
1/8

Process Injection Techniques used by Malware
medium.com/csg-govtech/process-injection-techniques-used-by-malware-1a34c078612c

Introduction

Process injection is a camouflage technique used by malware. From the Task Manager, users

are unable to differentiate an injected process from a legitimate one as the two are identical

except for the malicious content in the former. Besides being difficult to detect, malware

using process injection can bypass host-based firewalls and specific security safeguards.

What is Process Injection Used For?

There are various legitimate uses for process injection. For instance, debuggers can use it to

hook into applications and allow developers to troubleshoot their programs. Antivirus

services inject themselves into browsers to investigate the browser’s behaviour and inspect

internet traffic and website content.

Can Process Injections Be Used For Malicious Purposes?

Process injections are techniques; they can be used for both legitimate and malicious

purposes. Because process injections are well-suited to hiding the true nature of action, they

are often used by malicious actors to hide the existence of their malware from the victim.

Some of the malicious activities that such actors can hide using process injections include

data exfiltration and keylogging. Often, victims fail to realise that malicious files have been

uploaded simply because the malicious processes are masked to look like innocuous ones.

Process Injection Techniques

While process injection can happen on all three major operating systems — Windows, Linux

and MacOS — this article will be focussing on Windows.

Technique #1: DLL Injection

A Dynamic Link Library (DLL) file is a file containing a library of functions and data. It

facilitates code reuse as many programs can simply load a DLL and invoke its functions to do

common tasks.

DLL injection is one of the simplest techniques, and as such, is also one of the most common.

Before the injection process, the malware would need to have a copy of the malicious DLL

already stored in the victim’s system.

https://medium.com/csg-govtech/process-injection-techniques-used-by-malware-1a34c078612c
https://www.howtogeek.com/363845/what-is-code-injection-on-windows/amp/


2/8

Step 1: The malware issues a standard Windows API call (OpenProcess) to attach to the

victim process. Due to the privilege model in Windows, the malware can only attach to a

process that is of equal or lower privilege than itself.

Step 2: A small section of memory is allocated within the victim process using VirtualAllocEx.

This memory is allocated using “write” access. The malware will then issue

WriteProcessMemory to store the path of the DLL to that memory location.

Step 3: The malware looks for the address of the LoadLibrary function within the victim

process’ space. This address will be used in Step 4.

Step 4: The malware calls CreateRemoteThread, passing in the address of LoadLibrary found

in Step 3. It will also pass in the DLL path that it created in Step 2. CreateRemoteThread will

now execute in the victim process and invoke LoadLibrary, which in turn loads the malicious

DLL. When the malicious DLL loads, the DLL entry method, DLLMain, will be invoked. This

will be where malicious activities will take place.

Technique #2: PE Injection

A Portable Execution (PE) is a Windows file format for executable code. It is a data structure

containing all the information required so that Windows knows how to execute it.



3/8

PE injection is a technique in which malware injects a malicious PE image into an already

running process. An advantage of this technique over DLL injection is that this is a disk-less

operation, i.e. the malware does not need to write its payload onto disk prior to the injection.

Step 1: The malware gets the victim process’ base address and size.

Step 2: The malware allocates enough memory in the victim process to insert its malicious PE

image.

Step 3: As the inserted image will have a different base address once it is injected into the

affected process, the malware will need to find the victim process’s relocation table offset

first. With this offset, the malware will modify the image so that any absolute addresses in

the image will point to the right functions. Once the malicious PE image has been updated,

the malware copies it into the process.

Step 4: The malware looks for the entry function to be executed and runs it using

CreateRemoteThread.



4/8

Technique #3: Process Hollowing

Unlike the first two techniques, where malware injects into a running process, process

hollowing is a technique where the malware launches a legitimate process but replaces the

process’ code with malicious code. The advantage of this technique is that the malware

becomes independent of what is currently running on the victim’s system. Furthermore, by

launching a legitimate process (e.g. Notepad or svchost.exe), users will not be alarmed even if

they were to look through the process list.

Step 1: The malware creates a legitimate process, like Notepad, but instructs Windows to

create it as a suspended process. This means that the new process will not start executing.

Step 2: The malware hollows out the process by unmapping memory regions associated with

it.



5/8

Step 3: The malware allocates memory for its own malicious code and copies it into the

process’ memory space. It then calls SetThreadContext on the victim process, which changes

the execution context of the process to that of the malicious one that was just created.

Step 4: The malware resumes the process; thereby executing the malicious code.

Technique #4: Injection and Persistence via Registry Modification

The Windows Registry is a hierarchical database that stores information required by

Windows and programs in order to run properly. The registry stores information such as

customisation settings, driver data and startup programs.

The two keys, Appinit_Dlls and AppCertDlls, that malware use for both injection and

persistence can be found here:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls

HKLM\Software\Wow6432Node\Microsoft\Windows

NT\CurrentVersion\Windows\Appinit_Dlls

HKLM\System\CurrentControlSet\Control\Session Manager\AppCertDlls

While managing to add their entries in the registry has far reaching effects, modifying the

values of these keys requires the malware to have administrative rights.

Appinit_DLL

The Appinit_DLL registry key allows custom DLLs to be loaded into the address space of

every application. This allows software developers an easy way to hook onto system APIs

defined in user32.dll that will be used across every application. User32.dll is a system DLL

that many graphical applications will import as it contains functions such as controlling

dialog boxes or reacting mouse events.

Malware that successfully registers their malicious DLLs in this key will be able to intercept

system API calls for every graphical application for nefarious purposes.

