
1/19

July 11, 2020

Part 1: Fs Minifilter Hooking
aviadshamriz.medium.com/part-1-fs-minifilter-hooking-7e743b042a9d

Aviad Shamriz

Jul 10, 2020

This post is the first part of series about hooking minifilter/miniport objects. During the

course of this series I will explain how the management of these objects works, focusing

where various callbacks reside in memory, The manner in which they are called by the

manager driver, and how we might be able hook them without triggering PatchGuard.

The Filter Manager (FltMgr.sys) is a kernel component that allows other drivers to install

callbacks that intercept file system operations. The filter manager is a replacement of the

legacy file system filter driver model, and operates at the same level. Instead of consume the

callback only by himself it sends callback to all consumers that registered to him.

Minifilter driver is commonly used in security components that have kernel driver (For

example: AV, EDR or EPP). There are security components that use it to gather information

about operations in file system and use it to make rules to detect unusual behavior, others

use it for protects their files from evil that wants to damage their files. I want to show you

how rootkit can tamper or filter these callbacks to the minifilter driver.

Before beginning to dig into the internals of the Filter Manager, which will help us

understand where we can perform our hook, I recommend that you read a high level

description of the Filter Manger here and look at the code for minifilter driver (E.g., You can

see this sample of Microsoft’s code).

Filter Manager Internals

FltMgr uses a number of structs that simplify the development of a Minifilter. Most of the

structs are undocumented and only accessed by an opaque pointer.

https://aviadshamriz.medium.com/part-1-fs-minifilter-hooking-7e743b042a9d
https://aviadshamriz.medium.com/?source=post_page-----7e743b042a9d--------------------------------
https://aviadshamriz.medium.com/?source=post_page-----7e743b042a9d--------------------------------
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
https://github.com/microsoft/Windows-driver-samples/tree/master/filesys/miniFilter/change


2/19

From the blog

This diagram shows us the layers of the Filter Manager, each layer represented by the

following structs:

FLTP_FRAME

FltMgr uses a concept called “frames” to enable minifilters to be placed before or after legacy

filter drivers. FltMgr can add frame before, after or between legacy filter drivers (If there

aren’t legacy filter drivers, FltMgr will use only one frame — “Frame 0”). From the

perspective of a legacy filter driver, each frame represents a single legacy filter driver. Each

frame contains a range of altitudes that are allowed for minifilters attached to it

In this example we can see that the range of altitudes of “Frame 0” is 0–409500.

Each minifilter is registered with a unique altitude that guides the filter manager to load it

within the corresponding frame. For example:



3/19

From .

In this example we can see that there is a legacy filter driver responsible for some backup

functionality. To backing up files before they are encrypted or compressed, the minifilters

that perform these tasks belong to “Frame 0” which is below the backup legacy filter driver.

This allows the encryption and compression operations to be performed after the backup

operations.

FLTP_FRAME is a private struct that is not used by minfilter writers.

FLT_VOLUME

It represents the attachment of FLTP_FRAME to a volume, i.e. each frame has a

FLT_VOLUME for each volume (For example: In the above diagram “Frame 0” has four

FLT_VOLUME structures). Let’s look at the volume list:



4/19

Take one of this FLT_VOLUME and see its fields:

Interesting fields in this struct:

Frame — The frame that contains the volume.

DeviceObject — Is the device object that associated with the volume.



5/19

Callbacks — This field is a pointer to a struct that contains an array of callbacks. This is

an important field, which we will elaborate upon further along.

FLT_FILTER

As can be inferred from the name of the struct, it represents a minifilter driver. Each filter

belongs to a FLTP_FRAME corresponding to its altitude.



The list of filters belonging to Frame 0 on a machine might look something like this:

In the above case, only one frame (“Frame 0”) is available and all the filters are loaded within

it. We can observer the pointers, the altitude and the name of each filter belonging to the

frame (One of the filters here is luafv, I recommend to read about it in the following blog).

