Bypass EDR’s memory protection, introduction to
hooking

m medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb2 1acffd6

February 3, 2020

Hoang Bui

Introduction

On a recent internal penetration engagement, I was faced against an EDR product that I will
not name. This product greatly hindered my ability to access Isass’ memory and use our own
custom flavor of Mimikatz to dump clear-text credentials.

| Theats || Explots(@5) | Events | Seipts | Exemal Devices |
When Category Event Details
171872019 11:21:15 AM Exploit Blocked Violation: LsassRead; PID: 3140; Applicaton: C-uUserstNade \Deskiopprocdumpbad exe

For those who recommends ProcDump

The Wrong Path

So now, as an ex-malware author — I know that there are a few things you could do as a
driver to accomplish this detection and block. The first thing that comes to my mind was
Obregistercallback which is commonly used by many Antivirus products. Microsoft
implemented this callback due to many antivirus products performing very sketchy winapi
hooks that reassemble malware rootkits. However, at the bottom of the msdn page, you will
notice a text saying “Available starting with Windows Vista with Service Pack 1 (SP1) and
Windows Server 2008.” To give some missing context, I am on a Windows server 2003 at
the moment. Therefore, it is missing the necessary function to perform this block.

After spending hours and hours, doing black magic stuff with csrss.exe and attempting to
inherit a handle to Isass.exe through csrss.exe, I was successful in gaining a handle with
PROCESS_ALL_ACCESS to Isass.exe. This was through abusing csrss to spawn a child
process and then inherit the already existing handle to Isass.

1/8

https://medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb21acffd6
https://medium.com/@fsx30?source=post_page-----2efb21acffd6--------------------------------
https://medium.com/@fsx30?source=post_page-----2efb21acffd6--------------------------------
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/nf-wdm-obregistercallbacks

0QR\Node]+ (Administrato =

ack: ols
7 Options | & Find handles or DLLs z#¢ System information |] [Search Processes (Ctrl+K) o

FID CPU UOtotal.. Privateb.. Username Description
4 [n7] System Idle Process 0 9880 0 NT AUTHORITY\SYSTEN
4] System 1 oS 112KE NTAUTHORITWSYSTEN NT Kernel & System
= smss.eve Ed) S60KE MTAUTHORITWSYSTEN Windows Session Manager
7 Interrupts 051 0 Interrupts and DPCs
4[] esrssiene £l 368 ME MTAUTHORITWSYSTEL Client Server Runtime Process
=] AndienSpecialese 2044 3562 ME _WIN-HIMLESANIQR Ne k
1 AndrewSpecial.exe (2044) Properties T o e THORITWSYSTEN Windows Stait-Up Application |
- THORITWSYSTEN Services and Centreller app
General | Stetistics | Performence | Threads | Token | Modues | ETHORI‘W‘.SVS‘IEN Hest Windows S

| Memory | Enveanment | Hardes | Geu [Cidcand Metwork | Comment | | MMETWORK SERVICE Wil Hast

[¥] Hide umnamed handles UTHORITWSYSTEN Wik
— — NETWORE SERVICE Host Process for Windows Sex...

Tye Hame Hande . ALOCAL SERVICE Host

Directary Ignonnzile s A, ALOCAL SERVICE Wind

Directary \Sessions|2\BascHamedObjects O3 hUTHOPI’I\“SVSTEN Host Pracess for Wi
EtwRegicliaton (eb7408M5-abif-a322sdcc-1Mlag2,, 0a3E [N-HIMLESHOQR NG Desktop Window Manager
Etwilegistraton (eb7426f5-ab1f4322 ke 1f1a%2,, Dxic AUTHORITYASYSTEN Host Process for Windows Ser...

EbwRegsiration [53a3ache-0717-510d-20f5-e07e68, . (a3
EmwRagomazon MiTosoftavncows-User Profiles Ge... (3

A \LOCAL SERVICE Host Process for Windows Ser...
NETWORK SERVICE Host Process for Windows Ser...

