Hooking Heaven’s Gate — a WOWG64 hooking technique

m medium.com/@fsx30/hooking-heavens-gate-a-wow64-hooking-technique-5235e1aeed73

Hoang Bui February 3, 2020

W T
| E’-& \\Ii

Hoang Bui

This is not new, this is not novel, and definitely not my research — but | used it recently so
here is my attempt at explaining some cool WOWG64 concept. | also want to take a break
from reading AMD/Intel manual to write this hypervisor. | also think the term “Heaven’s Gate”
is quite appropriate and is the coolest thing ever, so here we have it.

Introduction

| usually add some pictures here to show how | started my journey but because it was 2
months ago on a free slack (shoutout to GuidedHacking), | don’t have the log anymore.
Either way, it went something like this...

Me: Yoooooooo any good technique to catch a manual syscall?!?!?: That is going to be
tough.: Wait, is it Wow64?Me: Yes: You can’t manual syscall on Wow64, you coconut.Me:
??7?7?

So there you have it, no such thing as a manual syscall on WOWG64. Well, there is one way
but | will covert that topic at a later time. (Hint: Heaven’s Gate)

First, we need to understand a bit about WOWG64.

WoW64 (Windows 32-bit on Windows 64-bit)

| will covert a very brief part simply due to the fact of how complicated the subsystem is and
prone for possible mistakes that | might make.

WOW64 applies to 32 bit applications running on a 64 bit machine. This mean that while
there is very small different in how the 32 bit and the 64 bit kernel work, there is no doubt
incompatibilities. This subsystem tries to mitigate those incompatibilities through various
interfaces such as wow64.d11, wow64win.d11, and wow64cpu.dll. There is also a different
registry environment for wow64 applications vs native 64-bit applications but let’s not get into
that mess.

An interesting behavior to notice while executing a WOW64 application is that all kernel-
mode components on a 64-bit machine will always execute in 64-bit mode, regardless
whether the application’s instructions are 64-bit or not.

1/11

https://medium.com/@fsx30/hooking-heavens-gate-a-wow64-hooking-technique-5235e1aeed73
https://medium.com/@fsx30?source=post_page-----5235e1aeed73--------------------------------
https://medium.com/@fsx30?source=post_page-----5235e1aeed73--------------------------------

This in conclusion means that WOW®64 applications run a bit differently than a native 64 bit
application. We are going to take advantage of that. Let’s look at the difference when it
comes to calling a WINAPI.

NTDLL.dIl vs NTDLL.dII

Ntdll.dIl on a Windows machine is widely covered and | won’t go too deep into that. We are
only interested in the feature of ntdll.dll when performing a WINAPI call that requires a
syscall. Let’s pick Cheat Engine as our debugger (because it can see both DLLs) and
Teamviewer as our WOWG64 application.

E Memory Viewer
File Search | View Debug Tools Kerneltools
Stacktrace TeamViewer.exe+1ECI200
Address Watchlist Ctrl+W
Breakpointlist Ctrl+B
Team‘l.-'[ewer.e Threadlist Chrl+T TeamViewer.exe+1EC3122
TeamViewer.g Debua s Cirle Alt+D
TeamViewer.g ehiig stings et
TeamViewer.e Debug events
TeamViewer.g User write history
TEErTI‘I.-"I_EWE re Referenced functions Ctrl+Alt+F
TeamViewer.e)
. Referenced strings Ctrl+Alt+R
TeamViewer.e _ ecx
TeamViewer.e All strings ecx, [esp+04]
TeamViewer.g Memory Regions Ctrl+R BCX,EAX
TeamViewer.e Heaplist Ctrl+H eax, eax
TeamViewer, eax
. Enumerate DLL's and Symbols Ctrl+Alt+5
| TeamViewer.g : : eCd,eax
TeamViewer.e Graphical memory view eax,esp
dTeamViewer.e Show symbols eax, FFFFFO00
Teamb'[ewer.e Kernelmode symbols P . B0, BaK .
TeamViewer.e ne jb TeamViewer.exe+1EC32C4
. Show module addresses Ctrl+M
TeamViewer.e . Ea¥,BCK
o Userdefined symbols Ctrl+ LU -
TeamViewer. e ' Show 'Comment’ row Ctrl+V eax,esp

Jumplines
Disassermnbly cutput

Preferences

If you can’t find the functionality

[

rto fetch the nex

Table Extras

2/11

ﬁ Enurnerate DLL's
Symbols

rrrrrrrr

- TFFZ0ADC0O000 - ntdll.dll
- 70450000 - wowgd.dll
- T03C0000 wowedwin.dll
- 70440000 - wowtdcpu.dll
- 77450000 - ntdll.dll