Let’s take look at the FLT_FILTER struct of the “wcifs” driver:

http://fsfilters.blogspot.com/2010/02/deal-with-luafvsys.html


6/19

We will focus at some of its fields

Frame — The frame that the filter belongs to.

DriverObject — The driver object that registered the filter.

FilterUnload — The callback that is invoked when the filter unloads.

Operations — A pointer to array of type FLT_OPERATION_REGISTRATION, the

struct contains the operation callbacks of the minifilter. The structure taken from the

struct FLT_REGISTRATION that is argument of the function FltRegisterFilter (This

function responsible to register a new filter). Each cell in the array represent another

major function (For example: 0x0 is IRP_MJ_CREATE). In

FLT_OPERATION_REGISTRATION there is the pre operation callback that invoked

before the operation and post operation callback that invoked after the operation

complete. The first five operations of the wcifs filter:

FLT_INSTANCE

This struct represents the attachment of a filter to FLT_VOLUME. The maximum number of

instances for a filter is the number of FLT_VOLUME instances (As you can see above,

developers can control the number of instances registered. For example: the luafv filter has

only one instance).



7/19

The instance list can be extracted by the commands “!fltkd.filters” or “!fltkd.volumes”, that

showed above. Each command shows filter instances from another perspective,

“!fltkd.filters” will show all instances registered under each filter and “!fltkd.volumes” show

all instances that belong to each volume.

Let’s look at the FLT_INSTANCE structure:

There are some interesting fields in this struct:

Volume — The volume that the instance belongs to.

Filter — The filter that registered the instance.

Name — The name of the instance (Not to be confused with the name of the filter).

CallbackNodes — An array of type CALLBACK_NODE. This array contains all the

callbacks that belonging to the instance. We can present the array with the following

command:

As you can see each index in the array represents another MajorFunction (Index = MajorFunction +

0x16h).

Let’s look how the CALLBACK_NODE look like:



8/19

PreOperation and PostOperation — Are the callbacks invoked before and after the

operation.

CallbackLinks —Is a dually linked list of CALLBACK_NODE structures that belong to

FLT_INSTANCEs belonging to the same volume. All the CALLBACK_NODE structs

have callbacks for the same MajorFunction. An example of such a list entry can be seen

below:

Only the fields in black belong to CALLBACK_NODE.

With our new found knowledge of callbacks, we can now understand the “Callbacks” field of

FLT_VOLUME. The field is of type CALLBACK_CTRL:

The first field in this struct (“OperationList”) is array of LIST_ENTRY, each cell in this array

represent another major function (similar to the field CallbackNodes at FLT_INSTANCE).

The lists in this array are the field CallbackLinks of CALLBACK_NODE that mentioned

before.

Invoking Minifilter Callbacks

In order to implement our hook, we need to find where the callbacks are located in memory.

To discover this we will explore how the callbacks are invoked. As mentioned before, there

are two different callbacks — Pre and Post operation, so let’s check them separately:

Pre Operation Callback

To find the mechanism that invokes the callbacks, we’ll put a break point at the one of the

callbacks in of luafv:



9/19

The call stack shows us the callback is called by a function named FltpPerformPreCallbacks.

FltpPerformPreCallbacks takes a struct of type IRP_CALL_CTRL as an argument:

This struct is used in FltMgr to warp the pointers to callbacks that will be invoked and the

information about the operation that will pass as parameters to the callbacks. This struct has

some noteworthy fields:

Volume — A Pointer to volume that contains all filter instances with a callback to be

invoked.



