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Nowadays, security practitioners typically use memory acquisition or live forensics to detect and analyze
sophisticated malware samples. Subsequently, malware authors began to incorporate anti-forensic
techniques that subvert the analysis process by hiding malicious memory areas. Those techniques
typically modify characteristics, such as access permissions, or place malicious data near legitimate one,
in order to prevent the memory from being identified by analysis tools while still remaining accessible.
With this paper, we present three novel methods that prevent malicious user space memory from
appearing in analysis tools and additionally making the memory inaccessible from a security analysts
perspective. Two of these techniques manipulate kernel structures, namely Page Table Entries and the
structures responsible for managing user space memory regions, while the third one utilizes shared
memory and hence does not require elevated privileges. As a proof of concept, we implemented all
techniques for the Windows and Linux operating systems, and subsequently evaluated these with both,
memory forensics and live analysis techniques. Furthermore, we discuss and evaluate several approaches
to detect our subversion techniques and introduce two Rekall plugins that automate the detection of
hidden memory for the shared memory scenario.

© 2020 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. All rights reserved. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Up to this day, malware still appears to be the empowering
technology for digital cyber crimes. As a result, an ongoing arms
race between malware authors and security participants evolved,
increasing the sophistication level of both offensive and defensive
approaches alike. Nowadays, modern malware mostly resides in
volatile memory and can only be observed in a running state,
potentially compromising the analysis process. Consequently, in-
vestigators began to use memory acquisition or forensic live anal-
ysis to detect and analyze potential threats. However, recent
malware samples began to incorporate anti-forensic techniques to
hinder analysis tools from acquiring meaningful results.

1.1. Motivation

Today, analysts depend on a variety of forensic tools to generate
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correct analysis results during forensic investigations. As most
forensic tools rely on the integrity of certain kernel structures, they
appear to be prone to the manipulation of these data. Adversaries
gaining kernel level privileges can alter these structures and pre-
vent analysis tools from gaining a correct view of the memory and
as a result, hide malicious memory from analysis or acquisition. To
be a step ahead of upcoming anti-forensic threats, we researched
novel ways to outwit current forensic methods and developed
detection approaches which can help tool vendors to gain a lead in
the fight against malware.

In this work, we present three novel memory subversion tech-
niques for both Windows and Linux that allow to hide malicious
parts of a process' memory from being displayed by forensic tools.
The first two techniques manipulate Page Table Entries (PTEs) and
Memory Area Structures (MASs), certain kernel structures which
provide meta information about a process’ memory layout, and
hence require kernel level access. The third method is based on
shared memory and enables even unprivileged adversaries to hide
memory regions from being analyzed. To support vendors of
forensic software, we extensively discuss possible detection ap-
proaches and provide two Rekall plugins that are able to reveal the
hidden regions for the shared memory scenario. Our evaluation
states that malicious memory can indeed be hidden from the Rekall
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and Volatility frameworks and thus shows the necessity to further
improve these tools.

The prototypes of our subversion techniques and plugins have
been tested and evaluated on both Windows and Linux running on
the x86-64 architecture. For an easy reproducibility and verification
of our results, all source codes and binary formats of our proof of
concepts and plugins can be downloaded from our online re-
pository (Reichenberger et al., 2020).

1.2. Contributions
The contributions of this paper are:

e Three novel subversion techniques for hiding malicious process
memory from memory forensics and live analysis.

e Detection approaches for all three subversion techniques.

e Windows and Linux proof-of-concept implementations for all
three subversion techniques, and two Rekall plugins which
automate the detection of hidden shared memory.

e Extensive evaluation with live analysis tools and the memory
forensics frameworks Rekall and Volatility.

1.3. Related work

In the following, we briefly contrast our approach with related
work that relies on anti-forensic techniques which subvert the
memory view of forensic analysis tools.

Stiittgen and Cohen (2013) presented several techniques that
altered kernel functionality, mostly used by forensic acquisition
tools, in order to provide a falsified memory map or prevent certain
memory ranges from being correctly mapped. As these modifica-
tions can be detected through hash-based approaches, our tech-
niques rely on Direct Kernel Object Manipulation (DKOM) to
manipulate several dynamic memory data structures instead of
static code.

Gargoyle (Lospinoso, 2017) is a memory scanning evasion
technique for Windows, that deceives forensic investigators by
placing malicious code into non-executable memory. To enable its
execution despite the missing permission, Gargoyle initializes a
system timer which, on expiry, is configured to launch a Return
Oriented Programming (ROP) chain that remaps the malicious
memory accordingly. This has the advantage that no additional
setup code is required for altering the access permissions of the
malicious memory. With the memory's permissions being redec-
lared, control flow is diverted to the now executable malicious
code. Upon completion, Gargoyle tail-calls to a specifically prepared
trampoline which withdraws the executable permission from the
respective memory ranges and reinitializes the timer to restart the
cycle. To detect Gargoyle, researchers suggested to audit system
timers and their corresponding handling routines in order to
determine conspicuities. While withdrawing executable permis-
sions of malicious ranges successfully conceived several forensic
tools, the approach does not actually hide the respective memory.
Instead, it takes advantage of most forensic tools failing to classify
non-executable memory as code. Hence, the malicious areas could
still be found when acquiring the memory map of the respective
process. In contrast, our techniques aim at entirely preventing
memory from being enumerated by forensic tools instead of solely
conceiving its presence. In addition, we implemented all of our
proposed techniques for both Windows and Linux.

With Shadow Walker, Sparks and Butler (2005) introduced a new
kind of sophisticated rootkit that is able to hide memory by sub-
verting the translation process of the Windows operating system
and provide memory scanners with a tampered memory view. The

rootkit instruments the Windows page fault handler to provide
different views of the same virtual page depending on the type of
access. While instruction fetches directly access the malicious
version, data accesses are intercepted and respective PTEs tempo-
rarily modified to provide only benign data. Although the technique
is generally applicable, Shadow Walker is restricted to hide kernel
memory on the Windows system. Similarly, the approach pre-
sented by Ooi (2009) subverts a system'’s page tables with the help
of shadow paging to allow a rootkit's memory footprint to be
excluded from the acquisition process. We applied the general idea
of manipulating memory management data structures to provide
benign data instead of malicious content. While Shadow Walker
mainly focuses on hiding certain kernel memory contents from
being acquired, our techniques aim at tampering with the actual
memory layout of a process' user space. In addition, Shadow Walker
requires a modification of the page fault handler which seems
rather straightforward to detect. Our approach, on the other hand,
allows a variety of ways to switch between malicious and benign
memory preventing analysis tools from using a generic detection
strategy. Compared to the shadow paging approach, which requires
a significant performance overhead as well as a modified page fault
handler to keep mappings up to date, our techniques are more fine
granular, limiting modifications to a few dynamic kernel data
structures.