Fie € Lsers Hode\Deskiop [}
Fle Cilvindonsisystemz2ien-Usintdl.d.., 0x70 - LLCEN T S R Ty
o File Coindons System3tenUsermel... 0x74 . \LOCAL SERVICE Host Process for Windows Ser...
HIHLES4NEGR Fle CiMindows\Eystemzen USWernel,., 0x78 AUTHORITV\SYSTEN ViMwrare Guest Authentication...
File Crindows \System32enUSisecho... Oudt AUTHORITWSYSTEM ViMwiare Tools Core Service
Key HILMISTSTEMIConboS=i00 1 iContr .. 010 -
key HKLM 2
Koy HKLMSYSTEMCantralS=1001 \Contr. 0x38
Mutant \Sessions\2BaseNamedObectsiind, . 0x9)
Process. e (556) [re
Frocess Isass e (556) oudd
secton Comrmit {24 48)]

4 Clase

There is no EDR solution on this machine, this was just an PoC

However, after thinking “I got this!” and was ready to rejoice in victory over defeating a
certain EDR, I was met with a disappointing conclusion. The EDR blocked the shellcode
injection into csrss as well as the thread creation through RtlCreateUserThread. However,
for some reason — the code while failing to spawn as a child process and inherit the handle,
was still somehow able to get the PROCESS_ALL_ACCESS handle to Isass.exe.

WHAT?!

Hold up, let me try just opening a handle to lsass.exe without any fancy stuff with just this
line:

HANDLE hProc = OpenProcess(PROCESS_ALL_ACCESS, FALSE, Isasspid);

And what do you know, I got a handle with FULL CONTROL over lsass.exe. The EDR did not
make a single fuzz about this. This is when I realized, I started off the approach the wrong
way and the EDR never really cared about you gaining the handle access. It is what you do
afterward with that handle that will come under scrutiny.

Back on Track

Knowing there was no fancy trick in getting a full control handle to lsass.exe, we can now
move forward to find the next point of the issue. Immediately calling
MiniDumpWriteDump() with the handle failed spectacularly.

2/8

Theeats || Bxplots (30) || Events || Scipts || Extemal Devices

When Category Event Details
11872019 115325 AM Bgploit Blocked Violation: LsassRead; PID: 1680 Application: C\Users\Node'\Desktop Andrew Special_bad exe
11872019 11:21:15AM Bgloit Blocked Viglation: LsassRead; PID: 3140; Application: C:\Users\Node'\Desktop \procdump b4 exe

9 X

Let’s dissect this warning further. “Violation: LsassRead”. I didn’t read anything, what are
you talking about? I just want to do a dump of the process. However, I also know that to
make a dump of a remote process, there must be some sort of WINAPI being called such as
ReadProcessMemory (RPM) inside MiniDumpWriteDump(). Let’s look at
MiniDumpWriteDump’s source code at ReactOS.

3/8

https://doxygen.reactos.org/d8/d5d/minidump_8c.html#a9a74c45722230d9f89a34fd843050937

+ dump_exception_info() 2

static unsigned dump_exception_info (struct dump_context * dc,
const MINIDUMP_EXCEPTION_INFORMATION * except
)

Definition at line 391 of file minidump.c.