10/19

StartingCallbackNode — In order to avoid an infinite loop when a minifilter callback

uses a filtered file system routine, FltMgr provides a set of functions that ensure a

minifilter’s callback will not be invoked for its own file syetem operations (For example

— FltCreateFile performs the same operation as ZwCreateFile, but receives an

additional FLT_INSTANCE argument. If the argument is not equal to NULL it ensures

that only the instances that under the instance in the argument will have a callback

invoked for the operation. If the argument is NULL it will invoke the callbacks of all the

instances that under the volume which mentioned in the IRP_CALL_CTRL). These

functions rely on the field StartingCallbackNode. They insert the next

CALLBACK_NODE of the specific operation taken from the FLT_INSTANCE which is

passed as an argument (instanceArgument->CallbackNodes[majorFunction +

0x16].CallbackLinks.Flink). The function FltpPerformPreCallbacks checks if the field is

not null and if it isn’t, it will invoke the callback in the field and all the other callbacks

in CallbackLinks (As we can see upon further along).

IrpCtrl — An internal FltMgr structure that warps the arguments of the callbacks, it is

commonly used in FltMgr from the dispatch routines until the data is actually passed as

arguments to the callbacks. Let’s look at the fields of this struct:

The fields marked in green are passed to the pre operation callback as arguments. We will

discuss CompletionNodeStack when we will explore the post operation callback.



11/19

Let’s look how the function FltpPerformPreCallbacks work:

The field we should probably rely upon to contain the callbacks of the minifilter is

CALLBACK_NODE. As we can see the field CALLBACK_NODE was taken from

StartingCallbackNode or from the FLT_VOLUME. After that we can see this loop:



12/19

It iterates over the CallbackLinks, extracts each CALLBACK_NODE in turn, and invokes its

pre operation callback:

Post Operation Callback

Post operation callbacks are invoked by the function FltpPerformPostCallbacks which take an

IRP_CTRL structure as argument.

The function uses the struct COMPLETION_NODE:

COMPLETION_NODE is used to save data from the pre operation callback for post

operation callback (For example: The field “Context” in the struct taken from argument of

pre operation callback which allows minifilter developers to save data about an operation for

the post operation callback).

Before the function FltpPerformPreCallbacks invokes the callback, the function constructs

the struct COMPLETION_NODE and in particular takes the CALLBACK_NODE that was

extracted at the beginning of the loop and insert it into the field CallbackNode in the struct

COMPLETION_NODE.

Subsequently COMPLETION_NODE inserted into CompletionStack (A field of IRP_CTRL)

and increments the field NextCompletion (Which is used as an index to the head of the

completion stack).

The function FltpPerformPostCallbacks iterates over the CompletionStack and while

NextCompletion (The index to the stack) is not zero it extracts the COMPLETION_NODE

and get the CALLBACK_NODE from it:



13/19

After that it invokes the post operation callback:

How we can extract the list of callbacks?

Now that we know that the callbacks stored in the CALLBACK_NODE structure and that

FltpPerformPreCallbacks and FltpPerformPostCallbacks invoke the callbacks from it. We

have seen that the source of the CALLBACK_NODE can be traced to either FLT_VOLUME or

FLT_INSTANCE, so we need to focus on these structures to obtain a pointer to the callbacks.



14/19

FLT_VOLUME

We can enumerate all instances of FLT_VOLUME (with FltEnumerateVolumes) and for each

of them extract the list of CALLBACK_NODE (volume->Callbacks->OperationLists[index]),

and iterate over list to find the callbacks that belong to the minifilter which we wish to hook.

FLT_INSTANCE

If the pointer to CALLBACK_NODE in the field CallbackNodes is equal to the pointer to the

CALLBACK_NODE in FLT_VOLUME, we can rely solely on FLT_INSTANCE and we will be

able to enumerate all the instances that belong to the target filter and extract the callbacks in

the field CallbacksNodes. Let’s check this hypothesis. The function that responsible to

initialize a new FLT_INSTANCE is FltpInitInstance.

