“Move aside, signature scanning!” Better kernel data
discovery through lookaside lists

Wl windows-internals.com/lookaside-list-forensics

By Yarden Shafir & Alex lonescu

Introduction

A while ago we did some research. That specific project might be published at some other
time in the future and we won’t go into too much detail about it here. But as part of this
project we wanted to gain access into an internal data structure used by some driver. Sadly,
the driver’s global pointer to this data structure is not exported, and we couldn’t find a way to
access it from outside the driver itself. It is stored in the pool, so we couldn’t even scan the
driver address space for signs of this structure.

Of course, there is always the option of doing binary parsing on the driver based on a
function signature that references the global, and/or using an array of known offsets for the
global variable and adding the driver base to find it. But these methods require finding and
using the correct RVA for every version of the driver, as well as all potential function
signatures. Because this driver does not have exported functions, such signatures would be
brittle and subject to change between releases. Therefore, although often used by malware
authors, we find these techniques ugly and inconvenient to implement — we knew we could
do better.

So, we reverse engineered the data structure itself and came up with an interesting idea that
can give us easy access to this data structure and to many others. The data structure we were
interested in is very large and contains, among other things, a few lookaside lists embedded
in it. Lookaside lists are single linked lists containing pool allocations of a fixed size. They are
used by drivers for caching memory allocations instead of always requesting them from the
memory manager. Let’s see what makes these interesting.

System Lookaside Lists

Here is the wdm.h definition of a GENERAL_LOOKASIDE_LAYOUT (GENERAL_LOOKASIDE is
just an aligned version of GENERAL LOOKASIDE LAYOUT):

//

// The goal here is to end up with two structure types that are identical
except

// for the fact that one (GENERAL_LOOKASIDE) is cache aligned, and the
other

// (GENERAL_LOOKASIDE_POOL) is merely naturally aligned.

1/12

https://windows-internals.com/lookaside-list-forensics/

//
// An anonymous structure element would do the trick except that C++ can't
handle
// such complex syntax, so we're stuck with this macro technique.
//
#define GENERAL_LOOKASIDE_LAYOUT
union {
SLIST_HEADER ListHead;
SINGLE_LIST_ENTRY SinglelListHead;
} DUMMYUNIONNAME;
USHORT Depth;
USHORT MaximumDepth;
ULONG TotalAllocates;
union {
ULONG AllocateMisses;
ULONG AllocateHits;
} DUMMYUNIONNAME2;

ULONG TotalFrees;
union {
ULONG FreeMisses;
ULONG FreeHits;
} DUMMYUNIONNAMES3;

POOL_TYPE Type;

ULONG Tag;

ULONG Size;

union {
PALLOCATE_FUNCTION_EX AllocateEx;
PALLOCATE_FUNCTION Allocate;

} DUMMYUNIONNAME4;

union {
PFREE_FUNCTION_EX FreeEx;
PFREE_FUNCTION Free,

} DUMMYUNIONNAMES;

LIST_ENTRY ListEntry;
ULONG LastTotalAllocates;
union {
ULONG LastAllocateMisses;
ULONG LastAllocateHits;
} DUMMYUNIONNAMES ;
ULONG Future[2];

P A A G O P A A A A A A A R P G G G G G D A O P

2/12

A useful fact to notice is that this structure contains a linked list
(GENERAL_LOOKASIDE.ListEntry), meaaning all lookaside lists do. Depending on whether
the lookaside list was created with ExInitializeNPagedLookasidelList or
ExInitializePagedLookasidelList (or,if ExInitializelookasidelListEx was used,
the PoolType which was passed in), the data structure will be entered into one of two list
heads. As such, if we follow the ListEntry of any lookaside list, we’ll eventually end up at
either ExPagedLookasidelListHead or ExNPagedLookasidelListHead . Since we create
our own lookaside list through these APIs, if we pick the same pool type as our target
structure, we can therefore through all other lookasides, and eventually reach the one
contained in our target structure. In this particular use case, using our own definition of the
structure, the useful CONTAINING RECORD macro, and the knowledge that the first member
of the structure is a “magic” ULONG that always contains the same value, we searched all
lookaside lists using this mechanism until we reached our structure.

But the possibilities don’t stop there — this method gives us access to any kernel structure,
exported or not, that contains a lookaside list. So what else is there?