14. Outline

This work is structured as follows: Section 2 provides a brief
elaboration of the memory paging mechanism on modern x86-64
processors and depicts operating system-specific kernel struc-
tures which manage the memory layout of a process. Here on after,
Section 3 presents our novel memory subversion techniques, which
are then examined regarding detection strategies in Section 4.
Section 5 evaluates both, the subversion and detection approaches
against current memory forensics and live analysis tools. Eventu-
ally, we conclude this paper in Section 6 and point out future
research directions.

2. Technical background

This section provides fundamental background knowledge that
is necessary to understand the technical concepts of our subversion
and detection techniques. In this course, we shed light on the
memory translation process of modern x86-64 processors, and
depict the structure of a process’ virtual memory layout for both
Linux and Windows. Readers familiar with the concepts are safe to
skip this section.

2.1. Memory paging

For both isolation and resource management, modern operating
systems provide each process with its own transparent abstraction
of the physical memory. These virtual address spaces are parti-
tioned in multiple segments of predefined sizes, called pages, which
can be accessed through their corresponding virtual addresses.
During a context switch, the operating system schedules other
processes by switching the respective virtual address spaces. This
makes each process believe to own the entire physical memory of
the machine, while in reality, only a part of the physical memory
belongs to a single process. Similar to the virtual address space, the
physical memory is structured into multiple page frames, refer-
enced by sequentially ordered Page Frame Numbers (PFNs). To map
a virtual page to a physical frame, a processor's Memory Manage-
ment Unit (MMU) traverses a set of hierarchically ordered paging
structures. In this course, the MMU partitions a virtual address into
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several parts that serve as indices into the respective paging
structures. This process repeats until the MMU either encounters
an error or reaches the final Page Table (PT) containing the
respective PTE. Amongst others, this entry provides access rights, a
present bit (indicating whether a mapping is active), and the PFN of
the final frame which maps the actual data of the virtual page. In
case of a valid entry (present bit set) and sufficient access rights, the
processor is eventually able to address the intended data. In case
the MMU encountered an error during the translation process (e.g.,
through insufficient access rights), the processor generates a page
fault which requires subsequent handling by the operating system's
kernel. Further information can be taken from Intel's processor
manuals (Intel, 2019).

2.2. Process address space

Each virtual address space is subdivided into a kernel and an
user space portion. While the first maps an operating system's
kernel, and is the same for every virtual address space, the user
space appears as the memory range actually accessible by a process.
Therefore, the user space is also denoted as the process address
space or process memory. To isolate the kernel from unprivileged
user space accesses, the corresponding PTEs are configured to
restrict accesses. When a new executable is launched, its contents
(e.g., code and data) are loaded and mapped into a process' address
space, and bundled into several segments. These are typically
represented by OS-specific OS-specific Memory Area Structures
(MASs) which allow the separation of code and different data
segments, e.g., heap, stack, etc.

The Linux kernel structures the address space of each process
into several non-overlapping Virtual Memory Areas (VMAs)
(Love, 2010, pp. 309—315). Implemented by vm_area_struct
structures, these VMAs provide information about both occupied
and free areas of the process address space, and include access
permissions as well as boundaries of their corresponding mem-
ory ranges. VMAs are stored in both a double-linked list and a
red-black tree allowing a more efficient access. Similarly, Win-
dows processes use a self-balancing binary AVL tree to keep track
of already occupied address ranges (Yosifovich et al., 2017). For
each range, the tree includes a Virtual Address Descriptor (VAD)
which stores meta information of the corresponding virtual
memory range.

2.3. Shared memory

Shared memory is, as the name suggests, intended to be shared
among processes (e.g. to allow the exchange of data). It is, however,
also possible that a process uses shared memory without actually
sharing it. In order to use shared memory, there are, on Linux and
Windows, two distinct steps involved: Creating a shared memory
segment and mapping it into a process, each realized by a specific
APL While it is possible to map files from hard disks into a process’
memory space, we will focus on anonymous respectively page-file-
backed (Yosifovich et al., 2017; p. 316) memory in this paper. On
Windows, shared memory is realized by memory-mapped files
(Yosifovich et al., 2017; p. 315, which can be used with the APIs
CreateFileMapping (Microsoft Corporation, 2018a) and MapVie-
wOfFile (Microsoft Corporation, 2018b). On Linux, there are at least
three different types of shared memory:

POSIX shared memory objects: Created with shm_open
(Kerrisk, 2017) and mapped with mmap (Brouwer and Kerrisk,
2019).

Anonymous files: Created with memfd_create (Kerrisk and
Herrmann, 2019) and mapped with mmap (Brouwer and Kerrisk,
2019).

System V shared memory segments: Created with shmget
(Bovet and Cesati, 2005 p. 789; Bai, 2019) and mapped with shmat
(Ciucci, 2019).

While MASs are also used to describe shared memory, there are
more steps and structures involved in order to create and manage
shared memory. This is especially the case because MASs are only
related to one process and bound to its virtual address space. For
each shared memory segment, there is, on Linux and Windows, one
structure that can be seen as a central management structure,
references wise. On Windows, this structure is _CONTROL_AREA
(Yosifovich et al., 2017 p. 407) and on Linux it is file.

While a handle to a section object (an instance of the _SECTION
structure) is returned upon a call to CreateFileMapping, this
structure is more or less just a reference to the _CONTROL_AREA
structure. In order to get the protection information and references
to the actual physical memory about a shared memory segment on
Windows, the _SUBSECTION can be used, which is referenced by
the _coNTROL_AREA and VAD structure. There can be more than
one _SUBSECTION associated with shared memory, which is
typically the case for mapped image files, but can also happen in
other cases (Martignetti, 2012 p. 342). A _SUBSECTION instance
contains a reference to the next _SUBSECTION in its NextSub-
section field, while each one describes a particular memory area,
e.g., in regards to its protection and range.