ag3| f
354 MINIDUMP_EXCEPTION_STREAM mdExcpt;
395 EXCEPTION_RECORD rec, *prec;
396 CONTEXT ctx, Fpcix;
397 DWORD i;
398
399 mdExcpt.ThreadId = except->ThreadId;
4068 mdExcpt. alignment = @;
481 if (except-»ClientPointers)
4a2
483 EXCEPTION_POINTERS eps
44
4@5 ReadProcessMemory(dc->hProcess,
406 except->ExceptionPointers, &ep, sizeof(ep), NULL);
4a7 ReadProcessMemory(dc->hProcess,
403 ep.ExceptionRecord, &rec, sizeof(rec), NULL);
4@9 ReadProcessMemory(dc->hProcess,
41@ ep.ContextRecord, &ctx, sizeof(ctx), NULL);
411 prec = &rec;
412 pctx = Bctx;
413 +
414 else
415 {
416 prec = except->ExceptionPointers-»ExceptionRecord;
417 pctx = except->ExceptionPointers->ContextRecord;
418
419 mdExcpt.ExceptionRecord.ExceptionCode = prec->ExceptionCode;
428 mdExcpt.ExceptionRecord.ExceptionFlags = prec->»ExceptionFlags;
421 mdExcpt.ExceptionRecord.ExceptionRecord = (DWORD_PTR)prec->ExceptionRecord;
422 mdExcpt.ExceptionRecord.ExceptionAddress = (DWORD_PTR)prec-»ExceptionAddress;
423 mdExcpt.ExceptionRecord.NumberParameters = prec-»NumberParameters;
424 mdExcpt. ExceptionRecord._ unusedAlignment = @;
425 for (1 = 8; i < mdExcpt.ExceptionRecord.NumberParameters; i++)
426 mdExcpt.ExceptionRecord. ExceptionInformation[i] = prec-»ExceptionInformation[i];
427 mdExcpt. ThreadContext.DataSize = sizeof(*pctx);
428 mdExcpt. ThreadContext.Rva = dc-*rva + sizeof(mdExcpt);
429
43@ append({dc, &mdExcpt, sizeof(mdExcpt));
431 append{dc, pctx, sizeof(*pctx));
432 return sizeof(mdExcpt);
433 | }
Referenced by MiniDumpWriteDump(). i’!

Multiple calls to RPM

As you can see by, the function (2) dump_exception_info(), as well as many other functions,
relies on (3) RPM to perform its duty. These functions are referenced by
MiniDumpWriteDump (1) and this is probably the root of our issue. Now here is where a bit
of experience comes into play. You must understand the Windows System Internal and how
WINAPIs are processed. Using ReadProcessMemory as an example — it works like this.

ReadProcessMemory is just a wrapper. It does a bunch of sanity check such as nullptr check.
That is all RPM does. However, RPM also calls a function “NtReadVirtualMemory”, which
sets up the registers before doing a syscall instruction. Syscall instruction is just telling the
CPU to enter kernel mode which then another function ALSO named NtReadVirtualMemory
is called, which does the actual logic of what ReadProcessMemory is supposed to do.

______ Userland — — — —— — | — — — Kernel Land — — —

4/8

RPM — > NtReadVirtualMemory --> SYSCALL->NtReadVirtualMemory
Kernel32 - - -ntdl -H—————————- — — — — — ntoskrnl

With that knowledge, we now must identify HOW the EDR product is detecting and stopping
the RPM/NtReadVirtualMemory call. This comes as a simple answer which is “hooking”.
Please refer to my previous post regarding hooking here for more information. In short, it
gives you the ability to put your code in the middle of any function and gain access to the
arguments as well as the return variable. I am 100% sure that the EDR is using some sort of
hook through one or more of the various techniques that I mentioned.

However, readers should know that most if not all EDR products are using a service,
specifically a driver running inside kernel mode. With access to the kernel mode, the driver
could perform the hook at ANY of the level in the RPM’s callstack. However, this opens up a
huge security hole in a Windows environment if it was trivial for any driver to hook ANY level
of a function. Therefore, a solution is to put forward to prevent modification of such nature
and that solution is known as Kernel Patch Protection (KPP or Patch Guard). KPP scans the
kernel on almost every level and will triggers a BSOD if a modification is detected. This
includes ntoskrnl portion which houses the WINAPT’s kernel level’s logic. With this
knowledge, we are assured that the EDR would not and did not hook any kernel level
function inside that portion of the call stack, leaving us with the user-land’s RPM and
NtReadVirtualMemory calls.