Pool-Based Lookaside Lists

With some WinDbg magic, we can also find out valuable information about the data —
whether it’s inside a driver (and which one!) or in the kernel pool, who it belongs to, the
allocation size, etc. To explore the possibilities, we wrote a simple WinDbg script that iterates
through all lookaside lists and uses the extremely helpful !pool extension to dump
information about them. Although we could build similar functionality in a custom C driver,
there is no Windows Kernel API that can supply us with similar information about pool
allocations and parsing pool pages to retrieve it is a lot of work, so we decided to avoid
implementing the same functionality in C due to laziness. In fact, while we tried to
implement our own C-based pool parser, we ended up realizing that nobody had described
the myriad of changes in Windows 10 RS5 and above’s pool manager, so we’re busy writing
a book on the topic.

Using our script, we found structures containing lookaside lists that belong to F1tMgr.sys ,
wWin32k.sys , Windows Defender drivers, various display drivers, and much more.

dx -r0@ @$GenerallLookaside = Debugger.Utility.Collections.FromListEntry(*
(nt!_LIST_ENTRY*)&nt!ExPagedLookasidelListHead, "nt!_GENERAL_LOOKASIDE",
"ListEntry")

dx -r@ @$lookasideAddr = @$GenerallLookaside.Select(l =>
((__int64)&1).TobisplayString("x"))

dx -r0 @$extractBetween = ((X,y,z) => x.Substring(x.Index0f(y)

+ y.Length, x.IndexOf(z) - x.IndexOf(y) - y.Length))

dx -r0 @$extractWithSize = ((x,y,z) => x.Substring(x.IndexO0f(y) + y.Length,
z))

dx -r2 @$poolData = @$lookasideAddr.Select(1l

3/12

=> Debugger.Utility.Control.ExecuteCommand("'!pool "+1+" 2")).Where(l =>
1[1].Length != Ox55 && 1[1].Length != 0).Select(l => new {address = "Ox" +
@$extractBetween(1l[1], "*", "size:"), tag = @%extractwithSize(1l[1], "

(Allocated) *", 4), tagbesc = 1[2].Contains(",") ? @$extractBetween(l[2], ":

", ") ¢ 1[2].Substring(1[2].Index0f(":")+2), binary =
1[2].Contains("Binary") ? 1[2].Substring(1l[2].IndexOf("Binary :")+9)
"unknown", size = "Ox" + @$extractBetween(l[1], "size:", "previous
size:").Replace(" ", "")})

[6x4a]
address : Oxffff988679939400
tag : Vvile
tagDesc : Video memory manager process heap
binary : dxgmms2.sys
size : 0X70
[0x4b]
address : Oxffff98867b647650
tag : DxgK

tagDesc : Vista display driver support
binary : dxgkrnl.sys

size : 0x640

[6x4c]
address : Oxffff98867h647650
tag : DxgK

tagDesc : Vista display driver support
binary : dxgkrnl.sys

size : 0x640
[6x4d]
address : Oxffff9886790f5430
tag : Vvii7
tagDesc : Video memory manager pool
binary : dxgmms2.sys
size : 0x150
[0x4e]
address : Oxffff98867966e230
tag : Usla
tagDesc : USERTAG_LOOKASIDE
binary : win32k!InitLockRecordLookaside
size : 0xa0
[0x4f]
address : Oxffff98867966ea50
tag : Usla
tagDesc : USERTAG_LOOKASIDE
binary : win32k!InitLockRecordLookaside
size : 0xa0
[6Xx50]

address : Oxffff98867966e690

4/12

tag : Gla1l
tagDesc : GDITAG_HMGR_LOOKASIDE_DC_TYPE

binary : win32k.sys
size : Oxao
[0x51]
address : Oxffff98867966e550
tag : Gla4
tagbesc : GDITAG_HMGR_LOOKASIDE_RGN_TYPE
binary : win32k.sys
size : Oxao
[0x52]
address : Oxffff98867966ecd0O
tag : Glas
tagbesc : GDITAG_HMGR_LOOKASIDE_SURF_TYPE
binary : win32k.sys
size : Oxao

There are some results in which the pool tag is unknown, making the tracking of the driver
they belong to difficult. A fun way to solve that is using driver verifier’s pool tracking feature.
We can modify our script and replace the !'pool <address> 2 command with !verifier
<address> 2 and receive information about the allocating driver and the completes stack
trace of the allocation. But running this command on so many addresses is extremely slow
and it dumps a lot of information that is hard to sort through. So another option is going for a
more manual approach — enabling driver verifier but executing the previous script as it is,
and only querying specific addresses that seem interesting with verifier.