On Linux, all three types of shared memory have an associated
file object, which can be used to get the actual memory via the
referenced address_space structure (Bovet and Cesati, 2005, p.
601 ff.]. The file object can either be accessed with the vm_ar-
ea_struct structure's vm_file member (if the shared memory is
currently mapped), or via the task_struct structure (if the
shared memory segment has at least been created).

2.4. The physical view on memory

Both Windows and Linux manage the physical address space
with special structures. On Windows, there is the Page Frame
Number Database (PFN DB) (Yosifovich et al., 2017; p. 425) which is
more or less an array of _MMPFN stucts, indexed by the physical
page's PEN (Martignetti, 2012, p. 128). Each _MMPFN instance de-
scribes the corresponding physical page and contains at least the
information about the page's state (pages in the same state are
managed in lists for faster retrieval). This state can, e.g., be Active
(part of a working set), Standby (previously belonged to a working
set but was removed) or Zeroed (freed and initialized with zeroes).
Furthermore, for some states such as Active, the _MMPFN instance
points to the corresponding PTE (Martignetti, 2012, p. 128 ff). On
Linux, there is a similar view on the physical space: An array of
page structures (Gorman, 2004), also indexed by the physical
page's PFN and managed in lists. Each page object contains a field
called mapping (page- > ul- > mapping), pointing, if not null,
either to an address_space or an anon_vma object (the latter is
used for reverse mapping of anonymous pages (Corbet, 2010)).

3. Memory subversion techniques

This Section describes three novel memory subversion tech-
niques that allow the hiding of selected parts of the process
memory of a user space application. The approaches can either be
used individually, or even combined depending on the use case.
Usually, this scenario constitutes an attacker hiding malicious parts
of an otherwise benign process that could either be launched by the
adversary, or infected during its run time. These malicious memory
regions could contain injected shellcode, additionally loaded li-
braries, or parts of the application itself. The first two techniques
modify MASs and PTEs, requiring kernel level access similar to
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DKOM attacks. The third approach is based on the manipulation of
shared memory mappings which does not require elevated privi-
leges altogether. Whenever the hidden parts are required to be
accessed, each of the forthcoming techniques temporarily unhides
the respective memory by restoring relevant data structures.
Therefore, preserving the original data prior to the actual manip-
ulations is indispensable.

3.1. MAS remapping

The general idea of this technique is to modify MASs to remap
malicious memory regions of the process address space to areas
containing benign data. Consequently, the virtual start and end
addresses of a MAS are manipulated accordingly. As many forensic
tools rely on the integrity of these kernel data structures, manip-
ulating MASs potentially tampers with their analysis results. In the
following, we expound further details for Linux and Windows,
since both provide their own implementation of a MAS. Section 2.2
gives further information about the memory layout of a process.

For Linux, remapping certain MASs implies the manipulation of
VMAs by altering the vm_start and vm_end fields within the
vm_area_struct structures that refer to the malicious areas. Fig. 1
illustrates the remapping of the malicious area M to the benign
region B. Both areas could contain dynamically loaded libraries, for
example. Initially, VMA B refers to the benign memory area B, while
VMA M specifies the address range of the malicious area M (dashed
arrows in Fig. 1)). To remap VMA M to reference area B, both
vm_start and vm_end are manipulated to address the memory
range of B. Alternatively, M could be redefined to any other memory
range within the process address space. However, this could lead
analysis tools to display improper data. For example, when dis-
playing data within a process’ executable segments, analysts expect
code to be discovered. Therefore, the remapping of address ranges
should target memory regions of the same type, or manipulate
their access permissions accordingly. Regarding executable seg-
ments, this could either be the address range of benign code of the
application or a shared library. The downside of remapping VMA M
to match the boundaries of VMA B is the problem that it might be
suspicious for a process specifying two VMAs that refer to the same
memory. Hence, adversaries might prefer to slightly alter these
ranges. Alternatively, malware might strip the malicious parts of an
otherwise benign area by shortening its address range accordingly.
As the manipulation does not alter the underlying PTEs, the

VMA B

vm_start

Process Address Space

vm_end

vm next

vm_area struct

VMA M

vm_start e x
vm_end -

vm next

vm_area struct

Fig. 1. MAS Remapping for the example of Linux.

respective memory can still be accessed by the process without the
necessity to revert the respective VMAs. However, additional
memory that is allocated by potentially hidden code might corrupt
the memory layout of the process as the kernel expects the address
range of area B to be unused, potentially corrupting parts of the
hidden memory. As new memory is usually allocated on the process
heap, this only appears as a minor issue. This is not the case when
explicitly specifying a certain memory range, or dynamically
loading shared libraries (e.g., via d11oad(3)) as these are auto-
matically mapped to a distinct area of the process address space
that might occupy the hidden memory. Depending on the use case,
it might thus be preferable to restore the original boundaries of
VMA M each time the hidden code is about to be executed.

A similar situation arises when hiding memory of Windows
processes. Manipulating the address ranges within the VAD nodes
allows an adversary to deceive analysis tools to investigate false
memory areas. The respective Windows kernel structure repre-
senting a VAD node can be represented by several structure (e.g.,
_MMVAD_SHORT), describing the actual memory range through its
StartingVPN and EndingVPN fields. Altering these fields to
reference benign memory within the process address space would
lead investigators to analyze the wrong memory range. Similar to
VMAs, the VAD tree is typically not consulted anymore, once it has
been fully established and the associated page mappings were
created. This allows memory to be accessed despite being hidden
within the VAD tree.

3.2. PTE subversion

As described in Section 2.1, PTEs are part of the translation
process between the virtual and the physical address space. Among
others, their fields indicate the presence of a page and the location
of its physical frame through a PFN. Similar to MASs, not only the
operating system but also forensic analysis tools depend on these
information to successfully access the actual memory. This makes
PTEs an interesting target for adversaries, as manipulations might
prevent malicious data from showing up in various analysis tools.
This section discusses two additional subversion methods which
offer a convenient way to hide process memory on both Linux and
Windows running on the x86-64 architecture. Although differing,
both rely on the manipulation of PTEs, so that these do not refer to
the malicious pages anymore.