The Hook

To see where the function is located inside our application’s memory, it is as trivial as a printf
with %p format string and the function name as the argument, such as below.

printf{"RPM: Xp ---- ntRVM: *p'n”, ReadProcessMemory, NtReadVirtualMemory);

However, unlike RPM, NtReadVirtualMemory is not an exported function inside ntdll and
therefore you cannot just reference to the function like normal. You must specify the
signature of the function as well as linking ntdll.lib into your project to do so.

ment (lib, "ntdll.1ib"™)

NTSTATUS NtReadVirtualMemory(HANDLE, PVOID,

toprAndrewvSpecial_bad.exe
2AW ———— ntHUM: BBBBRAOAYABAZAN

Now, this provides us with the address of both RPM and ntReadVirtualMemory. I will now
use my favorite reversing tool to read the memory and analyze its structure, Cheat Engine.

5/8

https://medium.com/@fsx30/vectored-exception-handling-hooking-via-forced-exception-f888754549c6

| kernel32.ReadProcessMemary

Address Bytes Opcode Comment
kernel32 ReadProcessMemory
kernel32 Reacd8 83 EC 38 sub rsp,38 56
kernel32 Reac4d 8B 44 24 60 mov rax,[rsp+60]
kernel32 Reacdd 89 44 24 20 mov [rsp+20],rax
kernel32 ReacE8 OD77FEFF call kernel32.GetUserDefaultUlLanguage+500 -=>->KERMNELBASE.ReadProcessMemo
kernel32.Reacd8 83 C4 38 add rsp,38 56
kernel32 ReacC3 ret
ReadProcessMemory
| ntdll.NtQueryAttributesFile +B l
Address Bytes Opcode Comment -
ntdll.NtClearEvent
ntclll. MtClearEvent AC 8B D1 mov ri0,rex
AIntdll.ZwClearEvent+3 B& 36000000 mov eax,00000036 50
ntdll.ZwClearEvent+8 OF05 syscall
ntclll ZwClearEvent+A c3 ret
ntdll.ZwClearEvent+B QF1F 44 00 00 nop [rax+rax+0Q0]
ntdil.NtReadVirtualMemory
ntdll.MtReadVirtualMemory ES DFFDFICF imp 47050084
ntdll.ZwReadVirtualMemory+5 00 00 add [rax).al
ntdll.ZwReadVirtualMemory+7 00 OF add [rddilcl LM
ntdll ZwReadVirtualMemory+9 05 C30F1F44 add eax 441F0FC3 636,25 i
ntdll.ZwReadvirtualMemory+E 00 00 add [rax],al
ntdil.ZwOpenEvent
ntdll. ZwOpenEvent 4C 8B D1 mov rio,rex
ntdll. NtOpenEvent+3 B& 30000000 mov 2ax,00000030 61
ntdll. NtOpenEvent+8 OF05 syscall
ntdll. NtOpenEvent+4 c3 ret
ntelll. NtOpenEvent+B OF1F 44 00 00 nop [rax+rax+00]
NtReadVirtualMemory

For the RPM function, it looks fine. It does some stack and register set up and then calls
ReadProcessMemory inside Kernelbase (Topic for another time). Which would eventually
leads you down into ntdIl’s NtReadVirtualMemory. However, if you look at
NtReadVirtualMemory and know what the most basic detour hook look like, you can tell that
this is not normal. The first 5 bytes of the function is modified and the rest are left as-is. You
can tell this by looking at other similar functions around it. All the other functions follows a
very similar format:

0x4C, 0x8B, 0xD1, // mov r10, rcx; NtReadVirtualMemory
0xB8, 0x3c, 0x00, 0X00, 0X00, // eax, 3ch — aka syscall id
0x0F, 0x05, // syscall

0xC3 // retn

With one difference being the syscall id (which identifies the WINAPI function to be called
once inside kernel land). However, for NtReadVirtualMemory, the first instruction is actually
a JMP instruction to an address somewhere else in memory. Let’s follow that.