- 77070000 - EERNEL3Z.DLL

- 76500000 - EERNELBASE.d11l
- T€540000 - W32_32.411

- TECF0000 - RPCRT4.4d1l

- T3EROOOD - 3spiCli.dll

- T3ES0000 - CEYPTBRSE.d1l

Ara ara? What is so strange about this

If this was a live conversation, | would torment you with this question but this is not a live
session. Noticed, there are those 3 wow64 interface dlls that | mentioned earlier, but the
particular thing you want to notice is the twontd11.d11. What even more bizarre is that one
of the ntd11.d11 is currently residing in a 64 bit address space. Wtf? How? This is a 32 bit
application!

The answer: WOWG64.

The Differences

| am sure there are a ton more differences between the two dlls but let’s cover the very first
obvious difference, the syscalls.

We all know (if not, now you do) that ntdll.dll in a normal native application is the one
responsible for performing the syscall/sysenter, handing the execution over to the kernel. But
| also mentioned earlier that you cannot perform a syscall on a WOWG64 application. So how
does WOWG64 application do... anything?

By going into an example function such as NtReadVirtualMemory, we should be expecting a
service id to be placed on the eax register and follow by a syscall/sysenter instruction.

3/11

5 Memory Viewer

File Search View Debug Tools Kemel tools

P = ntdllNIReadVirtualMemory H—
Address Eytes Opcode Comment
ntdll. NtReadVirtualMemory
ntdll.MiReadvirtualhdemory BE 3F000000 ,0000003F
ntdll. ZwReadvirtualhMemory +5 BA BOSDSOTT mov edxntdlRtiinterlockedCompareExchangesd +160 (=1843911165)
ntdll.ZwReadVirtualemary +4 FF D2 call pdx
ntdll. ZwReadvirtualhemory +C £2 1400 ret 0014 20
ntdll ZwReadVirtualMemory +F 30 nop
ntdll. ZwOpenEvent
nidll ZwOpenEvent BS 40000000 Goto Address >, 64
ntdll.NtOpenEvent+5 BA BOSDSOTT il in the address you want to go toRtkedCompareExchangega+ 160 (~1843911165)
ntdllMtOpenEvent+& FF D2 MiReadVirtualMemony w
ntdll NtOpenEvent+C C2 0C00 12
el MEOpenEvent +F ag fance)
ntdll. NtAdjustPrivilegesToken
ntdll MeadjustPrivilegesTaken B8 41000000 mov eay, 00000041 63
ntdll ZwadjustPrivilegesToken+5 BA BOSDSOTT mov edx,ntdll.RtinterlockedCompareExchangedd + 160 (-1843911165)
ntdll ZwadjustPrivilegesToken+A FF D2 call edx
ntdll. ZwAdjustPrivilegesToken+C €2 1800 ret po1s 24
ntdll ZwadiustPrivilegesToken+F 90 nop

No syscall, at all

Okay, now that’s weird. There is no syscall. Instead, there is a call and | know for sure you
can’t just enter kernel land with just a call. Let’s follow the calll

) ntdlF.Rii]rue'rincké'dﬂnmpareEmﬁangeﬁu 160

Address Bytes Qpcade Comment
nidlil.Rtlinterlocked CompareExchangedd +160 FF 25 18925977 imp dword ptr [1 t ~= oW cpu.dil+ 7000
nicllRtlinterlockedCompareExchangedd +166 €C int3

nicll.RtlinterlockedCompareExchangedd +167 cc int3

A jump to wow64transition inside wow64cpu.dll
Another jump, into another jump...hold up, is that “RAX” | see?.. isn’t RAX a 64-bit register ?

We are now at some place inside wow64cpu.d1l called wow64Transition that is now
executing with 64 bits instruction set. We also see that it is referencing cs: 0x33 segment.
What is going on?

In Alex Lonescu’ blog, he said:

In fact, on 64-bit Windows, the first piece of code to execute in *any* process, is
always the 64-bit NTDLL, which takes care of initializing the process in user-mode (as
a 64-bit process!). It's only later that the Windows-on-Windows (WoW64) interface
takes over, loads a 32-bit NTDLL, and execution begins in 32-bit mode through a far
jump to a compatibility code segment. The 64-bit world is never entered again, except
whenever the 32-bit code attempts to issue a system call. The 32-bit NTDLL that
was loaded, instead of containing the expected SYSENTER instruction, actually
contains a series of instructions to jump back into 64-bit mode, so that the
system call can be issued with the SYSCALL instruction, and so that parameters
can be sent using the x64 ABI, sign-extending as needed.