To mitigate abuse, Windows 8 and later versions with secure boot enabled have

automatically disabled this mechanism. Microsoft does not allow developers to attain

certification for applications that rely on this in a bid to discourage developers from abusing

this key.

AppCertDlls

This is similar to Appinit_DLL; malware that manages to add their DLLs to this registry key

will get to be imported by any application which calls functions like CreateProcess,

CreateProcessAsUser, CreateProcessWithLogonW, CreateProcessWithTokenW, and

WinExec.



6/8

Technique #5: Injection using Shims

The Shim infrastructure, provided by Microsoft for backward compatibility, allows Microsoft

to update system APIs while not breaking applications. It does so by allowing API calls to be

redirected from Windows to an alternative code — the shim.

Windows comes with a Shim engine which checks a shim database for any applicable shims

whenever it loads a binary. Malware can install their own shim database on to an affected

program, and the Shim engine will load the malware’s DLL whenever the program is run. The

malware can then intercept any calls that the program makes.

Mitigation

By Developers

To mitigate against DLL injections, developers can hook into the LoadLibrary and

CreateRemoteThread system calls. By hooking into LoadLibrary, developers can perform a

library validation against a whitelist every time the function is called. If the DLL is on the

whitelist, LoadLibrary will be allowed to proceed. For CreateRemoteThread, if the developer

knows that he is not using that call, he can hook into it and disable the function’s capabilities.

However, such a method is not completely foolproof, and can be more trouble than it is

worth or impossible to implement. For example, if the application allows users to install

plugins using DLLs like Outlook, it would be impossible for the developers to implement

either a whitelist or a blacklist to LoadLibrary. Another example is an antivirus injecting

itself into applications. If the developer implemented a whitelist, his application could be

blocked by the antivirus from executing.

By System Administrators

As process injections are an integral part of the operating system, system administrators will

not be able to completely mitigate against malware using process injection techniques

specifically.

However, there are a few tools and techniques that can be considered to prevent and detect

process injection situations. Here are four of them:

1. Install anti-malware with heuristics capabilities or endpoint detection and response

(EDR) products. These products use API hooking to detect Windows API calls

commonly used by malware authors. Combined with heuristics and machine learning,

they have the capability to detect suspicious process injections and alert the user as it

happens.

https://stackoverflow.com/questions/869320/how-do-i-prevent-dll-injection#comment82169858_869615


7/8

2. Whitelist applications using tools such as Microsoft’s Applocker to aid system

administrators in controlling what applications and files a user can execute. A carefully

curated whitelist will prevent unvetted software from running. Also, as Applocker also

controls execution of DLLs, it can prevent unknown injected DLLs from running.

However, system administrators must note that this will incur a performance penalty as

Applocker will need to check every DLL being loaded. One drawback of Applocker,

however, is that it determines its actions based on the file name. If the malware’s

executable file is found in the whitelist (eg a malware might name itself “notepad.exe”),

Applocker will allow it to execute.

3. Manage privileges and access using User Access Control (UAC). UAC is a built-in

mechanism in Windows that helps to mitigate the impact of malware. System

administrators should grant minimal privileges to users and disallow elevation of

privileges without the administrator’s consent. Any processes launched by a standard

user would inherit the user’s permissions and would be limited from making system

level changes. This prevents malware from conducting unauthorised operations such as

turning off the firewall or modifying registry settings.

4. Use exploit mitigation tools such as Microsoft’s Arbitrary Code Guard (ACG). It is an

exploit mitigation method that:

Prevents a process from modifying existing executable process memory, and

Prevents a process from allocating new executable memory without code written to

disk.

ACG is a per-process configuration that system administrators can make to protect

executables from process injection. However, in-depth testing must be conducted to ensure

that the executable can still function properly, especially with EDR solutions. Also, while

ACG makes it harder for malware to create executable code in memory using DLL injections,

remote processes can still write to and execute shell code in an ACG enabled process.

Anti-malware tools with EDR and exploit mitigation tools such as ACG outlined above serve

to prevent process injection as it happens. Both of them will actively stop process injection

situations when they detect it. Applocker and UAC, which are both currently deployed in the

GSIB environment, aid in mitigating the impact of malware and its persistency if one

manages to slip through the net.

It is also important to note that process injection is transient; the malware process needs to

run first before it can inject. In order to survive a reboot, the malware would need a means of

running on system startup. Tight controls such as UAC and least privilege access controls

would severely hamper its ability to do so.

Conclusion

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-overview
https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/user-account-control-overview
https://medium.com/@benoit.sevens/arbitrary-code-guard-cd74c30f8dfe


8/8

Process injection is a mechanism that Windows and many of its applications depend on.

While it was developed for legitimate purposes, it can be subverted by malware authors for

nefarious purposes. Even though it is difficult to counter process injection techniques,

defence in depth is still effective in countering the other stages of the malware’s infection

lifecycle. Disrupting any single stage in the malware’s lifecycle would be enough to prevent

the malware’s operators from achieving their goal.

CSG @ GovTech

GovTech CSG — keeping the Singapore Government’s ICT and Smart Systems safe and secure

Written by

Angelystor

CSG — cyber lead for the Singapore Government sector — keeping the

Singapore Government’s ICT and Smart Systems safe and secure. Our blog is

all about the techniques and technologies in cybersecurity. We post

fortnightly. Till then, stay cyber safe, and cyber ready!

More From Medium

 

 

https://medium.com/csg-govtech?source=post_sidebar--------------------------post_sidebar-----------
https://angelystor.medium.com/?source=follow_footer-------------------------------------
https://medium.com/csg-govtech?source=follow_footer-------------------------------------