Image-Based Lookaside Lists

Initially we only searched for data in the pool because that is where the structure we were
interested in was allocated. But with this trick we also get access to lookaside lists that are
inside drivers, and we can use the cool new RtlPcToFileName function to find out what
driver these structures are in. In this case we did choose to implement this in C code since it’s
more straightforward and faster to execute:

_Use_decl_annotations_

NTSTATUS

DriverEntry (
In PDRIVER_OBJECT DriverObject,
In PUNICODE_STRING RegistryPath

)

NTSTATUS status;

LOOKASIDE LIST_EX lookaside;
PLIST_ENTRY lookasidelist;
PLIST_ENTRY lookasidelListHead;
PGENERAL_LOOKASIDE generallookaside;

5/12

UNICODE_STRING pcName = RTL_CONSTANT_STRING(L"RtlPcToFileName");
DECLARE_UNICODE_STRING_SIZE(driverName, 32);
UNREFERENCED_PARAMETER(RegistryPath);

DriverObject->DriverUnload = DriverUnload;

auto RtlPcToFileNamePtr = (decltype(RtlPcToFileName)*)
(MmGetSystemRoutineAddress(&pcName));
NT_ASSERT (Rt1PcToFileNamePtr != nullptr);

//
// Create our own lookaside list to use for finding other lookaside
lists in the kernel.

//

status = ExInitializelLookasidelListEx(&lookaside,
nullptr,
nullptr,
PagedPool,
0I
8,
'Fake',
0);

if (!NT_SUCCESS(status))

{

goto Exit;
//

// Iterate over our lookaside list to find all the other lookaside
lists

// and print information about them

//

generalLookaside = nullptr;

lookasidelListHead = &lookaside.L.ListEntry;

lookasidelList = lookasidelListHead->Flink;

do

{

generallLookaside = CONTAINING_RECORD(lookasidelist,

GENERAL_LOOKASIDE,
ListEntry);

//

// Use RtlPcToFileName to find whether the lookaside list is
// inside a driver and if so, which one

//

status = RtlPcToFileNamePtr(generallLookaside, &driverName);
if (NT_SUCCESS(status))

6/12

DbgPrintEx(DPFLTR_IHVDRIVER_ID,
DPFLTR_ERROR_LEVEL,
"Lookaside list is in driver %wzZ\n",
driverName);

}

else

{
DbgPrintEx(DPFLTR_IHVDRIVER_ID,

DPFLTR_ERROR_LEVEL,
“Lookaside list is not inside a driver\n”);

lookasidelList = lookasidelList->Flink;
} while (lookasidelList != lookasidelListHead);

status = STATUS_SUCCESS;

Exit:
ExDeletelLookasidelListEx(&lookaside);
return status;

}

With this code we found lookaside lists inside of Ntoskrnl.exe , Ci.dl1l, Ntfs.sys and
more. Of course, since these are embedded inside of the driver memory, our only way to
know whether these are independent lookaside lists or they are part of a larger structure is to
dump the addresses and reverse engineer the drivers. But we're all nerds who like reverse
engineering, or we wouldn’t be writing/reading this blog.

15 0.01140480 Lookaside list is in driver ntoskrnl.exe
16 0.01244490 Lookaside list is in driver ntoskrnl.exe
17 0.01345240 Lookaside list is in driver FLTHMGE.SYS
18 0.01443350 Lookaside list is in driver FLTIHMGR.SYS
1a 0.01562170 Lookaside list is in driwver FLTHMGR.SYS
20 0.01645300 Lookaside list is in driver FLTHMGE.SYS
21 0.01738160 Lookaside list is in driwver FLTHGR.SYS
22 0.01841000 Lookaside list is in driver FLTHMGR.SYS
23 0.01938580 Lookaside list is in driver fileinfo.sys
24 0.01996580 Lookaside list is in driver Wof.sys

25 0.02044380 Lookas=side list iz in driver Wof.svys

We can also implement the same query in WinDbg if we choose to, using the 1n command

which searches for the nearest symbol to an address:

dx -r0@ @$GenerallLookaside = Debugger.Utility.Collections.FromListEntry(*
(nt!_LIST_ENTRY*)&nt!ExPagedLookasidelListHead, "nt! GENERAL_LOOKASIDE",
"ListEntry")

712

https://windows-internals.com/wp-content/uploads/2020/02/lookaside-clean.png

dx -r0@ @$lookasideAddr = @$GenerallLookaside.Select(l =>
((__int64)&1).TobisplayString("x"))

dx -r2 @$symbData

@$lookasideAddr.Select(l => new {addr =

1, sym = Debugger.Utility.Control.ExecuteCommand("1ln "+1)}).Where(l
=> 1l.sym.Count() > 3).Select(l => new {addr = 1l.addr, sym =