6/8

| 47050084
Address Bytes Opcode Comment

48 BB FD6628FSFEDTOQ... SOy dll+aa R0 (608471372)
4705008E FF ED jmp rax
470350090 43 BE BOGB2BFSFEQTO... mov rax,CyMemDef64.dll+6BB0 (610044232)
47050094 FF EO jmp rax
4705009C 48 B8 S06C28FSFEQTO... mov rax,CyMemDefé4.dll+6C50 ("@UVAWHT?ISIH??Y)
47050046 FF EO jmp rax
47030048 48 B8 FOSE28FSFEQNTQ... mov rax,CyMemDef54.dII+6EFD ("@UWAUAVAWH?ISTH??")
47030082 FF EQ imp rax

CyMemDef64.dll

Okay, so we are no longer inside ntdll’s module but instead inside CyMemdef64.d1l’s module.
Ahhhhh now I get it.

The EDR placed a jump instruction where the original NtReadVirtualMemory function is
supposed to be, redirect the code flow into their own module which then checked for any sort
of malicious activity. If the checks fail, the Nt* function would then return with an error code,
never entering the kernel land and execute to begin with.

The Bypass

It is now very self-evident what the EDR is doing to detect and stop our WINAPI calls. But
how do we get around that? There are two solutions.

Re-Patch the Patch

We know what the NtReadVirtualMemory function SHOULD looks like and we can easily
overwrite the jmp instruction with the correct instructions. This will stop our calls from being
intercepted by CyMemDef64.dll and enter the kernel where they have no control over.

Ntdll IAT Hook

We could also create our own function, similar to what we are doing in Re-Patch the Patch,
but instead of overwriting the hooked function, we will recreate it elsewhere. Then, we will
walk Ntdll’s Import Address Table, swap out the pointer for NtReadVirtualMemory and
points it to our new fixed_ NtReadVirtualMemory. The advantage of this method is that if the
EDR decides to check on their hook, it will looks unmodified. It just is never called and the
ntdll IAT is pointed elsewhere.

The Result

I went with the first approach. It is simple, and it allows me to get out the blog quicker :).
However, it would be trivial to do the second method and I have plans on doing just that
within a few days. Introducing AndrewSpecial, for my manager Andrew who is currently
battling a busted appendix in the hospital right now. Get well soon man.

7/8

https://guidedhacking.com/

S ST A A e DR W

I '
ANAPAR?7ABO2NA | E jmp r
AN T BN ZHE 1 .
$i0e ade burn starting... [B"FOBE28FSFEOTO... mov
-' b jm
o con 1 . |
e _handle 74) . | 0 add [
ly lawnched the AndrewSpecial. Mission Successfult | 0 add ,

serssNodesDesktop> S “
Theeats || Explots (35)][Evants][Scripts || Extemal Devices
When Category Ewvent Details
171872019 1: 4959 FM BEoploi Blacked Violation: LsassRead; P|D: 4036; Application: C:\Usars\Node'\Desktop' AndrewSpecial_bad exe
171872019 11:53:25 AM BEploi Blocked Violation: LsassRead; PID: 1680; Application: C:\Usars\Node'\Desktop' AndrewSpecial_bad exe
11872019 11:21:15 AM Bploit Blocked Violation: LsassRead; PID: 3140; Application: C:\Usars\Node'\Desktop \procdump 64 exe

AndrewSpecial.exe was never caught :P

Conclusion

This currently works for this particular EDR, however — It would be trivial to reverse similar
EDR products and create a universal bypass due to their limitation around what they can
hook and what they can’t (Thank you KPP).

Did I also mention that this works on both 64 bit (on all versions of windows) and 32 bits
(untested)? And the source code is available HERE.

Thank you again for your time and please let me know if I made any mistake.

8/8

https://github.com/hoangprod/AndrewSpecial/tree/master

