observed by Noora Hyvarinen of F-Secure in their post examining
detection strategies for malicious .NET code.

Another interesting detail of the statistics gathered in Figure 5 are the 1377 unsigned
modules, a total of about 40% of all IOCs on the OS. This large number is certainly
inconsistent with what one would expect: for unsigned modules to be rarities associated
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exclusively with unsigned 3rd party applications. In reality, the vast majority of these
unsigned images are derived from Microsoft DLLs, specifically, .NET NGEN assemblies. This
is consistent with the concept of these DLLs being built dynamically, to eliminate the need for
conversion of CIL to native code by JIT at runtime.

BN Administrator: Command Prompt — O ™

-Numeri

- Num
DLL jWindo embl) re vi .8 em.Threadin

.Runtime),

Figure 10 - Moneta IOC scan yielding over 1000 image memory regions connected to
unsigned modules, the vast majority of them Windows .NET NGEN assemblies

Shifting focus to other categories of IOC, another interesting genre appears as inconsistent
+x between disk and memory at a total of 16 (7%) of the now drastically reduced IOC total
of 222.
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Figure 11 - Moneta IOC scan result statistics while filtering metadata and unsigned modules

Interestingly, this number of 16 also matches the total number of Wow64 processes on the
scanned OS. A further investigation yields the answer to why:

BN Administrator: Command Prompt — O %

f5 e F43 tem.ValueTuple.ni.dll
FF4Decea: e ader dalelalalalelals)
66610808
X88006660
gx8o0ee060

xBeeeesee

88620806
xB6082080
8882680
xB6082080
XB6002060
indow

8x060000008
Be8BB806
xB6086066
Bea16606
8861686
xB6086080
88660806
xB6086066

Figure 12 - Inconsistent permission |OC stemming from wow64cpu.dll
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Wow64cpu.dll is a module which is loaded into every Wow64 process in order to help
facilitate the interaction between the 32-bit code/modules and 64-bit code/modules (Wow64
processes all have both 32 and 64-bit DLLs in them). Checking the PE sections attributes of
the W64SVC section in Wow64cpu.dll on disk we can see that it should be read-only in
memory:

E]’_' @ wowBdcpu_dil

Mame Virtual 5ize Virtual Address | Raw Size Raw Address Reloc A... | Linen... [ Reloc... | Linen... | Characteristics
1 [%] FAle: wowB4cpu_dil

— |5 Dos Header

=] Mt Headers Byte[8] Dword Dword Dword Dword Dword Dword | Word | Word Dhword
1= File Header text DODDOFCF 00001000 00001000 00000400 £00DODOD | 00DOO... (0000 | 0000 | 600D0020
[Z] Optional Header

[Z] Data Directories [] WOWB4SYVC 0000002D 00002000 00000200 00001400 00000000 | 0ODOO... | 0DOD | DODD 60000020
— & Section Headers [x]

00000282 000002C0 000002C4 000002C2 000002CC 00000200 | 0000O... | 0OODO... | 0D000... | KDOD0ZDC

.rdata L

&) Bxport Drect d 00D00BT2 00003000 00000COD 00001600 00000000 | OODOO... | 0DOD | DOOD 40000040
— port Directory
— |2 Import Directory .data 00000581 00004000 section % 0000 C0O000040
N i ection Flags —

g::“;’f’e [[’J'.’EZ‘:'”' .pdata 00000114 00005000 J 0 0000 40000040
i ception Lhrectory
— I3 Relocation Directory We4sVC 0000EC0D E@ 0000
— h’? Debug Directory JIsre 000003F0 00007000 | |2 IS "E‘_at: bF 0000 40000040
— %, Address Converter [] Is writeable
_ -.‘:: Dependency Walker .reloc 00000073 00008000 | || Contains extended relocations 0000 42000040
_ .j"_"_m Edit | | Can be discarded

;;;’ — or || Is not cachable
— " Identifier || Is not pageable
— '*‘:l_-, Import Adder || Mo pad
— D Quick Dy r 51 Contans micized data
— % Rebui [] Contains initialized da
. _‘{;"_' Ider [ ] Contains Uninitialized data

“}y Resource Editor || Contains information

|| Contents won't become part of image
This section contains: L Contents comdat
< >
Alignment (Bytes): Default -
— oK Cancel =

Off=et 01 2 3 4 5 & 7 &8 9 & B C D E F Azcii
Jooooooon | Ex 0% 60 10 6B 33 00 00 00 41 FF A7 F& 00 00 00 &."0k3. . A¥Se. ..

|DDDDDD2D o0 00 00 0o 0o o0 0o oo o0 00 00 00 00 o0 00 00 f C......... ... ...

Figure 13 - Wow64cpu.dll W64SVC section in CFF Explorer

Another very interesting detail of the W64SVC section is that it contains only 0x10 bytes of
data and is not modified after having its permissions changed from +R to +RX by Windows.
This means that the content of the W64SVC section seen in Figure 13 is meant to be
executed at runtime as they appear in disk. The first byte of this region OxEA is an
intersegment far CALL instruction, the use of which is typically limited to x86/x64 mode
transition in Wow64 processes (an attribute which is exploited by the classic Heaven’s Gate
technique).