3.2.1. PTE remapping

Similar to the MAS remapping technique described in Section
3.1, manipulating PTEs enable adversaries to remap malicious
memory ranges to benign areas. In contrast, this approach does not
necessarily alter the virtual memory layout of a process. To deter-
mine the PTEs of the malicious areas, a process’ MASs can be con-
sulted for their virtual address ranges and subsequently translated
by manually traversing the respective paging hierarchy in a page-
wise granularity. Once found, the PFNs of these PTEs are altered
to refer to an equal amount of benign page frames. Fig. 2 illustrates
the baseline scenario. The graphic shows two distinctive memory
areas, one malicious and one benign, each consisting of exactly one
page. Two distinctive virtual addresses refer to the malicious page
M (0x1234) and the benign page B (0x5678). Their corresponding
PTEs both have the Present bit set and initially contain different
PFNs referencing the respective page frames. When changing the
PEN of the malicious PTE to point from frame M to frame B, both
virtual addresses resolve to the same physical page frame of the
benign page B. The PTE remapping approach allows page B to be
any physical frame, either belonging to the same process or any
other part of the physical memory. Although any page frame could
be used as a redirection target, mapping page frames that contain
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Physical
Memory
Malicious PTE
ox1234 —>{ P | | PFN | -x> Page M
Benign PTE

ox5678 —>{ P | | PFN | —>| Page B

Fig. 2. PTE remapping.

similar data is preferred to avoid conspicuous inconsistencies. This
means that malicious pages that initially contained executable code
should preferably be remapped to page frames holding executable
code. Therefore, benign MASs of the same or other processes can be
used as an indicator to find appropriate memory areas with the
same access rights that can be used as a target. In contrast to MAS
remapping, PTEs of hidden memory portions must be restored
prior to be accessed.

3.2.2. PIE erasure

An alternative to remapping PTEs is to let malicious memory
ranges appear to be not yet initialized, accessed or present at all.
This is achieved by erasing PTEs of malicious pages. Solely inva-
lidating a PTE by clearing its present bit is not sufficient, however,
as analysis tools may traverse a process’ paging hierarchy searching
for remaining information. Therefore, each PTE referencing a ma-
licious area must entirely be nullified. Since this inherently in-
validates the PTE, subsequent accesses will generate a page fault to
be handled by the kernel (see Section 3.4). Consequently, forensic
tools fail to correlate the page to the respective process. As the PTEs
of swapped-out pages still contain valid information (despite being
marked as non-present), these are not affected by our approach.
Similar to PTE Remapping, accessing the hidden pages requires the
correct restoration of their original values.

Because neither Windows nor Linux examine a process' PTEs in
order to find available memory, the pages related to the erased PTEs
shouldn't be at risk of being freed or reused by the 0OS, and we also
didn't encounter any problems in this area during our evaluation.
For example, Windows uses mainly the PFN DB lists for the man-
agement of physical pages (e.g. the Zeroed list is used to serve new
requests for physical pages; see Section 2.4), as it is more efficient
than iterating through the PTEs of all processes.

3.3. Shared memory subversion

From a process’ point of view, data residing in private memory is
lost as soon as it is unmapped, whereas shared memory is still
accessible and kept available as long as at least one process holds a
handle to it. As mentioned in Section 2.3, shared memory does not
have to be shared among multiple processes, however. Further-
more, it can be used to store and execute code. The process of
hiding memory via shared memory can be broken down into four
steps:

1. Creating a shared memory section.

2. Mapping the shared memory in a process.
3. Writing malicious data to the mapped area.
4. Unmap the shared memory.

Assuming an adversary intends to execute malicious code
residing in shared memory, the process from this point on is as
follows:

Unhide: Mapping the shared memory into the process.

Execute: Execute the code.

Hide: Unmapping the shared memory.

As the shared memory is only mapped during the execution of
the malicious code, and most analysis tools solely concentrate on
currently mapped memory, the malicious memory stays unde-
tected (if it is not caught during execution). Since this technique
does not involve any DKOM and only uses functionality available for
unprivileged users, it does not require elevated privileges and runs
solely in user space.

3.4. Further considerations

While MAS remapping requires only a small amount of modi-
fications to execute the malicious code, which also do not need to
be undone until the termination of the process, both PTE subver-
sion and the shared memory subversion techniques require the
hiding to be temporarily undone in order to execute. But there are
some more considerations regarding the PTE subversions, to
guarantee the stability of the running system. Changing memory
management structures is a major intervention in a system and can
lead to severe problems or situations that can affect not only the
infected process, but the entire system. In case the respective
process is forcefully terminated while some of our subversion
techniques are active, the kernel misses to clean up several re-
sources and references. Since certain malicious page frames might
not be referenced anymore, they are never released. This may result
in the inability to terminate the process or incomplete stop jobs
during the system shutdown. Therefore, we hooked the process
termination routines of the respective operating systems in order
to notify the malware to revert all manipulations prior to the pro-
cess' exit. While on Linux, this can be done by installing an ftrace
hook at the kernel's do_exit function, Windows provides the
possibility to catch the event via the PsSetCreateProcessNo-
tifyRoutine. In addition, we tested different strategies to unhide
the malicious parts of a process. One possibility is to hook the
operating system's scheduler and unhide certain memory ranges
whenever the infected process is about to be executed. As the
manipulation of MASs leaves the remapped areas accessible, this is
only required for the PTE-based techniques. This also allows the
regions to be rehidden as soon as the scheduler hook detects the
preemption of the malicious process. Another approach would be a
user/kernel space communication, instructing the kernel compo-
nent to hide/unhide the memory, whenever necessary, or rely on
ROP-based techniques like demonstrated by Gargoyle (Lospinoso,
2017).