The function uses FltpSetCallbacksForInstance to initialize a CALLBACK_NODE array. For

each CALLBACK_NODE it calls the function FltpInitializeCallbackNode which takes the

PreOperation and PostOperation from FLT_FILTER and inserts it into the

CALLBACK_NODE passed as an argument. At the end of the function it uses the

FltpInsertCallback, which shows us the connection between the CALLBACK_NODE at

volume and the CALLBACK_NODE at instance:



15/19

We can see that the our hypothesis is true. If CallbackLinks doesn’t exist in the

CALLBACK_NODE of a particular instance, The function will take the LIST_ENTRY from

the volume and will insert it into the field CallbackLinks. Afterwards it updates the

LIST_ENTRY in the volume structure.

How To Hook a FS Minifilter?

The POC code can be found in my GitHub repo (The POC was tested at windows 7 32 bit

version 6.1 and windows 10 64 bit version 1903).

First step: Get a pointer to the target FLT_FILTER

The function FltGetFilterFromName is a documented function that takes a name of a filter as

an argument and returns the opaque pointer to FLT_FILTER:

https://github.com/SHA-MRIZ/FsMinfilterHooking


16/19

Second step: Enumerate an Array of FLT_INSTANCE under the target
FLT_FILTER

I use the function FltEnumerateInstances to find the FLT_INSTANCE structures:

Third step: Extract the CALLBACK_NODE array from FLT_INSTANCE

FLT_INSTANCE is an undocumented structure that changes from build to build. Because of

that we need to find the offset to the field CallbackNodes in it, which is the array that

contains the pointers to CALLBACK_NODE. There are a number of options to do that:

(1) Hardcoded offset — we can extract the offset from the appropriate symbols and set

with it constant variables to use for each build. When initializing our driver, we can check the

specific build that we run and choose the corresponding offset. This option is not good

enough, because the hook will not be supported in future builds.

(2) FltpGetCallbackNodeForInstance — This is private function of FltMgr. The function

takes a pointer to instance and an index to a specific CALLBACK_NODE in CallbackNodes as

arguments. The function returns the pointer to CALLBACK_NODE by its index:



17/19

It seems like a wonderful function, we can enumerate all the CALLBACK_NODE at the

instance and hook them. Unfortunately there are two problems with this option:

1. The function is not exported. To find the pointer to this function, we can search for

hardcoded opcodes before the call to this function and get the pointer from it, we can

search the hash of the function or we can do an heuristic search of the function (For

example: By checking the number of calls and the number of add operations). All these

checks are not good enough because we get the same problem of option one (new builds

are bound to break our assumptions).

2. Besides returning the CALLBACK_NODE from the instance, the function

FltpGetCallbackNodeForInstance also acquires rundown protection for the instance.

The pointer for the rundown lock is located in the instance structure and is not

exported (Like the field CallbackNodes). So failing release the rundown after we

complete using the CALLBACK_NODE, the instance will be locked for rundown

(something we would strongly wish to avoid).

(3) Register a callback — If we will have a pointer to a minifilter instance that exists in all

builds and we can get a pointer to one of its callback, which will reliably exist on all systems.

We could search for this pointer and get the offset of CallbackNodes from it. I didn’t find a

filter and a callback like this, so I decided to register a new filter with my own set of callbacks.

I chose this option, dynamically found the offset of CallbackNodes in the instance structure

by using the callback functions of my driver as sentinel values. After finding the offset we can

unregister the sentinel minifilter.

Fourth step: Hook the callback at CALLBACK_NODE

After finding the array of CALLBACK_NODE we can simply hook the PreOperation and the

PostOperation of the major functions that we want to hook. I saved the original pointer at

global variable to return the CALLBACK_NODE back to its original state when I unload the

POC driver:



18/19

The result

After performing the hook, I set a breakpoint at the original function of the filter, and we can

see that our function now resides between FltPerformPreCallback and the original function:

Another POC that I done is to block the callbacks to PROCMON minifilter. So its minifilter

will not get file system events after my driver loaded.



19/19

Thanks to Philip Tsukerman and to Liron Zuartz for the helping with problems in the

research.

References