Both the modified code within User32.dll (as well as occasionally the 32-bit version of
Kernel32.dll) and the inconsistent permission IOCs seen in Figure 12 are consistent side-
effects of Wow®64 initialization.
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BN Administrator: Command Prompt — O x

\wmnetdh

Figure 14 - Modified code I0Cs associated with user32 in Wow64 processes

They are actions taken at runtime by Windows, in both cases by manually changing the
permissions of the .text and W64SVC sections using NTDLL.DLL!NtProtectVirtualMemory. A
filter for both of these 10Cs called wow64-init exists in Moneta.

While there are many such false positives, many of which cannot be discussed here due to
time and space constraints my conclusion is that they are distinctly finite. With the exception
of 3rd party applications making use of usermode hooks, the IOCs which trigger false
positives in Moneta are the result of specific subsystems within Windows itself and with
sufficient time and effort can be universally eliminated through whitelisting.

Dynamic Code

Windows contains a seldomly discussed exploit mitigation feature called Arbitrary Code
Guard (ACG). It is one of many process mitigation policies (most commonly known for DEP,
ASLR and CFG) which makes its host process unable to “generate dynamic code or modify
existing executable code.” In practice this translates to a restriction on the
NTDLL.DLL!NtAllocateVirtualMemory, NTDLL.DLL!NtProtectVirtualMemory, and
NTDLL.DLL!NtMapViewOfSection APlIs. In essence, it prevents all code which is not loaded
via the mapping of a section created with the SEC_IMAGE flag from being allocated in the
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first place when the PAGE_EXECUTE permission is requested. It also prevents the addition
of the PAGE_EXECUTE permission to any existing memory region regardless of its type.
This information illustrates that Microsoft has its own definition of dynamic code and
considers its definition sufficient for an exploit mitigation policy. Moneta, whose primary
mechanism for creating 10C is the detection of dynamic code is based upon this same
definition. In theory a combination of ACG and Code Integrity Guard (which prevents any
unsigned image section from being mapped into the process) should make it impossible to
introduce any unsigned code into memory, as there are only several ways to do so:

1. Allocating private or mapped memory as +RWX, writing code to it and executing. This
technique is mitigated by ACG.

2. Allocating or overwriting existing private, mapped or image memory as +RW, writing
code to it and then modifying it to be +X before executing. This technique is mitigated
by ACG.

3. Writing the code in the form of a PE file to disk and then mapping it into the process as
an image. This technique is mitigated by Code Integrity Guard (CIG).

4. Recycling an existing +RWX region of mapped, image or private memory. Such
memory regions can be considered to be pre-existing dynamic code.

5. Phantom DLL hollowing - the only technique which is capable of bypassing ACG
and CIG if there is no existing +RWX region available to recycle. Credit is due to Omer
Yair, the Endpoint Team Lead at Symantec for making me aware of this potential use of
phantom DLL hollowing in exploit writing. EDIT - 9/13/2020 - NtCreateSection now
returns error 0xC0000428 (STATUS_INVALID _IMAGE_HASH) from CIG enabled
processes if a modified TxF file handle is used.

The remainder of this section will focus on the topic of recycling existing +RWX regions of
dynamic code. While the pickings are relatively sparse, there are consistent phenomena
within existing Windows subsystems which produce such memory. Those who remember the
first post of this series may see this statement as a contradiction of one of the fundamental
principles it was based upon, namely that legitimate executable memory within the average
process is exclusively the domain of +RX image mappings associated with .text sections.
Time has proven this assertion to be false, and Moneta clearly demonstrates this when
asked to provide statistics on memory region types and their corresponding permissions on a
Windows 10 OS:
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BN Administrator: Command Prompt — O x
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Figure 15 - Memory type/permission statistics from Moneta

Although this executable private memory accounts for less than 1% of the total private
memory in all processes on the OS, at over 200 total regions it raises an extremely
interesting question: if malware is not allocating these dynamic regions of memory, then who
is?

When | first began testing Moneta this was the question that prompted me to begin reverse
engineering the Common Language Runtime (CLR). The clr.dll module, | quickly observed,
was a consistent feature of every single process | encountered which contained regions of
private +RWX memory. The CLR is a framework that supports managed (.NET) code within
a native process. Notably, there is no such thing as a “managed process” and all .NET code,
whether it be C# or VB.NET runs within a virtualized environment within a normal Windows
process supported by native DLLs such as NTDLL.DLL, Kernel32.dll etc.

A NET EXE can load native DLLs and vice versa. .NET PEs are just regular PEs which
contain a .NET metadata header as a data directory. All of the same concepts which apply to
a regular EXE or DLL apply to their .NET equivalents. The key difference is that when any
PE with a .NET subsystem is loaded and initialized (more on this shortly) either as the
primary EXE of a newly launched process or a .NET DLL being loaded into an existing
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process, it will cause a series of additional modules to be loaded. These modules are
responsible for initializing the virtual environment (CLR) which will contain the managed
code. I've created one such .NET EXE in C# targeting .NET 4.8 for demonstrative purposes:

w# CFF Explorer VIIl - [DotNetFrameworkExe.exe)
File Settings 7

H " DotNetFrameworkExe exe |
28 ;
= Module Name Imports OFTs TimeDateStamp | ForwarderChain | Name RVA FTs (IAT)
=] File: DotNet Framework Exe exe
| (3 Dos Header 0000157D N/A 00001538 0D000153F 00001543 00001547 00001548
(2] Nt Headers szAnsi (nFunctions) | Dword Dword Dword Dword Dword
12 File Header 1
3 oot mscoree.dt  f[1 00003363 00000000 00000000 0000337D 00002000
2| Optional Header
|2 Data Directories ]
; éf:xn: Hea::s b OFTs FTs (IAT) Hint Name
— | Resource Directory
— f.:'d"““"_” Oveciey Dword Dword Word L
g ebug Directo
= ) .NET Directory 0000336F 0000336F 0000 _CorExeMain
| MetaData Header