4/11

http://www.alex-ionescu.com/?p=300

So what this mean is that when the 32-bit code is trying to perform a syscall, it would go
through the 32-bit ntd11.d11, and then to this particular transition gate (Heaven’s Gate) and
performs a far jump instruction which switches into long-mode (64-bit) enabled code
segment. That is the 0033 :wow64cpu.d11+0x7009 you see in the latest screenshot. Now that
we are in 64-bit context, we can finally go to the 64-bit ntdll.dIl which is where the real syscall
is performed.

File Search View Debug Tools Kemel tooks
rdiLiIReadineatdemany

tddress Bytes Opeode Comment
ntdll. NeReadVirtual Memaory

udiLhzReadVirtualMemony B8 3FO00000 mev eax0000003F |Goto Addiess * | 63
udiLZwReadyirtuaMemony +§ BA BOIDSE0TT mav eduntdiLAtEniafilin the address you want to go b [-1843911168)
udilLZwReadvirtuaiemery +A FFD2 call e ntdlil_MiFeadVirualMemon

wdll ZnReadvirtualbemery « C 2 1400 rat o0hd 20
Cancel

ntdll.ZwOpenEvent

wdiLZwOpenEvent B8 20000000 mav e D0000040 64
wdilhmOpenEvent+5 BA BDGDSOTT mav edy nidilRtinterfackedCompareExchangetd + 160 {=184391171658)
wdlLhROperEvent =4 FF D2 eall edx

wdilMOpenEvent +C C20C00 ret e 1 12
wdilpaOpenEvent +F a0 nop

ntdil.NtAdjustPrivilegesTaken

wrill PRArdnPrenlensdcTaken AR A 5N mny sy MDA] RS

You can specify in Cheat Engine 64bit WINAPI version with _ before the API's name

B Memony Viewer - o
Fe Search WView Debug Took Femel tools

nLcHL_MR:.ad'a'lﬂunlthnrf
Address Eyles Qpeode Comment

ntdll._NtRoadVirtualMemory

!I|I:|.1I-|._?'-11FledfJ'.'lrI:u.l-'-‘.dL'nu]r",-'

ntdll_PiReadvirtualbdemnarny+ 3 B8 ZRO00000 1 £ax 0000003F 63
ntalil_MiReadvirtualtemary + 8 F6 04 25 OBO3FETF 01 fest byte pir [TFFEO3081.01 (LR
ntdil_piReadvirtualbdernary + 10 7503 e ritdll,_haReadvinualhemony+ 15

ntgll_piReadvirtualtdemary +12 OF05 + gyseal|

ntdil_MiReadvirtualtemaory + 14 3 i ret

ntdlll_MiReadvirtualtemary+15 CO ZE kint ZE a6
bl tiReadvirtualbdemary +17 3 ret

ntglll_piReadvirtualbdemary +15 OF1F 84 00 00000000 nop [rae+rae+ 0OD00000)

Finally the expected syscall

There you have it, the full WOW®64 syscall chain. Let’'s summarize.

32-bit ntdll.dll -> wow64cpu.dll’s Heaven’s Gate -> 64-bit ntdll.dll -> syscall into
the kernel

Now that we understand the full execution chain, let’s get hooking!

Hooking Heaven’s Gate

So as hackers, we are always looking for a stealthy way to hook stuff. While hooking
heaven’s gate is in no way stealthy, it is a lot stealthier (and more useful) than hooking the
single Winapi functions. That is because ALL syscall go through ONE gate, meaning by
hooking this ONE gate — you are hooking ALL syscalls.

The Plan

5/11

Our plan is quite simple. We will do what we usually do with a normal detour hook.

1. We will place a jmp of some sort on the transition gate/Heaven’s Gate, which will then

jump to our shellcode

2. Our shellcode will select what service id to hook and jump to the appropriate hook.

3. Our hook once finished execution, will jump to the transition gate/Heaven’s Gate.

4. Transition gate/Heaven’s Gate will continue on with the context switch into 64-bit and

execute as normal

But first, how does the application knows where is heaven’s gate located?