Regarding Linux, we came across a few more details that were
important for our implementation. To avoid any discrepancies be-
tween the modified virtual memory layout and its physical coun-
terpart, it was necessary to adapt the Resident Set Size (RSS) of a
process. The RSS gives information about the size of a process’
occupied physical memory. In particular, it contains several coun-
ters which hold the number of page frames for different types of
memory. To prevent these counters from informing about missing
page frames, they had to be properly adapted. In addition, each
process' mm_struct includes a map_count which indicates its
number of VMAs. Consequently, this number must be decreased
when hiding VMAs. The nr_ptes counter within a process’
memory descriptor is another important piece of information that
needs to be forged accordingly. It specifies the number of page
tables which are used by a process. When removing VMAs or
erasing PTEs, this number should be decreased eventually. Another
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issue that arises due to the PTE subversion techniques is that hid-
den pages are not referenced by the kernel anymore. This could
lead the kernel to reclaim these pages and assign them elsewhere.
As this potentially corrupts the hidden data, such pages must be
locked down to prevent reassignments. This can be done by setting
the PG_reserved bit within the page structures of the respective
frames. Furthermore, this structure contains a reference count
(_refcount) that needs to be adapted before remapping a PTE.
Otherwise, the modification could result in a malfunctioning sys-
tem. To guarantee the correct access to the malicious areas, as well
as the termination of the process, all of these additional modifica-
tions need to be reverted.

On Windows, changing the PFN can lead to application, and also
system crashes. One of the reasons are inconsistencies with the PFN
DB (see Section 2.4). If we change a PFN as illustrated in Fig. 2, Page
B now is referenced by two PTEs, while the _MMPFN instance for
Page B only points to the benign PTE. This inconsistency leads to
system crashes, e.g. when the process is scanned with YARA. In
order to resolve this issue, it might be possible to also modify the
_MMPFN instance. To limit the modifications of kernel structures
and minimize side effects influencing the evaluation, we store the
current PFN, erase the PTE (similar to PTE Erasure), and afterwards
access the page. As a result, Windows assumes this to be the first
access to a committed page and creates a new one, with a new PFN
and an according _MMPFN instance. From now on, we just switch
between the old PFN (containing our malicious data) and the new
one, with the benign data. After using this trick, we encountered no
more application or system crashes during the process’ runtime,
and were able to successfully perform all evaluations. However, as
soon as the process is terminated or the operating system shuts
down, the system crashes. We tried to resolve this issue by modi-
fying the Working Set Size (Martignetti, 2012, p. 115) (similar to the
RSS counters), but it did not work. Eventually, we left this issue
unresolved as it did not affect our evaluations.

To prevent page swapping mechanisms to interfere with the
MAS remapping respectively PTE subversion techniques, we lock
the malicous pages in memory prior to their hiding (on Linux via
mlock and on Windows via virtualLock).

4. Detection

This chapter describes detection techniques for each subversion
technique covered in the previous chapter, focusing on the memory
forensics point of view.

4.1. Detecting MAS remapping

The process of detecting the remapping of MASs is the same for
Linux and Windows, and follows a similar approach as shown by
White et al. (2012) respectively Block and Dewald (2019). Since the
PTEs for the hidden virtual addresses are still part of the page ta-
bles, we enumerate all page table entries and compare them with
the information from all memory area structures. If we find a
mismatch, which would be a non-zero PTE value for a virtual
address that is not part of MAS's range, the page is reported. The
PTE value further allows us to retrieve its corresponding memory
content.

Another, but Windows specific, detection approach is the ex-
amination of Working Set List Entries (WSLEs). The Working Set is a
subset of physical memory pages used by a process and includes,
amongst others, pageable private and shared pages (Martignetti,
2012, p. 114]. Windows tracks these pages with a list of WSLEs
(each in-use entry is represented by the _MMWSLENTRY structure),
by storing the virtual address for each page in a separate WSLE
instance. By enumerating this list and comparing the virtual

addresses with the ranges from all VADs, it is possible to find
hidden memory areas. It should be noted, however, that WSLEs
only allow to identify a VAD range manipulation but do not contain
a direct link to the actual memory, whereas the first algorithm
supports both.

The PFN DB on Windows, respectively the page structures on
Linux can also be used to identify this subversion technique, which
is, however, more complicated, error prone and has a higher
computational complexity than the first algorithm. This approach is
described in detail in the next section.

One aspect to consider during an analysis is the fact that there
might be pages, at least on Windows, which are legitimately not
covered by any MAS (White et al., 2012). Consequently, these pages
must be manually examined in order to differentiate benign from
malicious data.

4.2. Detecting PTE subversions

This section covers the detection of memory hidden with PTE
manipulations. As we are yet not aware of any straightforward
detection algorithm for this technique, this section describes some
approaches that can identify this technique, and in certain cases
also reveal the hidden memory, but might fail in others. The specific
limitations are covered in the following paragraphs.

A general approach for detecting the exchange of the PFN, in
regards to private memory, is to count the references to physical
pages by enumerating all PTEs for private pages in all processes.
Since each private page should have a unique physical page, there
should not be more than one PTE with the same PFN. Otherwise, it
is an indicator for a PFN modification. It should be noted, however,
that this approach does not work in our case for PFN modifications
on Windows, because we acquire a new page for the remapping
(see Section 3.4) which therefore leaves no duplicate PFN refer-
ences. Furthermore, there are at least two more cases in which this
approach might fail:

o If the PFN of shared memory pages is exchanged, this approach
does not work since multiple references to the same physical
page are common for shared memory. While it would be
possible, at least on Windows, to compare the PFN of the MMU
PTE with the prototype PTE (Yosifovich et al., 2017 p. 295 ff.), it is
also possible to manipulate the prototype PTE's PFN, in order to
match with the MMU PTE.

e Windows 10 introduced a feature called Memory combining,
which attempts to save RAM (Yosifovich et al., 2017 p. 459). One
mechanism of this feature is to turn identical private pages into
shared memory in order to remove duplicates, which could
interfere with this detection.