Figure 16 - Import directory of .NET test EXE in CFF Explorer

.NET PEs contain a single native import, which is used to initialize the CLR and run their
managed code. In the case of an EXE this function is _CorExeMain as seen above, and in
the case of DLLs it is _CorDIIMain. The native PE entry point specified in the
IMAGE_OPTIONAL_HEADER.AddressOfEntryPoint is simply a stub of code which calls this
import. clr.dll has its own versions of these exports, for which the _CorExeMain/_CorDIIMain
exports of mscoree.dll are merely wrappers. It is within _CorExeMain/_CorDIIMain in clr.dll
that the real CLR initialization begins and the private +RWX regions begin to be created.
When | began reverse engineering this code | initially set breakpoints on its references to
KERNEL32.DLL!VirtualAlloc, of which there were two.
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# DotMetFrameworkExebd.exe - PID: 34C - Module: clr.dll - Thread: Main Thread ADD - xBddbg

File View Debug Trace Plugins Favourites Options Help Jun 42020

SS9 E =0 Ye 9§ tTall eSS aBLEE
T e T e T rmhols < Source - References 45
K | cals (dr.dny B

Address Disassemblvy Destination

0D0O007FFAZ2850919 | call qword ptr ds:[<@yirtualalloc=] <kernel3z.yirtualalloc-
00007FFAZZ961F39( call qgword ptr ds: [<&yirtualalloc->] <kernelzz.yirtualalloc-

< >

||:| Regex

Total Progress 100% 11439
| Default -

Search: |virh..|a|allod

Module Search 100%

Command: |

| Running | 11439 call(s) in 2453ms | Time Wasted Debugging: 0:00:02:35

Figure 17 - Searching for intermodular references to KERNEL32.DLL!VirtualAlloc from clr.dll
in memory within a .NET EXE being debugged from x64dbg

The first breakpoint records the permission KERNEL32.DLL!VirtualAlloc is called with (since
this value is dynamic we can’t simply read the assembly and know it). This is the 4th

parameter and therefore is stored in the R9 register.

00007 FFA2285D202 v QF85 D8333700 jne clr.f;'FFAZEBDCICED
OD0D07FFA2285D908 44:8B8C24 90000000 mov r9d,dword ptr ss:[rsp+20§
00007FFA2285D910 44:8BC5 mov ra&d,ebp
D0007FFA2285D913 49:8BD7 mov rdx,ris
00007FFA2285D916 49: 8BCC mov rcx,ri2
FF15 B11D7BOO call qword ptr ds:[<&virtualAlloc:]
48: 8BF8 mov rdi,rax
00007FFA2285D922 4C:8D5C24 50 lea ril,gword ptr ss:[rsp+50§
@ Edit Breakpoint clIr.00007FFA2285D919 X
Break Condition: |
Log Text: dll _CorExeMain VirtualAlloc called with desired permission of {R3} by TID {tid()}

Figure 18 - x64dbg instance of .NET EXE with a logging breakpoint on VirtualAlloc
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The second breakpoint records the allocated region address returned by
KERNEL32.DLL!VirtualAlloc in the RAX register.

e e e Cw e e e . . R
00007FFA22961F2 48:8B5424 48 mov rdx,qword ptr ”.trsp ij
000 ‘.‘FJ«.T:J-"J_’:" 48:81C3 00100000 add rbx, 1000
D0D07FFAZ2961F3 48:8BCB mov rcx,rbx
l..n..:u-.g.‘:pz::-961.:35: 41:B8 00100000 mov r8d, 1000
FF15 91D76A00 call qword ptr ds:[<&virtualAlloc>]
48:3BC3 cmp rax,rbx
O 00 ie clr z;Eﬂ::szﬂ.ii

@ Edit Breakpoint cIr.00007FFA22961F3F X

Break Condition: || |

Log Text: fdr.dll _CorExeMain VirtualAlloc allocated region at {rax} by TID {tid()} |

Figure 19 - x64dbg instance of .NET EXE with a logging breakpoint after VirtualAlloc

An additional four breakpoints were set on the _CorExeMain start/return addresses in both
mscoree.dll and clr.dll. Beginning the trace, the logs from x64dbg gradually illustrate what
happens behind the scenes when a .NET EXE is loaded:

¥ DotNetFrameworkExefd.exe - PID: 1234 - Module: ntdll.dll - Thread: Main Thread 13D0 (switched from 9E4) - x64dbg

File View Debug Trace Plugins Favourites Options Help Jun 42020

CDE S0 Y ta Bl oSl aBL B

By @ Graph #log [ Notes ® Breskpoints B8 MemoryMap [ CallStack  S#SEH o/ Script %] Symbols <2 Source - Refere