Answer: FS:0xCO0 aka TIB + 0xCO0

Contents of the TIB on Windows ess;

Description

Bytes/ offset offset
Type | [32 bits, FS) | (84 bits, G5) | Vv Versions
pointer | F5:[0x00) GE:[0=00] Win%x and NT Cuwrent Stnectured Exception Handling (SEH) frame
pointer | FS:[0x04) G5 0x08] Win%x and NT Stack Base / Bottom of stack (high address)
pointar | FS:[0x0E] GH 0] | Windx and NT Stack Limit [Cailing of stack (low address)
peirter | FS:[0x0C] | GSf0x18] | NT SubSysternTib
pointer | FS:[0x10] GE:[0ee20] NT Fiter data
pointer | F5:[0x14) G5 [0x28] WinSx and NT Arbitrary data slot
paimter | FS:[0x18) GE:0m30] Win9x and NT Linezar address of TEB
=== End of NT subsystem mdependent part -
poinler | FS:[0x1C] G5[0x38] HT Ervaranmin? Painter
pointer | F5:[0x0) G5 [0xd0] NT Process |0 (in some windows distributions this field is used as DebugContext’)
4| FS:[0x24) GS[048] NT Curant thread 1D
4| FS[0x28] | GSf0xs0] | NT Active BPC Handle
4 | FS:[0achl] G5 [0xe8] Wirx and NT Linear address of the thread-local sterage aray
4 | FS:[0m30) GE[0xe0] NT Linzar address of Procass Erdronment Block (PEB)
4 | FS:[0m34) G5 0xEh] HNT Last eor number
4 | FS:[0x38) HT Count of pwned critical sections
4| F3i[0=3C] HT Addross of CSR Cliert Thread
4 | FS:[0wa0] NT Win32 Thiead Infornation
124 | FS:[0ndd) HT, Wine Win32 client information (MNT), user32 private data (Wine), 0xE0 = LastEmor (Win5), 0x74 = LasiEror (WinME)
I 4 | FS:[0=C0] HT Resenved for Wowsd. Contains a pointer to FastSysCall in Wowed I

So, in theory — we could determine where Heaven’s Gate is by using this code snippet.

const DWORD_PTR __declspec(naked) GetGateAddress(){ __asm { mov eax,
dword ptr fs

Now that we know where the current Heaven’s Gate is at, and we are going to hook it — let’s

[0xCO]

FastSysCall is the another name for the Transition Gate aka Heaven’s Gate

ret 11}

create a “backup” of the code we are about to modify.

6/11

const LPVOID CreateNewJump()

{
lpJmpRealloc = VirtualAlloc(nullptr, 4096, MEM_RESERVE | MEM_COMMIT,

PAGE_EXECUTE_READWRITE);
memcpy(lpJmpRealloc, (void *)GetGateAddress(), 9);

return lpJmpRealloc;}

This will effectively allocate a new page and copy 9 bytes far jmp from heaven’s gate over.
Why we do this will not be covered but if you want to know the specific term, we are creating
a trampoline for our detour hook. This will allow us to preserve the far jmp instructions
that we are about to overwrite in the next step.

The 9 bytes is the instruction we are backing up: jmp 0033:wow64cpu.dll + 7009

Next, we are going to replace that far jmp with a PUSH Addr, RETeffectively acting as an
absolute address jump. (Push the address you want to jump onto the stack, Ret will pop it
from the stack and jmp there)

7/11

void _ declspec(naked) hk_Wow64Trampoline()

{
__asm
{
cmp eax, Ox3f //64bit Syscall id of NtRVM
je hk_NtReadVirtualMemory
cmp eax, 0x50 //64bit Syscall id of NtPVM
je hk_NtProtectVirtualMemory
jmp lpJmpRealloc
}
}
const LPVOID CreateNewJump()
{
DWORD_PTR Gate = GetGateAddress();
lpJmpRealloc = VirtualAlloc(nullptr, ©x1000, MEM_RESERVE | MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
memcpy(lpJmpRealloc, (void *)Gate, 9);
return lpJmpRealloc;
}
const void WriteJump(const DWORD_PTR dwWow64Address, const void *pBuffer, size_t
ulsize)
{

DWORD dwOldProtect = 0;

VirtualProtect((LPVOID)dwWow64Address, 0x1000, PAGE_EXECUTE_READWRITE,
&dwOldProtect);

(void)memcpy((void *)dwWow64Address, pBuffer, ulSize);

VirtualProtect((LPVOID)dwWow64Address, 0x1000, dwOldProtect, &dwOldProtect);

}
const void EnableWow64Redirect()
{

LPVOID Hook_Gate = &hk_Wow64Trampoline;

char trampolineBytes[] = { 0x68, OxDD, OXCC, OxBB, OXxAA, /*push
OXAABBCCDD*/ OXC3, /*ret*/ OxCC, OxCC,
OxCC /*padding*/ }; memcpy (&trampolineBytes[1], &Hook_Gate,

4); WriteJump(GetGateAddress(), trampolineBytes, sizeof(trampolineBytes));}

This code will overwrite the 9 bytes FAR JMP along with all the VirtualProtect you need.

