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Abstract
In order to perform their goals without being detected, Malware should have a battle of wits with the analyzer. Such a way,
they use a large variety of stealth methods to perform their missions. These methods allow to slow or block analysis. Most of
the time, these tricks are often operating system or CPU oriented (dll injection, exception handler or API abuse). In addition,
they are although focused on the most used analyst tools. These attacks, allow, among other things, to display erroneous
information on the analysis tools or to silently detect it so that the malware can change its behavior in case of analysis.
Depending of the degree of error of the analyzing tools used, it could become partially or totally ineffective. More than just
flowed malware analysts, it is a great drawback in order to find bugs in regular software. In this article, we show how to
exploits errors inside debuggers and mainly inside one of the most use: Windbg. This list of errors impacting this Microsoft’s
tool mainly concerns few flaws in the disassembly engine or in the debug procedure. Some are present in the debugger from
years... More directly, we show different ways to block or disturb the normal behaviour of Windbg. Thus, even if these errors
are not always critical, they can negatively impact the use of software by any user. For instance, we describe a newway to know
if the current process is running under the control of Windbg. This is exactly what malware author are looking for to detect
analysis. Due to the complexity of architecture such as x64 and x86, it is hard to design and develop a complete disassembling
tool. In fact, no disassembling tool is perfect and most of those we tested have at least one of the flaws which are shown in
this article. Among the different flaws, we have int 3 misinterpretation, wrong jump interpretation, partial instruction prefix
handling and unsupported instruction. Moreover, nothing prevents these tools to have other kind of errors. Thus, in order to
analyze software efficiently, it is necessary to improve the analyzer tools. In this way, we offer different solution to correct
the bug we encounter on the different tools.
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1 Introduction

From an historical point of view, debuggers are the best
friends of developers. It allows them to understand what
is happening in their applications and how they can solve
remaining bugs. But more than helping to find and fix bugs,
they are powerful tools able to analyze efficiently processes.
As a logical consequence, malware authors have always tried
to escape or directly affect these tools’ results.

Detecting or evading debuggers is a sport which is famous
by the number of different technics used to achieve such
a goal. The technic used can be split in two groups. The
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first is about the use of dedicated operating system API able
to release or neutralize the influence of the debugger. The
second is about bugs exploited or code misinterpreted by
debuggers. For obvious reasons, it is the second group which
is the most complex to manage, since it requires an evolu-
tion of the tool or an evolution in the practice of the analysis.
But, because it is driven by the technology, debuggers and
malware analysts are alwaysmore andmore efficient to coun-
teract technics used to escape dynamic analysis. It explains
why it is relevant to present and fix new technics or bugs
exploited from debuggers to detect, escape or subvert analy-
sis.

Our paper is based onWindows operating system, nomat-
ter the version used. This choice is explained by the fact that
most threats are on this platform. And the most famous –
not to say the most used – debuggers on Windows is the one

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-020-00347-x&domain=pdf


F. Plumerault, B. David

developed byMicrosoft: Windbg. This one is now part of the
Windows Driver Kit and a new version, Windbg Preview, is
actually developed with nice extensions such as Time Travel
Debugger.

In this article,we are going to show fourways to disrupt the
functioning of Windbg disassembler (version 10.0.17763.1
for Windbg and 1.0.1904.18001 for Windbg Preview). Sec-
tion 1 focuses on existing vulnerabilities in debuggers and
especially on one already known in Windbg. Section 2
explains how to use this vulnerability in order to turn it into
a debugger detector. Section 3 explains how, by using an
operand-size override prefix, to fool the Windbg disassem-
bler. Section 5 uses a similar mechanism with the use of the
prefix REX to achieve the same goal. Section 6 explains how
to use unsupported instructions tomislead the debugger anal-
ysis without impacting the execution. Finally, a conclusion
section includes all the elements presented.

2 Previous work on debuggers flaws

Debuggers are software used to drive other targeted soft-
ware. The goal is to allow a step by step execution, stopping
execution according to some events and data inspection or
modification. It allows human users to understand where a
bug can stand in a software or to unsure that everything
worked as expected. It exists a lot of debuggers, such as
GDB [1], LLDB [2], Microsoft Visual Studio Debugger [3],
Radare2 [4], IDA [5] or Windbg [6].

Technically speaking, the debugger has not the ability to
execute itself instruction per instruction. This is the aim of
an emulator (such as Boch [7] or Unicorn [8]). Instead of, it
uses breakpoints which are inserted in the debugged process.
Another way to proceed is based on the use of the trap flag
which are inserted in the context of one of more debugged
thread. One of the soft trick used is based on the trap flag [9]
provided by the CPU. Another trick is the use of breakpoint
instruction [10]. The last is based on an instruction set that,
when encountered by the CPU, gives back the hand to the
process referenced as debugger.