Debugging: C:\Users\Forrest\Desktop\Shared\HMalicious Memory Artifacts Part II'Demo\DotNetFrameworkExecd.exe
Database file: C:\Users\Forresr.\Desktcp\xetzdbg\snapshat.__zDZO—UE—D-‘;__J.B—DS\release\r_e';\db\DotNetFramewo:kEer‘l.exe.ddﬂ
Loading commandline.
Loading database from C:\Users\Forrest\Desktop\x€4dbg\snapshot_2020-0€-04_l5-05%\release\x€4 \db\DotletFrameworkExe€4 exe.ddé4 Oms
Process Started: 0000018RSAF20000 C:\Users\Forrest\Desktop\Shared\Malicious Memory Artifacts Part II\Demo\DotNetFrameworkExe€d exe
"C:\Users\Forrest\Desktop\Shared\Malicious Memory Artifacts Part II'Demo\DotNetFrameworkExeé4.exe"
argv[0]: C:\Us :ist\D&skt.up\ShiIed\Hal:.c:.nus Memory Artifacts Part II\Demo\DotNetFrameworkExe€d.exe

DLL Loaded: 0000 ) C:\Windows\System3Z\ntdll.dll

DLL Loaded: J C:\Windows\System3Z\mscoree.dll
DLL Loaded: 0 C:\Windows\System32Z\kernel32.dll
DLL Loaded: 0 C:\Windows\System3Z\KernelBase . dll

System breakpoint reached!

Figure 20 - x64dbg log trace of .NET EXE

First, the main EXE loads its baseline native modules and primary import of mscoree.dll. At
this point the default system breakpoint is hit.
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System breakpoint reached!

mscorees dll CorEeraln called by TID
DLL Loaded:
DLL Loaded: 0000

Thread 1528C c:eated

Entry:

13D0

17EFCFL353CEC

hhhhhhh = s

C:\Windows\System32\advapi32 _dll
730000 C:\Windows\System32\msvert.dll
ntdll.000

DLL Loaded: QO0Q07EECEQBSQOQQ C: \Hzndows\Syscemzz\sechast dll
DLL Loaded: Q0007FECE 10 C:\Windows\System3Z\rpcrt4.dll
Thread 1534 created, Entry ntdll 00007FFCF1353CEQ

DLL Loaded:

DLL Loaded: \Windows\System32\shlwapi.dll
DLL Loaded: \Windows\ System32\combase.dll
DLL Loaded: \Windows\ System32\ucrthase . dll
DLL Loaded: \Windows\System3Z\becryptprimitives . dll
DLL Loaded: :\Windows\System32\gdi32.d1ll

DLL Loaded: :\Windows\System32\win32u.dll
DLL Loaded: :\Windows\System32\gdi32£full.dll
DLL Loaded: AWindows\System32\msvep win.dll
DLL Loaded: ) :\Windows\System32\user32.dll
Thread 152C created, Entry* ntdll 00007FFCF135853CEQ

DLL Loaded: 00 00 C:\Windows\System32\imm32.dll

DLL Loaded: 0000

clr. dll Cnr’xeﬁaln called by TID lBDD

Figure 21 - x64dbg log trace of .NET EXE

As seen in Figure 21 the primary thread of the application calls through the

0 C: \Hlndous\SystemB’\kirnil appcore.dll

G \H1nﬂnus\SystemEZ\vcrunt1mel4D clr0400_d11
: zsh System32hucrtbase_clr0400.d11

\Windows'\Microsoft . NET\Frameworké4\v4.0.30319\mscoreei.dll

IMAGE_OPTIONAL _HEADER.AddressOfEntryPoint into MSCOREE.DLL! CorExeMain,
which in turn loads the prerequisite .NET environment modules and calls
CLR.DLL! CorExeMain.

clr._dll
clr.dll
clr.dll
clr.dll
clr.dll
clr.dll
clr.dll
clr.dll
clr.dll
clr.dll
clz.dll

_CorExeMain
_CorExeMain
_CorExeMain
_CorExeMain
_CorExeMain
_CozrExeMain
_CorExeMain
_CorExeMain
_CorExeMain
_CorExeMain
_CozrExeMain

VirtualZlloc
Virtualklloc
VirtualZAlloc
Virtual&lloc
VirtualAlloc
Virtualllloc
Virtualilloc
VirtuallAlloc
VirtuallZlloc
VirtualAlloc
VirtualdAlloc

called
allocated region at
called with desired
allocated region at
called with desired
allocated region at
called with desired
allocated region at
called with desired

with desired

permission of 40 by TID 2BSS3

TEF4R4F8000
permission
TEF4R4FR000™

permission of 40 by
TEFF4R4F280000 by TID
permission of 40 by
TEFF4RA4F50000 by TID

D& rmd ion

40 by

allocated region at7FF424F70000by TID

called with desired perma

Figure 22 - x64dbg log trace of .NET EXE

ssi0n o

40 by

BSS

bf 40 by §ID 2BSS

NRS2
TID 2BSS
2BSS
TID 2BS8
2BS82
TID 2Bs8
2B9s8
TID 2BS8

While not all of the captured VirtualAlloc calls from CLR.DLL! CorExeMain are requesting
PAGE_EXECUTE_READWRITE memory, a substantial number are, as is shown in Figure

22 above where a permission of 0x40 is being requested through the R9 register.
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Enumerating the memory address space of this .NET EXE using Moneta we can see a great
deal of the +RWX memory allocated in Figure 22 appear as |IOCs:

B Administrator: Command Prompt — O %

licious

Figure 24 - Moneta IOC scan of the .NET EXE process open in x64dbg

Notably, upon closer inspection the +RWX regions shown as I0OCs in the Moneta scan match
those allocated by KERNEL32.DLL!VirtualAlloc from CLR.DLL! CorExeMain (one such
example is highlighted in Figures 22 and 24). There are however two regions shown in the
Moneta 10C results which do not correspond to any of the traced
KERNEL32.DLL!VirtualAlloc calls. These are the two regions which appear near the top of
Figure 24 with the “Heap” attribute. Searching the code of clr.dll we can indeed see a
reference to the KERNEL32.DLL!HeapCreate API:

jne clr.7FFCD9853836

. 3302 xor edx, edx
* | 00007FFCD9B5 3824 FF15 BEBE6S00 call qword ptr ds:[<&HeapCreate>]
e 48: 8903 mov gword ptr ds:[rbx rax