@$extractBetween(l.sym[3], " """
[6X9]

addr : OXFFfff8000e4eb300

sym : nt!AlpcpLookasides+0x100
[0xa]

addr : OXFFfff8000e4db180

sym nt!IopSymlinkInfolLookasidelList
[0xb]

addr : OXTFfff8000ed4ef040

sym : nt!WmipDSChunkInfolLookaside
[6xc]

addr : OXFFfff8000edeefcO

sym nt!'WmipGEChunkInfoLookaside
[6xd]

addr : OXFFfff8000ed4ef140

sym : nt!WmipISChunkInfoLookaside
[0xe]

addr : OXfFFfff8000e4efOcO

sym nt !'WmipMRChunkInfoLookaside
[OXT]

addr : OXFFfff8001172a880

sym FLTMGR!F1tGlobals+0x340
[0x10]

addr : OXFFfff8001172adoo

sym FLTMGR!F1ltGlobals+0x7c0
[6x11]

addr 1 OXFFfff8oe1172afo0

sym FLTMGR!F1tGlobals+0x9c0
[6x12]

addr : OXFFfff8001172b080

sym : FLTMGR!F1tGlobals+0xb40

This is a pretty cool trick, which led to all sorts of cool discoveries. And we only searched for
paged lookaside lists. There is a whole world of non-paged lookaside lists that we didn’t even
look at yet. We ran the same WinDbg scripts as before, and just changed our starting point
from nt!ExPagedLookasideListHead to nt!ExNPagedLookasidelListHead to getthe
non-paged lookaside lists, and got some interesting results. We looked for non-paged
lookaside lists in the pool:

8/12

[0X55]

address

tag

tagDesc
binary :

size
[0X56]

address

tag

tagDesc
binary :

size
[0X57]

address

tag

tagDesc
binary :

size
[0x58]

address

tag

tagDesc
binary :

size

Oxffff97884ba5c990

Vkin

Hyper-V VMBus KMCL driver (incoming packets)
vimbkmcl.sys

0x2d0

Oxffff97884bad1590

NDnd

NDIS_TAG_POOL_NDIS

ndis.sys
0x800

OxXffff97884bad3000

NDrt

NDIS_TAG_RST_NBL

ndis.sys
0x800

OxXffff97884bal19130

Nnbf

NetIO NetBufferLists

netio.sys
Ox800

And inside of drivers:

[0x14]
addr
sym

[6x15]
addr
sym

[0x16]
addr
sym

[6Xx17]
addr
sym

[6x18]
addr
sym

[0x19]
addr
sym

[6x1a]
addr

Oxfffff8000e4db100
nt!IopOplockFoExtLookasidelList

OXFffff8000e4ee880
nt !'WmipRegLookaside

: OXFFfff80010e40bco
: ACPI!'BuildRequestLookAsidelList

: OxFffff80010e40dcoO
: ACPI!RequestLookAsidelList

OXfffff80010e40c40
: ACPI!DeviceExtensionLookAsidelList

OxXfffff80010e40d40
: ACPI!RequestDependencyLookAsidelList

OXfffff80010e40ccoO

9/12

sym : ACPI!ObjectDatalLookAsidelList

[6x17]
addr : OXFFFff80010e40f40
sym : ACPI!XswContextLookAsidelList

Per-Processor Lookaside Lists

There’s actually one more linked list of lookaside lists that we haven’t talked about yet:
ExPoollLookasidelListHead . Since the first versions of Windows NT, and up until Windows
10 RS5 when the pool manager was rewritten to use the Backend Heap (again, the topic of

a future book!), it leveraged a per-processor array of 32 lookaside lists, one for each

indexed multiple of the pool block size. On x86 , this basically meant any 8 -byte aligned

allocation from 8 to 256 bytes,and on x64 ,any 16 -byte aligned allocation from 16 to
512 bytes.