If debugging a program can be very useful, it can although
be useful to crack software, evade copy protection, digital
rights management and more generally all malware activity
which prefers to stand below the radar. Such a way, different
methods have been developed to counteract debuggers [11–
13]. Most of the time, methods used in order to try to detect
the present of debuggers (via communication links, dedicated
structures in memory) or they are trying to debug themselves
since only one debugger can be present at a time or they try
to remove the debugger – but it requires to know a debugger
is already present.

A last trick used is to abuse from bugs in the debugger
itself. Indeed, debuggers are software like any others, which

means they can be improved. For instance, Ollydbg [14]
which is a popular 32-bit user mode debugger had a vulnera-
bility by uncorrectly handlingOutputDebugStringWindows’
API function [15]. A call to this function, by one debugged
process from Ollydbg, could have resulted in an unexpected
crash [16]. More examples can be found in [17] to explain
how to exploit such a debugger’s bugs.

One of the bugs used in this paper to exploit Windbg is
already partially known [12]. It is based on ”int 3h” instruc-
tion. This one corresponds to an interruption — the third
one — referencing a debug break. When this instruction is
encountered, the CPU gives back the control to the debugger
process. From the CPU, this instruction can be encoded in
two ways, for the same result. Indeed, it could be encoded,
fromassembly to opcodes executable byCPU, byusing either
0xCC or 0xCD 0x03 writing. The reason behind this two
encoding stands in the approach used to encode the instruc-
tion by the compiler. Indeed, the 0xCC encoding always
refers to the third interruption, (debug break). This is the
short version of the instruction. However, the longest one,
0xCD 0x03 encoding can refer to any interruption where the
id of the interruption is encoded using the second byte of
the encoding - 0x03 in our case. Most of the time, only the
shortest instruction is used by compilers. Thus, the 0xCC
encoding is used a lot more than 0xCD 0x03, except with
NASM compiler [18].

More than the waste of a byte to encode the same instruc-
tion, the longest version can potentially lead to a bug if it is
not taken into account correctly, as suggested in [19,20]. The
same way, this behavioral error has already been observed
without being explicitly linked to a particular debugger by
Peter Ferrie [21]. In this paper, the author has tested a lot of
debuggers and emulators without linking this bug to one or
more products. More generally, this bug has been used as a
”debugger killer”. Example is provided in [22] to illustrate
howWindbg can be trapped by using these opcodes tomake it
crash. The same technic is used bymalware’s packer to avoid
analysis under a debugger [23]. But this technic is expected
to make crash the application since this one is debugged.

3 INT 3mishandling exploitation

This is the misinterpretation of the ”int 3h” instruction in its
long form which can be exploited. From a general point of
view, anymisinterpretation resulting in a wrong execution by
a debugger is a vulnerable flaw which could result to hidden
code execution or badly interpreted one. Such a behaviour
could lead to debugger detection or the execution of obfus-
cated code that is difficult to analyze. This is what we are
going to show in the two next subsections. The first is about
technical details about the flaw in Windbg and the second
about the exploitation of that flaw.
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Fig. 1 Interpretation of the debug break instruction before execution

3.1 Technical details

As explained previously, Windbg does not correctly handle
the ”int 3h” instruction when this one has been encoded by
the compiler in its long form. Before execution, Windbg cor-
rectly handles the debug break as the figure bellow illustrates
it (Fig. 1).

When the previous code is executed, the next instruction
about to be executed byWindbg is the one provided in Fig. 2.

Actually, we are processing step by step, Windbg is incre-
menting by one the execution pointer (eip in 32 bits – rip in
64 bits) of the debugged thread, as if it would have been the
short form version. This is incorrect since it is expected that
the debugger increments the current instruction pointer by
two as the long form of the debug break instruction would
have expected it. The result of this misbehavior is a jump in
the middle of the opcodes of the next valid instruction (the
one following the debug break) to execute opcode 03 which
is an addition (add) instruction. Of course, such behaviour is
obviously not about to increase the stability of the program.
Most of the time, this behavior will eventually rise an access
violation exception, resulting in the crash of the debugged
program.

Interestingly, Ferrieworked atMicrosoft, in 2008, at a time
he published his paper [21]. This one seemed, unfortunately,
not to notice that this bug has concerned Windbg. May be
it is because this technic is not used efficiently by malware.
Indeed, letting an application crash is not the most discreet
thing to do. This generally means that people is about to
study the reason for the crash and to discover the method
used by the malware. The idea is then to propose a method
that, exploiting this old and known bug for more than ten
years, allows detecting a debugger without crashing.

3.2 Technical exploitation

The main issue with the use of ”int 3h” Windbg’s bug is
the resulting crash when exploiting under the control of the

debugger. The problem stands in the fact that 0x03 opcode
usually results in an invalid execution flow or in an invalid
access memory. The operation expected in such as case is an
addition performed with registers or a direct access read in
memory, which is not stable. But it is possible to combine this
misinterpreted opcode with other opcodes so that the result
is still executable and valid.

First, before allowing debugger detection, the code we are
writing must be able to survive when there is no debugger.
Executing ”int 3h” instruction, when there is nothing reg-
istered to handle it, usually results in an application crash.
To avoid that, we must ensure that our code which will be
executed in an exception handled context. This one is trig-
gered in case of absence of the debugger. Otherwise, this is
the debugger itself which is notified first, by default.