= =

Figure 25 - Subroutine of clr.dll creating an executable heap

The key detail of this stub of code is the value that ECX (the first parameter of HeapCreate)
is being initialized to which is 0x40000. This constant corresponds to the
HEAP_CREATE_ENABLE_EXECUTE option flag, which will cause the resulting heap to be
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allocated with +RWX permissions, explaining the +RWX heaps generated as a result of CLR
initialization. These native heaps, recorded in the PEB, are notably distinct from the virtual
CLR heaps which are only queryable through .NET debugging APlIs.

This analysis explains the origins of the private +RWX regions but it doesn’t explain their
purpose - a detail which is key to whitelisting them to avoid false positives. After all, if we can
programmatically query the regions of memory associated with the .NET subsystem in a
process then we can use this data as a filter to distinguish between legitimately allocated
dynamic code stemming from the CLR and unknown dynamic code to mark as an |OC.
Answering this question proved to be an exceptionally time consuming and part of this
research, and | believe some high-level details will help to enhance the knowledge of the
reader in what has proven to be a very obscure and undocumented area of Windows.

Windows contains an obscure and poorly documented DLL called mscoredacwks.dll which
hosts a Data Access Control (DAC) COM interface intended to allow native debugging_of
managed .NET code. Some cursory digging into the capabilities of these interfaces yields
what appears to be promising results. One such example is the
ICLRDataEnumMemoryRegions interface which purports to enumerate all regions of
memory associated with the CLR environment of an attached process. This sounds like the
perfect solution to developing an automated CLR whitelist, however in practice this interface
proved to have a remarkably poor coverage of such memory (only enumerated about 20% of
the +RWX regions we observed to be allocated by CLR.DLL! CorExeMain). Seeking an
alternative, | stumbled across CIrMD, a C# library designed for the specific purpose of
interfacing with the DAC and containing what appeared to be a relevant code in the form of
the EnumerateMemoryRegions method of its ClrRuntime class. Furthermore, this method
does not rely upon the aforementioned ICLRDataEnumMemoryRegions interface and
instead manually enumerates the heaps, app domains, modules and JIT code of its target.

23/31


https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-managed-code
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/iclrdataenummemoryregions-enummemoryregions-method
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/corexemain-function
https://github.com/microsoft/clrmd

legacyruntime.cs Console.cs helpers.cs Enumerator.cs v45runtime.cs runtimebase.cs ClrRuntime.cs

Microsoft.Diagnostics.Runtime -|| % Microsoft.Diagnostics.Runtime.CirRuntime > EnumerateMemoryR4

IEnumerable<ClrHandle> EnumerateHandles();

ap GetHeap();

Pool GetThreadPool() { throw

IEnumerable<ClrMemoryRegion> EnumerateMemoryRegions();

Figure 27 - The definition of EnumerateMemoryRegions within CIrMD in Visual Studio

| wrote a small side project in C# (the same language as CIrMD) to interface between
Moneta and the EnumerateMemoryRegions method over the command line, and created a
modified version of the scanner to use this code to attempt to correlate the private
PAGE_EXECUTE_READWRITE regions it enumerated with the CLR heaps described prior.

ulong Address = ...

using (var dataTarget = DataTarget.AttachToProcess(Pid, 10000, AttachFlag.Invasive))

{

Clrinfo cirVersion = dataTarget.ClirVersions[0];

ClrRuntime clrRuntime = clrVersion.CreateRuntime();

foreach (ClrMemoryRegion clrMemoryRegion in clrRuntime.EnumerateMemoryRegions())

{
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if (RegionOverlap(Address, RegionSize, cIrMemoryRegion.Address, cIrMemoryRegion.Size))

{

Console.WriteLine("... address {0:X}(+{1}) overlaps with CLR region at {2:X} - {3}", Address,
RegionSize, clrMemoryRegion.Address, clrMemoryRegion. ToString(true));

BN Administrator: Command Prompt - Moneta64.exe -m * -p 384 - O X

.. private +x region at ©x00007FFEEB550000(+65536)

.. address 7FFEEB558000(+65536) overlaps with CLR region 7FFEEB550000 - Low Frequency Loader Heap for System AppDomain

.. address 7FFEEB55€000(+65536) overlaps with CLR region 7FFEEB554000 - High Frequency Loader Heap for System AppDomain

.. address 7FFEEB550@00(+65536) overlaps with CLR region 7FFEEB55D@0@ - Stub Heap for System AppDomain

.. address 7FFEEB550000(+65536) overlaps with CLR region 7FFEEBS550000 Low Frequency Loader Heap for Shared AppDomain

.. address 7FFEEB550000(+65536) overlaps with CLR region 7FFEEB554000 - High Frequency Loader Heap for Shared AppDomain
. address 7FFEEB550000(+65536) overlaps with CLR region JFFEEB55D@@@ - Stub Heap for Shared AppDomain

.. private +x region at ©x00807FFEEB560000(+65536)
. address 7FFEEB560000(+65536) overlaps with CLR region 7FFEEB560000 - Low Frequency Loader Heap for AppDomain 1: DotNetFrameworkExe-v4.8.e