Another approach for the detection of PTE Remapping, but also
for PTE Erasure, employs information about physical pages, which
are available on both operating systems. On Windows, these in-
formation can be retrieved through the PFN DB with its _MMPFN
stuctures. If a page is currently valid and in the process' working set,
there should be a _MMPFN instance with an Active state and a
pointer to the corresponding PTE (it should be noted that also other
states, such as Standby, can potentially be used for verification,
which, however, has not been evaluated in this work). Especially
the index for the _MmMPFN instance and the PTE pointer can be used
to identify both techniques for active pages: For PFN modifications,
the index for the current _MMPFN entry does not correlate with the
PFN from the referenced PTE, and for PTE Erasure, the PTE shouldn't
be zero for an active _MMPFN entry (Martignetti, 2012, p. 128).

On Linux, the page structures can be used (see Section 2.4).
Because page instances belonging to the same MAS seem to share
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the same mapping object(s), and the vm_area_struct structure
also includes pointers to these mappings (via vma- > vm_file-
> f_mapping for shared memory and vma- > anon_vma_chain
for anonymous memory respectively Copy-on-Write pages (Corbet,
2010)), it is possible to correlate page objects to their corre-
sponding MAS. The detection of PTE subversions is accomplished
by iterating over all page objects for the physical address space and
comparing those with the page objects for a vim_area_struct
instance, by resolving each virtual address. Any page object that
belongs to the same mapping object for a MAS, but is not refer-
enced by any PTE of that MAS, is an indicator for both PTE related
subversion techniques. There are, however, two problems with this
approach:

e This approach can lead to false positives with Copy-on-Write
memory, because the MAS points only to the new copy, while
the page objects for the physical address space also contain the
original page, and hence must be analyzed manually in such
scenarios.

Since the address_space structure is part of the page cache
and not all pages are necessarily part of that cache (have an
associated address_space object), this approach will fail for
those. Furthermore, it is also possible to explicitly delete a page
from the page cache via delete_from_page_cache (Kernel
Organization, 2019).

Similar to the approach described in Section 4.1, it is also
possible to detect at least PTE Erasure on Windows with WSLEs.
Since there are only WSLEs for currently active pages, there
shouldn't be a WSLE with a corresponding PTE value of zero.

Except for the WSLE-based approach, the physical page-based
approaches on Linux and Windows also allow to retrieve the
actual memory, as the PFN DB index respectively the page struc-
ture offset already reveal the memory page's physical offset.

It should be noted that all structures used for detecting our
subversion techniques could also be manipulated, in order to evade
the detection mechanisms proposed in this section. However, such
manipulations might introduce negative side effects for the mali-
cious process respectively the stability of the system, and have not
been evaluated in the context of this paper.

4.3. Detection of shared memory subversion

On Linux and Windows, our process of finding hidden shared
memory is basically the same and can be broken down to the
following four steps, which are done for each running process:

1. Enumeration of all MASs while gathering the referenced
_CONTROL_AREA (Windows) respectively file (Linux) struc-
tures: These shared memory segments are currently mapped.

2. Gathering the same type of structure via the process' handles
(Windows) respectively task_struct (Linux): These have at
least been created.

3. Stripping out of scope items.

4. Reporting all file respectively _CONTROL_AREA structures
which are currently not mapped in any MAS.

This process is described in more detail in the following two par-
agraphs for Windows and Linux respectively. It should be noted that
the following information are related to the test environments for the
memory forensics part listed in Chapter 5, and might differ for others.

Gathering the _CONTROL_AREA structures for step one is done by
enumerating all MASs, referenced by the _ EPROCESS structures and

accessing themviavad- > Subsection- > ControlArea.Inorder
to getthe _CONTROL_AREA structures from the process' handles, we
need to interpret the data, referenced by the _OBJECT_HEADER'S
Body field, as an instance of the _SECTION structure, and access it
via section_object- > ul- > ControlArea. If only executable
memory should be reported, the results can be filtered by examining
each _suBsecTION for its protection information (subse
ction- > u- > SubsectionFlags- > Protection), and only
include _CONTROL_AREA objects that have at least one associated
_SUBSECTION instance with executable access rights. While the
MMU PTEs hold the final truth regarding a page's executable state
(Block and Dewald, 2019), there are no PTEs in the process' page
tables to examine as long as the view is unmapped. Although it
would be possible to examine prototype PTEs, the _SUBSECTION'S
protection information is more authoritative because, upon crea-
tion, a view's protection bases on the section's protection
(Martignetti, 2012; p. 305). Furthermore, depending on the way a
view is created, neither structure provides information about the
actual page protection. The reason is thata view on a shared memory
segment can be created with different protections. E.g., while the
protection of a prototype PTE, or a _SUBSECTION, indicates RwWx
permissions, the memory can be actually mapped as read-only in the
process address space. The protection can, however, only be a subset,
so if the shared memory segment has a protection of Rw, a view can't
request or change its protection to Rwx, but a protection of Rw or R is
possible (Martignetti, 2012; p. 310).

At this point, every remaining _CONTROL_AREA resulting from
the second step, that is not included in the result set of step one,
will be reported as suspicious. Accessing the memory behind a
_CONTROL_AREA structure can then be accomplished by iterating
over the referenced _SUBSECTION structures which include a
pointer to the prototype PTEs: control_area- > FirstSub
section- > SubsectionBase. If, e.g., a prototype PTE is in the
Hardware state, the PFN value can be extracted, and hence the
physical page read directly.

On Linux, step one is done by iterating over all vm_area_s-
truct structures, referenced by the respective task_struct, and
gathering the file objects via vma- > vm_file. The second step
depends on the type of shared memory: For POSIX shared memory
and Anonymous files, file objects can be enumerated via
task- > files- > £ds. For System V shared memory, the same can
be achieved via task- > sysvshm- > shm_c1list. In order to filter
the results, we strip file objects for special files such as character
devices and sockets by including only regular files (which all three
types are). This can be accomplished by checking the
file- > f_mapping- > host- > type value for the type S_IFREG
(U-Project and 2019. Testin, 2019). As files from hard disks might
appear in the list of file descriptors, and can be opened for reading/
writing without being mapped into the virtual address space, we
also strip those from our results. To differentiate these files from
anonymous shared memory, we use the s_id field of the su-
per_block structure, which contains the name of the corre-
sponding block device (Bovet and Cesati, 2005; p. 462 ff.), and access
it through the file structure: file- > vfsmnt- > mnt_sb- > s_id.
For files from hard disks, this member contains device names such as
sdal, and for anonymous memory files such as tmpfs. Since only
System V based approach for creating shared memory does support/
require an explicit protection regarding execution, testing for that
protection does not seem to be a valid approach on Linux. However,
even without stripping any shared segments that might not be
executable, the amount of file objects being reported by this
approach seems to range from 1 to a maximum of 42, depending on
the running processes (see the next paragraph). To get access to the



S8 R. Palutke et al. / Forensic Science International: Digital Investigation 33 (2020) 301012

actual memory of the respective shared memory section, the
address_space structure can be used, as it stores a reference to
page structures via the page_tree field (Bovet and Cesati, 2005; p.
601 ff.). An example for getting memory from page structures is
implemented in Rekall's physical_offset function (Google Inc
and 2020. Rekall’, 2020).