Since there was both a paged and nonpaged pool, each KPRCB had two such arrays — the
PPNPagedLookasideList andthe PPPagedLookasideList . With Windows 8 and the
introduction of the non-executable nonpaged pool, a third array was created:
PPNxPagedLookasidelList . All of these lookaside lists are therefore inserted into the same
linked list head, and on our system, you can easily see how many processors (16) are
present:

1kd> dx -r0 @$poolasides = Debugger.Utility.Collections.FromListEntry(*
(nt!_LIST_ENTRY*)&nt!ExPoolLookasidelListHead, "nt!_GENERAL_LOOKASIDE",
"ListEntry")

@$poolasides = Debugger.Utility.Collections.FromListEntry(*
(nt!_LIST_ENTRY*)&nt!ExPoolLookasidelListHead, "nt!_ GENERAL_LOOKASIDE",
"ListEntry")

1lkd> dx @$poolasides.Count(), d

@$poolasides.Count(), d : 1536

1kd> dx 1536 / 32 / 3

1536 / 32 / 3 : 16

1kd> dx *(int*)&nt!KeNumberProcessors

(int)&nt!KeNumberProcessors : 16 [Type: int]

Originally, this seemed exciting, as it would imply the ability to easily locate not only
structures that contain a lookaside list, but in fact, any pool structure that’s a multiple of the
pool block size. Unfortunately, if we take a look at these lists on modern Windows 10
systems, we find that they’re completely unused:

1kd> dx @$poolasides.Sum(p => p.TotalAllocates + p.TotalFrees)
@$poolasides.Sum(p => p.TotalAllocates + p.TotalFrees) : 0Ox0

10/12

Indeed, looking at the code in ExAllocatePoolWithTag and friends, this logic was
completely removed as part of the heap-related changes we’ll cover in a future research

paper.

Executive Resources

The even cooler thing is that lookaside lists are not the only kernel structures that are linked
to all other structures of the same type! Another example is the ERESOURCE , a structure used
to implement read/write locking for drivers. Executive resources are also contained inside of
many kernel structures, and can give us access to even more internal kernel information, if
we know how to find them. We changed our WinDbg scripts to iterate over the linked list
found in ERESOURCE.SystemResourcesList , starting

from nt!ExpSystemResourcesList .

We first searched for ERESOURCE objects in the pool:

[0xb8]
address : Oxffff97884bf9fb9o0
tag : Ntfx
tagDesc : Unrecognized NTFS tag (update basel\published\pooltag.w)
binary : ntfs.sys
size : 0x170
[0xb9]
address : Oxffff97884bf50e80
tag : SeTl
tagDesc : Security Token Lock
binary : nt!se
size : Ox80
[6x4c]
address : Oxffff97884bf9ed30
tag : Ntfx
tagDesc : Unrecognized NTFS tag (update basel\published\pooltag.w)
binary : ntfs.sys
size : 0x170

And then for ERESOURCE objects inside of drivers:

[6x3c]

addr : OXFffff8001268e8e0

sym : Ntfs!INtfsDynamicRegistrySettingsResource
[6x3d]

addr : OxXFffffenel11211efo

sym : NDIS!SharedMemoryResource
[6x3e]

addr : OXFFfff80012967630

sym : ksecpkg'!g_rgCachedPagedSs1Provs+0x410

11/12

[Ox3f]

addr : OxFffff80011a032f8

sym : tcpip!FlIsolationState+0x18
[0x40]

addr : OXFFfff80011d482e0

sym : mup!MupProviderTable+0x20
[0x41]

addr : OxFffff80011d48100

sym : mup!MupiSurrogatelList+0x20
[0x42]

addr : OXFFfff8000f4ac370

sym : CI'g_IgnorelLifetimeSigningEKU+0x70
[0x43]

addr : OXFFfff8000f4ach80

sym : CI!g_GRLContextLock
[0x44]

addr : OXFFfff80012f081coO

sym : netbios!g_erGloballLock

We found some very interesting results that are probably worth further investigation, such as
pool structures related to NTFS volume objects, structures inside Ci.d11 , and much, much
more. On our machine we found over 400 000 executive resources:

1kd> dx -r® @%eresource = Debugger.Utility.Collections.FromListEntry(*
(nt!_LIST_ENTRY*)&nt!ExpSystemResourcesList, "nt!_ERESOURCE",
"SystemResourcesList")

@$eresource = Debugger.Utility.Collections.FromListEntry(*
(nt!_LIST_ENTRY*)&nt!ExpSystemResourcesList, "nt!_ERESOURCE",
"SystemResourcesList")

1kd> dx @$eresource.Count(),d

@$eresource.Count(),d : 400960

Because of the sheer number, making analysis with LINQ unwieldly, we wanted to get pool
information for some of these ERESOURCE structures using C code and start analyzing them.
Unfortunately, unlike lookaside lists, ERESOURCE structures don’t have their pool tag as part
of the structure, so we have to write a pool parser to get the pool information for each

ERESOURCE . As we’ve mentioned before, as it turns out, in RS5 and later, that is not an
easy task at all, as you’ll see in our upcoming research on the new backend heap-backed
kernel pool.

Read our other blog posts:

12/12