. address 7FFEEB560000(+65536) overlaps with CLR region 7FFEEBS563000 - High Frequency Loader Heap for AppDomain 1: DotNetFrameworkExe-v4.8.
. address 7FFEEBS560@80(+65536) overlaps with CLR region 7FFEEBS6DR0B Stub Heap for AppDomain 1: DotNetFrameworkExe-v4.8.exe

.. private +x region at ©x00007FFEEB570000(+589824)
.. address 7FFEEB570000(+589824) overlaps with CLR region 7FFEEB570000 - Indirection Cell Heap for AppDomain 1: DotNetFrameworkExe-v4.8.exe
. address 7FFEEB570000(+589824) overlaps with CLR region 7FFEEB57B00@ Loopup Heap for AppDomain 1: DotNetFrameworkExe-v4.8.exe
address 7FFEEB570000(+589824) overlaps with CLR region 7FFEEBSAC@0Q Resolver Heap for AppDomain 1: DotNetFrameworkExe-v4.8.exe
. address 7FFEEB570000(+589824) overlaps with CLR region 7FFEEB57D@@@ - Dispatch Heap for AppDomain 1: DotNetFrameworkExe-v4.8.exe

. address 7FFEEB570000(+589824) overlaps with CLR region 7FFEEB574000 - Cache Entry Heap for AppDomain 1: DotNetFrameworkExe-v4.8.exe

.. private +x region at ©x00007FFEEB60000O(+458752)
.. address 7FFEEB600@00(+458752) overlaps with CLR region 7FFEEB6000PO - Indirection Cell Heap for System AppDomain
.. address 7FFEEB60@000(+458752) overlaps with CLR region 7FFEEB60COO@ - Loopup Heap for System AppDomain
.. address 7FFEEB6@@@0@(+458752) overlaps with CLR region 7FFEEB636000 Resolver Heap for System AppDomain
.. address 7FFEEB600000(+458752) overlaps with CLR region 7FFEEB61000@ - Dispatch Heap for System AppDomain
.. address 7FFEEB600@0@(+458752) overlaps with CLR region 7FFEEB60600O@ - Cache Entry Heap for System AppDomain
.. address 7FFEEB60@@0O(+458752) overlaps with CLR region 7FFEEB60000O Indirection Cell Heap for Shared AppDomain
.. address 7FFEEB60@000(+458752) overlaps with CLR region 7FFEEB60COO@ - Loopup Heap for Shared AppDomain
.. address 7FFEEB60@08O(+458752) overlaps with CLR region 7FFEEB63600@ - Resolver Heap for Shared AppDomain
.. address 7FFEEB60@000(+458752) overlaps with CLR region 7FFEEB61000@ - Dispatch Heap for Shared AppDomain
. address 7FFEEB60@00@(+458752) overlaps with CLR region 7FFEEB60600@ - Cache Entry Heap for Shared AppDomain

.. private +x region at 9x©0007FFEEB670000(+524288)
. address 7FFEEB670000(+524288) overlaps with CLR region at 7FFEEB670000 JIT Loader Code Heap

.. private +x region at ©x00007FFEEB700000(+65536)
. address 7FFEEB700000(+65536) overlaps with CLR region at 7FFEEB700000 - Stub Heap for AppDomain 1: DotNetFrameworkExe-v4.8.exe

Figure 28 - Modified instance of Moneta designed to correlate private +x regions with CLR
regions using CIrMD

The results, seen above in Figure 28 show that these private +RWX regions correspond to
the low frequency loader, high frequency loader, stub, indirection call, lookup, resolver,
dispatch, cache entry and JIT loader heaps associated with all of the App Domains of the
.NET process. In the case of this test EXE, this is only the System and Shared App
Domains (which are present in all .NET environments) along with the App Domain
corresponding to the main EXE itself. For a further explanation of App Domains and how
managed assemblies are loaded | suggest reading XPN'’s blog or the Microsoft
documentation on the topic.
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Despite the high rate of correlation, it was not 100%. There were consistently 2 or more
private +RWX regions in every .NET process | analyzed which could not be accounted for
using CIrMD. After a great deal of reversing and even manually fixing_bugs in CIrMD | came
to the conclusion that the documentation on the topic was too poor to fix this problem short of
reversing the entire CLR, which | was not willing to do. There seems to be no existing API or
project (not even written by Microsoft) which can reliably parse the CLR heap and enumerate
its associated memory regions.

With this path closed to me | opted for a more simplistic approach to the issue, instead
focusing on identifying references to these +RWX regions as global variables stored within
the .data section of clr.dll itself. This proved to be a highly effective solution to the problem,
allowing me to introduce a whitelist filter for the CLR which | called clr-prvx.