As a proof of concept, we created two Rekall plugins (one for
Windows and one for Linux), which implement the described
detection methodology. In order to test their amount of false pos-
itives, we created a test environment for Linux and Windows, in
which we started several browsers (Firefox, Microsoft Edge, Chro-
mium), Office applications (Microsoft Word, LibreOffice), and
opened PDF Documents in a reader - the exact tools with their
version numbers are documented in our online repository
(Reichenberger et al., 2020). Without filtering, the amount of re-
ported shared memory sections were 1153 on Linux respectively
266 on Windows, and with the applied filter 42 on Linux (one for
cron and 41 related to Firefox and Chromium) and none on
Windows.

5. Evaluation

The subversion techniques described in Chapter 3 have been
implemented as a Proof of Concept for Windows and Linux, and the
evaluation results are documented in the following section. Besides
implementing these techniques for Windows and Linux, we also
did an evaluation from a memory forensics and live analysis
perspective on both operating systems, and an evaluation of the
detection techniques (see Section 5.2). We did, however, not
include any detection of the kernel drivers/modules we used for
DKOM. The memory forensics evaluation is done with Rekall
(Google Inc and 2019. Rekall, 2019) on commit 04134696, and
Volatility on commit 050dabé (The Volatility Foundation, 2019).
Because Rekall (and also Volatility) does not support System V
shared memory in its profile generation, we adjusted the mod-
ule.c (Google Inc and 2019. Rekall’, 2019) in order to be able to
analyze it with our plugins. Furthermore, Rekall currently suffers
from bugs in regards to KASLR on Linux, that prevents it from
correctly dumping the content of a file object, and to the processing
of handles on Windows, which is why we also adjusted some of its
core functionality. Our plugins, all written tools with their source
code and all modifications to the Rekall framework are documented
in our online repository (Reichenberger et al., 2020).

For the live analysis, we use the latest version of Windows 10 (at
the time of writing: 1909). Since Rekall and Volatility yet not fully
support this version, we use an older one for the memory forensics
evaluation (version 1511). In sum, the evaluation test environment
consists of three VirtualBox VMs:

e Windows 10 Pro Version 1511 x64, Build 10586
e Windows 10 Pro Version 1909 x64, Build 18363
e Debian 9.9 4.9.0-11-amd64 (4.9.189-3+deb9u2)

To prevent any false positives (malicious memory appears as
successfully hidden, but in fact is not), we deactivated the swap
space and zswap feature for the Debian VM, respectively the
pagefile and memory compression feature (Yosifovich et al., 2017;
Microsoft Corporation, 2019) on Windows (we did, however, also
test our implementations with those features activated, in order to
verify that they work as intended; see also Section 3.4). This en-
sures that malicious pages are not swapped-out by chance and
accidently missed during analysis, as Rekall and Volatility currently
fail to analyze swap space. Furthermore, we activated TESTSIGNING

(Microsoft Corporation, 2017) on all Windows machines, in order to
be able to load our driver, and activated the debug mode on the live
analysis machine for the evaluation with WinDBG.

5.1. Evaluation of subversion techniques

Our proof of concept implementations are trying to hide code,
which is executed during runtime by the controlling process. This
malicious code is represented in two flavors: Shellcode and li-
braries. On Linux, we used in-memory library loading with the
technique described by Fernandez (2018). On Windows, we
concentrated solely on Shellcode, especially because there are
techniques such as Reflective DLL Injection (Fewer, 2013), which do
not use operating system APIs to load a library. Hence, they do not
leave traces compared to conventional DLL loading (as it is
currently the case on Linux). All tests have been done first with the
memory hidden, and then, after instructing the malware to reveal
the memory, done again in order to verify the malicious memory is
in fact identifiable.

For the memory forensics evaluation, we used the following
categories of tests with the corresponding Volatility and/or Rekall
plugins. If a plugin is only available for one framework, it is indi-
cated in brackets (V for Volatility and R for Rekall), otherwise the
same plugin is used on both.

handles: Information about handles and file descriptors.Linux:
linux_Isof (V), Isof (R). Windows: handles.

MAS: Information about MASs.Linux: linux_proc_maps (V), maps
(R). Windows: vadinfo (V), vad (R).

malfind: Detection of MASs containing hidden memory.
Linux: linux_malfind. Windows: malfind.

ptenum (Block, 2019): Detection of hidden memory.
Windows: ptenum (R).

read: Attempt to read from a (hidden) virtual address: dump (R),
dd (V).

memdump: Dumping the whole process space.

Linux: memdump (R). Windows: memdump.
libdump: Dumping loaded libraries.
Linux: linux_librarydump (V). Windows: dlldump.

masdump: Dumping the memory of all MASs.

Linux: linux_dump_map (V), vaddump (R).Windows: vaddump.

yarascan: Scanning for patterns.r-yarascan (R), v-yarascan (V).

The results in Table 1 can be read as follows:

F: Full access to hidden memory.

I: An indicator for something suspicious.

A: At least an artifact is shown, which can be used for further
analysis. The artifact itself is, however, not unusual/suspicious.
X: No plugin available.

N: Nothing about the hidden memory is revealed.