Let’s dissect hk_Wow64Trampoline.

So we know that before any syscall happen, the service id is ALWAYS in the EAX register.
Therefore, we can use a cmpinstruction to determine what is being called and jmp to the
appropriate hook function. In our case we are doing 2 cmp (but you can do as many as you
want), one with Ox3f and one with 0x50 — NtRVM and NtPVM. If the EAX register holds the
correct syscall, je or jump-equal will execute, effectively jumping to our hook function. If it is

8/11

not the syscall we want, it will take a jmp to IpJmpRealloc (which we created in our
CreateNewdJump function. This is the 9 original bytes that we copied over before overwriting

it).

void _ declspec(naked) hk_NtProtectVirtualMemory()
{
_asm {
mov Backup_Eax, eax
mov eax, [esp + Ox8]
mov Handle, eax
mov eax, [esp + OxC]
mov Address_1, eax
mov eax, [esp + O0x10]
mov DwSizee, eax
mov eax, [esp + Ox14]
mov New, eax
mov eax, [esp + 0x18]
mov 01d, eax
mov eax, Backup_Eax
pushad
}

printf("NtPVM Handle: Size:

Handle, Address_1, *DwSizee,

[%x] Address:
New) ;

[Ox%x] [%d]

__asm popad
__asm jmp lpJmpRealloc
}

void __declspec(naked) hk_NtReadVirtualMemory()
{

__asm pushad
printf("Calling NtReadVirtualMemory.\n");

__asm popad __asm jmp lpJmpRealloc}

NewProtect: [Ox%x]\n",

Note that before you are doing any sort of stuff within the hook function, you must
pushad/pushfd and then later popfd/popad to preserve the registers and the flags. If you do

not do this, expect the program to crash in no time.

Similarly, I've tried very hard to get the values from the declspec(naked) function through
arguments but it just can’t do because you will end up usign ECX as a register and ECX just

happens to hold a 64bit value in my experience.

9/11

Registers: Flags
EARX OO DS OF 0

EEX 000000CC DF O
ECX FSETCaC2eTES0Q000 S5SF O
EDX T75ASDEO ZF 1
ESI 774065950 AF 0
EDI SO297000 PF 1
EEPF 11DFF3AC CF 0

ESP 11DFF384
EIP 61C11050

Segment Reglisters

]

0023

002B

L

=

0028

0028

=1

m wmwmwm D wm

r

0053

002B

[

PUSHAD will lose the first 4 bytes of
ECX

Please let's me know if you know of a way to get something like this to work.
DWORD __ declspec(naked) hk_NtProtectVirtualMemory(IN HANDLE
ProcessHandle, IN OUT PVOID *BaseAddress, IN OUT PULONG

NumberOfBytesToProtect, IN ULONG NewAccessProtection, OUT PULONG
OldAccessProtection)

Summary

In summary, when you are running as a Wow64 process — you cannot access the kernel
directly. You have to go through a transition gate aka Heaven’s Gate to transition into 64bit
mode before entering Kernel Land. This transition can be hook with a traditional detour which
this post covers.

The technique detour the transition gate into a fake gate that does conditional jump based on
the service number to the correct hook function. Once the hook function finished execution, it
is then jump to a transition gate that we backed up. This will change our 32bit mode into
64bit mode, in which we will then continue with the execution by going into the 64bit Ntdll.
64bit Ntdll will then perform a syscall/sysenter and enter Kernel land.

32bit Ntdll-> Heaven’s Gate (hooked) -> Fake Gate -> hook_function -> Heaven’s
Gate Trampoline -> 64bit Ntdll -> Kernel land

Result

Take a look at the example code here.

10/11

https://gist.github.com/hoangprod/4f5e821525cd199c3ca3134a0596e263

Contngd Remote Compules

=)

PEEREEERERRENEEESMERLS

10/10 paint job

Another thing to notice is that you cannot just printf the syscall Id within the Wow64 hook,
and that is because printf requires a syscall (I believe so) and if you hook the printf syscall
while calling printf inside the hook, you are going to have a bad time (Infinite loop).

Conclusion

Hooking is a technique consists of multiple methods. How you hook depends on your
creativitiy and your understanding of the system. So far, we have prove that we can hook any
function at almost all stages. Maybe next we will go into SSDT hook or some sort. However,
my OSCE exam is tomorrow so wish me the best of luck. It took me over a month to finish

this because | got so side-tracked. Please forgive me if there are more mistakes toward the
2nd half!

-Fs0x30

11/11