E® Administrator: Command Prompt - Monetab4.exe -m * -p 384 - [} X
/oYy <o) N I “
. A N >

\/ \/ \/
Moneta v1.0 | Forrest Orr | 2020

... private +x region at 0x0000017702790000(+65536)
. found private executable region address ©x0000017702420000 ©x00POB7FFF4B5B21CO (offset 0x000001c0) i . . section

... private +x region at ©x000001771C6D@008 (+65536)
. found private executable region address ©x000001771C6D00B@ ©x00087FFFAB5BAB58 (offset @x000e8858) i R . section

... private +x region at Ox00007FF422890000(+65536)
. found private executable region address ©x00007FF422890000 ©x000B7FFFABSBDOED (offset @xeoeebeed) i . . section

... private +x region at ©x@0007FF4228A0000(+655360)
. found private executable region address ©x00007FF4228A0000 Ox000B7FFF4B5B6320 (offset 0x00004320) i o 5 section

. private +x region at ©x@e007FFEEB550000(+65536)

. found private executable region address ©x00007FFEEB550000 OxX00007FFF4B5B3360 (offset 0x00001360) i . . section

... private +x region at ©x@0007FFEEB560000(+65536)
. found private executable region address ©x00007FFEEB560000 OXx00007FFFAB5BDEGD (offset ©x0000be0d) i R . section

. private +x region at ©x@0007FFEEB570000(+589824)
. found private executable region address 9x0000017702420000 OX00007FFF4B5B21CO (offset ©x000001c0) i R . section

.. private +x region at ©x@0@07FFEEB60000O(+458752)
. found private executable region address 9x0000017702420000 OxP0O7FFF4B5B21CO (offset ©x000001c0) i 0 o section

... private +x region at ©x00007FFEEB670000(+524288)
. found private executable region address ©x000@7FFEEB670000 Ox00007FFF4B5BDES8 (offset 0x0000be88) i f . section

... private +x region at ©x00007FFEEB700000(+65536)
... found private executable region address 9x9000017702420000 Ox00007FFF4B5B21CO (offset 0x000001c0) i f . section
. found private executable region address ©x©0007FFEEB560000 ©x00007FFF4B5BDEGO (offset ©x0008bedd) i R . section

Figure 29 - Modified Moneta scanner enumerating references to all private +RWX memory
regions in .NET EXE
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Notably, in older versions of the .NET framework the mscorwks.dll module will be used for
CLR initialization rather than clr.dll and will thus contain the references to globals in its own
.data section. The only additional criteria needed to apply this CLR whitelist filter is to
confirm that the process in question has had the CLR initialized in the first place. |
discovered a nice trick to achieve this in the Process Hacker source code through use of a
global section object, a technique which | adapted into my own routine used in Moneta:

int32_t nDotNetVersion = -1;
wchar_t SectionName[500] = { 0 };

static NtOpenSection_t NtOpenSection = reinterpret_cast<NtOpenSection t>
(GetProcAddress(GetModuleHandle W(L"ntdIl.dll"), "NtOpenSection”));

static RtlInitUnicodeString t RtlInitUnicodeString = reinterpret_cast<RtlInitUnicodeString_t>
(GetProcAddress(GetModuleHandle W(L"ntdll.dll"), "RtlInitUnicodeString"));

UNICODE_STRING usSectionName ={ 0 };
HANDLE hSection = nullptr;
OBJECT _ATTRIBUTES ObjAttr = { sizeof(OBJECT_ATTRIBUTES) };

NTSTATUS NtStatus;

_snwprintf_s(SectionName, 500, L"\\BaseNamedObjects\\Cor_Private IPCBlock_v4 %d",
dwPid);

RtlInitUnicodeString(&usSectionName, SectionName);

Initialize ObjectAttributes(&ObjAttr, &usSectionName, OBJ_CASE_INSENSITIVE, nullptr,
nullptr);

NtStatus = NtOpenSection(&hSection, SECTION_QUERY, &ObjAttr);

if (NT_SUCCESS(NtStatus)) {
nDotNetVersion = 4;

CloseHandle(hSection);
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}

else if (NtStatus == 0xc0000022) { // Access denied also implies the object exists, which is all
| care about.

nDotNetVersion = 4;

}

if (nDotNetVersion == -1) {
ZeroMemory(&usSectionName, sizeof(usSectionName));
ZeroMemory(&ObjAttr, sizeof(ObjAttr));

hSection = nullptr;

_snwprintf_s(SectionName, 500, L"\\BaseNamedObjects\\Cor_Private _IPCBlock_%d",
dwPid);

RtlInitUnicodeString(&usSectionName, SectionName);

Initialize ObjectAttributes(&ObjAttr, &usSectionName, OBJ_CASE_INSENSITIVE, nuliptr,
nullptr);

NtStatus = NtOpenSection(&hSection, SECTION_QUERY, &ObjAttr);

if INT_SUCCESS(NtStatus)) {
nDotNetVersion = 2;
CloseHandle(hSection);

}

else if (NtStatus == 0xc0000022) {
nDotNetVersion = 2;

}

}
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Private +RWX regions resulting from the CLR explain only a limited portion of the dynamic
code which can appear as false positives. To describe them all is beyond the scope of this
post, so I'll focus on one last interesting category of such memory - the +RWX regions
associated with image mappings:

BN Administrator: Command Prompt — O x

AGE_EXECUTE_READ: 167
AGE_EXECUTE_READWRITE
E_EXECUTE_WRITECOPY:

E_WRITEC

GE_EXECUTE :
PAGE_EXECUTE_RE

Figure 30 - Moneta scan statistics highlighting +RWX image memory

Although a rarity, some PEs contain +RWX sections. A prime example is the previously
discussed clr.dll, a module which will consistently be loaded into processes targeting .NET
framework 4.0+.