As can be seen, all subversion techniques fail to hide their
memory from Rekall's yarascan plugin, since it performs a raw
search in the physical memory and ignores all memory manage-
ment related structures. For this scenario, however, the investigator
must know in advance what to search for and it is hence not suited
as a generic approach. Besides this detection, Shared Memory
shmget is able to hide its tracks from all other plugins, while the rest
of the Shared Memory implementations revealed only their file
descriptor/section handle (which is on itself not suspicious for a
process to have). MAS remapping and the PTE subversion tech-
niques require a kernel component, and at least our Windows
implementation reveals a handle to the corresponding device
which is used for communication between user and kernel space.
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Table 1
Evaluation of subversion techniques with memory forensics.
handles MAS malfind ptenum read memdump libdump masdump r-yarascan v-yarascan

PTE Erasure A€ A? N N N N N N F N

PTE Remapping A€ A* Ad A€ N N N N F N

MAS Remapping A€ I Ad F¢ F FP N N F N

Shared Memory Windows A N N N N N N N F N

Shared Memory shmget N N N X N N N N F N

Shared Memory shmopen A N N X N N N N F N

Shared Memory memfd A N N X N N N N F N

2 Only on Linux with a loaded Library.

® No hit for Rekall’s memdump on Windows.

€ Only on Windows.

4 Only for Shellcode scenario.
On Linux, we could detect the dynamically loaded libraries, what on
itself is not indicator for a memory subversion. Since we inten- Listing 1

tionally loaded all shellcode related pages with Rwx permissions,
these memory regions are reported by malfind. However, in both
cases the malicious memory is not revealed. By adjusting these
permissions accordingly (Block and Dewald, 2019), the memory
could be prevented from showing up on Windows altogether. Only
in the case of MAS Remapping, several plugins are able to reveal the
hidden memory. Additionally, the MAS output indicates this tech-
nique either with duplicate virtual addresses for memory regions
or, at least on Windows, with more committed pages than are
included in the respective MAS.

For the live analysis evaluation, we used the following cate-
gories with the corresponding tools/tests (Windows/Linux-specific
tools are indicated in brackets). The exact commands for each
category are documented in our online repository (Reichenberger
et al., 2020).

handles: Information about handles and file descriptors:/
proc/PID/£d/(L), Handle (Russinovich, 2019a) (W).

MAS: Information about MASs:/proc/PID/maps (L), VMMap
(Russinovich, 2019c¢) (W).

dbgdump: Dumping the process with a debugger:WinDbg (W),
gdb (L).

tdump: Dumping the process with a second tool:Process Ex-
plorer (Russinovich, 2019b) (W), gcore (L).

read: Attempt to read from the (hidden) virtual address:WinDbg
(W), gdb (L).

memsearch: Hidden pattern search via debugger:WinDbg (W),
gdb (L).

yara: Scanning the process for a hidden pattern: YARA.

The results in Table 2 can be read similar to Table 1. As can be
seen, the results for all Shared Memory implementations are mostly
the same as for the memory forensics part, but with the addition
that the actual memory is never revealed. Only for MAS Remapping
it is possible to find and reveal hidden memory. In all other cases,

Rekall plugin output for hidden Shared Memory on Linux.

task_name file_object

benign 0x99800c525d00 /8YSV0001e237

the memory content could not be found. Regarding MAS Remap-
ping, revealing the hidden memory was only possible on Windows.
gdb failed to display the hidden memory after accessing it through
its virtual address, or to include it in a core file (neither did gcore).
However, a warning message was logged with the duplicated
vm_start address. Furthermore, PTE Remapping prevented
WinDbg and Process Explorer from creating a process dump. While
the error message itself does not reveal anything suspicious, the
fact that the dump fails can still be an indicator. Finally, the results
for handles and MAS are similar to the memory forensics evaluation
regarding all techniques.

5.2. Evaluation of detection techniques

Since the detection algorithms described in Chapter 4 are
focused on a memory forensics point of view, this evaluation was
done only on the Windows 10 1511 VM (see the beginning of this
chapter).

We were able to identify traces for all subversion techniques,
and also to dump the hidden memory as described in Chapter 4.
Because we applied all described detection algorithms manually
(except for our implemented plugins), and only for the malicious
processes, these algorithms need to be automated for a broader
evaluation. All Shared Memory Subversions could be detected by our
plugins. In contrast, existing tools failed to report hidden System V

Table 2
Evaluation of subversion techniques with live analysis.
handles MAS dbgdump tdump read memsearch yara

PTE Erasure AP A® N N N N N
PTE Remapping AP A? 1€ 1€ N N N
MAS Remapping AP I 14 14 FP FP N
Shared Memory Windows A N N N N N N
Shared Memory shmget N N N N N N N
Shared Memory shmopen A N N N N N N
Shared Memory memfd A N N N N N N

2 Only on Linux with a loaded Library.

b Only on Windows.

¢ Dump fails on Windows.

4 Only on Linux: Warning message with memory address.
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shared memory sections.

Listing 1 is an example output for our Linux plugin, which re-
veals the hidden System V shared memory section that is not re-
ported by any memory forensics or live analysis tool (except
Rekall's yarascan):

6. Conclusion and future work

In this work, we demonstrated three novel techniques, which
successfully hide memory from live analysis and memory forensics.
Furthermore, we described several detection approaches, enabling
an analyst, at least in some cases, to detect these subversion tech-
niques and also reveal the hidden memory.

Apart from the shared memory detection, the remaining ap-
proaches need to be automated and evaluated in the future. Besides
the discussed subversion technique for shared memory, mapping
just a sub view of the shared memory, while skipping the malicious
part, could be a valid alternative, and should hence be evaluated.
One aspect that has not been covered in this work so far is the
detection of the control code that (un)hides the malicious memory.
The same is true for the kernel code that is used for DKOM in both
the PTE Subversion and the MAS Remapping scenarios. Future
research should evaluate possibilities to adapt our subversion
techniques to the kernel space, and integrate techniques to mini-
mize the memory footprint of the control code (e.g., by using ROP
chains and timers as demonstrated by Lospinoso (2017)). In addi-
tion, Translation Lookaside Buffer (TLB) priming like shown by
Sparks and Butler (2005) could mostly prevent the necessity to
temporarily revert PTE modifications. Further research should
evaluate the effects of manipulating the structures used for our
detection approaches, and the effects of Windows’ memory
combining feature [Yosifovich et al., 2017 p. 459] regarding both our
detection and subversion techniques.
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