BN Administrator: Command Prompt = O x
8x88000000

clre4ee.dll
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Figure 31 - Dynamic code associated with clir.dll

The phenomena displayed above is a consistent attribute of clr.dll, appearing in every
process where the CLR has been initialized. At 0x00007FFED7423000 two pages (0x2000
bytes) of memory has been privately paged into the host process, where an isolated enclave
within the .text section has been made writable and modified at runtime. Interestingly, these
+RWX permissions are not consistent with the clr.dll PE headers on disk.

eean |

Name Virtual Size Virtual Address | Raw Size Raw Address | Reloc Address | Linenumbers | Relocations N...| Linenumbers ... | Characteristics
00000238 00000240 00000244 00000248 0000024C 00000250 00000254 00000258 00000254 0000025C
Byte[8] Dword Dword Dword Dword Dword Dword Word Word Dword

text 007BD530 00001000 007BD600 00000400 00000000 00000000 0000 0000 60000020
.rdata 00252€84 007BF000 00253000 007BDA00 00000000 00000000 0000 0000 40000040

.data 000228C4 00412000 0001C000 00A10A00 00000000 Section Flags - x
.pdata 0007AEA4 00A33000 00078000 00A2CA00 00000000 |

didat 00000540 | 0DABODDO 0000600 | OOAA7AD | 000000D e e

s 00000015 |00ABI000 00000200  OOAASOCD  0000000D L] s witeable

Figure 32 - clir.dll .text section permissions in CFF Explorer

tions

This region is manually modified by CLR.DLL! CorExeMain as part of the CLR initialization
discussed earlier via a call to KERNEL32.DLL!VirtualProtect.

Al

test eax;eax
1E

mov eax,dword ptr ds: [69A22668)

ptr s

push dword ptr

e

551

call dword ptr ds:

ebp+18
ebp+14
ebp+10
ebp+C[)

<avirtualpProtects]

L&

push ebp
mov ebp,;esp
push ebx
push esi
push edi
mov edi,edx

ESP
ESI
EDI

EIP

EFLAGS

ZF 1
OF o
CF O

LastError

DODBSFBEL14
693487 71C
OO000LAC

clr.€

LR

6348431C clr.€
00000344

PF 1 AF O

SF 0O DF 0O

TF 1 IF 1

00000000 (ERR

LastStatus COO00139 (S5T4

GS 0028

FS 0053

BBD9 mov_ebx,ecx ES 0028 QS 0028
EB O4EFETFF €all clir.69303239 €S 0023 5SS 0028
FF75 0OC push dword ptr 99:Eehp!c
FF75 08 push dword ptr ssilfebp+8 ST(0) DOO00000000000000C
??30 mwhes;l,dword ptr ds: [eax] S‘I‘E:l% 00000000000000000¢
53 gﬂ:h :b; ST(2) 0000000000000D000C
50 push eax ST(2) 00000000000000000C
8B4E 18 mov_ecx,dword ptr ds:[esi+18] 5T(4) 00000000000000000C
FF15 EBG67A3ED €&17 dword ptr ds:[<4LogHelp_Terminateonasserts] ST(S) 40028000000000000C
FF56 18 B2l dword ptr ds:[esi+18) _STI61 _3FFDCO00000000000C
5F pop edi v :E ........... =
5E gas ~e > Default (stdcall)
: G92EEBF2 clr.69
134 <clr.&virtualProtect=]=<kernel32.virtualProtects 21 esgﬂ D0000LAC
3: [esp+8] 00000040
r.d11:$1A431C #14371C (U RLENE L 0GR R,
imp 2 () Dump 3 -‘l Dump 4 ‘ Dump 5 9 Watch 1 ‘ Locals .;,i’ Struct
ASCIT A' uunfrﬁlf
} 0D[CO BB E7 76[14 00 16 00|38 B4 E7 76 ...,l.cv.,.,g.cu e e
! 00 OE 00 10 00|EQ BD E7 78| .«::. [Cve:.. Bigv
fanlnn AR BT OTRINR nn NA nnlRAM AN BT TR 2] Ew ¥ Ew O0B&FB28 r@?ﬁ????ﬁ rgtu[q_?g_glr.6945434c

Figure 33 - cir.dll using VirtualProtect on its own .text section at runtime in x32dbg
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These types of dynamic +RWX image regions are rare and tend to stem from very specific
modules such as clr.dll and mscorwks.dll (the legacy version of clr.dll, which also creates
a tRWX enclave in its .text section). There are however an entire genre of PE (the
aforementioned unsigned Windows NGEN assemblies) which contain a +RWX section called
.xdata. This makes them easy for Moneta to classify as false positives, but also easy for
malware and exploits to hide their dynamic code in.

Last Thoughts

With fileless malware becoming ubiquitous in the Red Teaming world, dynamic code is a
feature of virtually every single “malware” presently in use. Interestingly, the takeaway
concept from this analysis seems to be that attempting to detect such memory is nearly
impossible with |IOCs alone when the malware writer understands the landscape he is
operating in and takes care to camouflage his tradecraft in one of the many existing
abnormalities in Windows. Prime among these being some of the false positives discussed
previously, such as the OS-enacted DLL hollowing of User32.dll in Wow64 processes, or the
+RWX subregions within CLR image memory. There were far too many such abnormalities
to discuss within the scope of this text alone, and the list of existing filters for Moneta
remains far from comprehensive.

Moneta provides a useful way for attackers to identify such abnormalities and customize their
dynamic code to best leverage them for stealth. Similarly, it provides a valuable way for
defenders to identify/dump malware from memory and also to identify the false positives they
may be interested in using to fine-tune their own memory detection algorithms.

The remaining content in this series will be aimed at increasing the skill of the reader in the
domain of bypassing existing memory scanners by understanding their detection strategies
and exploring new stealth tradecraft still undiscussed in this series.
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