In C language, this operation is implemented through a
__try/__except block statement [24]. This one can be directly
implemented in x86 assembly architecture since exception
handling is stored at offset zero in the Thread Information
Block (TIB) [25,26] of the current thread. The field respon-
sible of exception handler in the TIB is named Structure
Exception Handling (SEH) [27] and it is directly accessible
through ”fs:[0]” assembly instruction [28]. To manipulate it,
it is just about storing a pointer to a handler function [29]
in this structure. This is usually performed via the follow-
ing instructions, where ”handler” corresponds to a handler
function (it corresponds to the ”except” statement bloc in C
language).

Listing 1 Implementation of the beginning of exception procedure.

assume fs:nothing ; Avoid segment registers to be considered as an error.
push offset handler ; Store address of the handler pointer function.
push fs:[0] ; Store the previous SEH on top of the stack.
mov fs:[0], esp ; Update the SEH stack.

The procedure in x64 would be a bit different since the
exception handler is no more stored in the TIB directly, as
it was in the x86 architectue, but it is mapped from the MZ-
PE executable file. This can be done by the use of Vectored
Exception Handler API [30] with the same logic. A dedi-
cated list of functions is registered in order to be used if an
exception occurs. This one is able to handle correctly the ”int
3h” instruction when there is no debugger.

Once the handler exception is registered, we have to deal
with the debugger’s misinterpretation. The main problem is
that the opcodes used must produce a valid result both in the
normal case and in the case where they are misinterpreted.
The easiest way to achieve this result is to try to reach one
of two unconditional jumps. The first in the case when the
process is running under a debugger, the second when there
is no debugger. All the code between the ”int 3h” instruc-
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Fig. 2 Interpretation of the
debug break instruction after
execution

Fig. 3 Illustration of the correct disassembling of ”int 3h”

Fig. 4 Illustration of the incorrect disassembling of ”int 3h” byWindbg

tion and the two jumps is designed to avoid or cancel bad
consequences of a misinterpretation while keeping normal
execution flow.

Onway to encodeunconditional jumpoperation is through
0xEB opcode, followed by a single byte indicated the relative
offset to jump. This offset value is interpreted as a signed
number which results in a jump of −128 to +127 bytes in
memory. This is far enough for our codewhich is just about to
jump to a dedicated location returning zero or one, depending
of the presence or absence of a debugger.

The most efficient way to build the code is to stick the
unconditional jump after the debug break instruction. In this
way, the codewehave,when there is nodebugging, is handled
by the exception handler function which gives back the hand
to the jump. The Fig. 3 illustrates this procedure.

When Windbg is present, the misinterpretation of the
debug break occurs, resulting in a shift inside the instruc-
tions flows. These ones are now interpreted as shown in the
Fig. 4.

To cancel the ”add ebp, ebx”, it is enough to compute
instruction ”sub ebp, ebx”. This last one is encoded with
0x2B 0xEB opcodes. Then, it comes the final unconditional
jump to return zero or one, depending if this functionmust be

able to detect the presence or the absence of a debugger. This
construction allows the function to cancel consequences of
misinterpretation (corruption of ebp register) while keeping
the final jump to a locationwherewe can handle if a debugger
is present. The final result looks like the Fig. 5.

The case of unconditional jump offsets remains to be
resolved. In the case where a debugger is present, the last
jump can point to any relevant location for our function.
Whatever is the offset, it will not change anything is can
of correct or misinterpretation. In the case where there is
no debugger and it is our exception handler function which
resolves correctly the debug break, offset of the jump is fixed
at +0x2B (offset of 43 bytes) as represented in the Fig. 6.

The fixed offset of the unconditional jump in the case
where there is no debugger forces us to write relevant code at
that point. Instead of using nop instructions as a junk code,we
propose to optimize the code so that this one is as optimized
as possible. Actually, we are going to write the exception
handler function right after the debug break part. It means
the jump at a fixed offset will be inside the opcodes of the
exception handler function.

Without loss of generality, we decided to build the present
code to detect if the program is under the influence ofWindbg
debugger. More directly, it means the code returns one if a
debugger is attached and zero otherwise. Since the excep-
tion handler function returns zero (under the defined value
EXCEPTION_EXECUTE_HANDLER) to continue execu-
tion [29], it makes sense to reuse the last opcodes of the
exception handler procedure to return zero when there is no
debugger attached.

3.3 Illustration with operational code

In the case where we are executed under Windbg control, the
unconditional jump is linked to a dedicated part supposing to
return one. Then, it reroutes the execution flow to the original
epilogue of the code. Note that there is no need to realign
the stack after the exception handler is set up. Indeed, the
function’s epilogue reset the stack alignment thanks to ”mov
esp, ebp” instruction. Finally, taking into account everything,
the code of debugger detection is the one presented in Fig. 2.
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Fig. 5 Correction to cancel side
effect of the misinterpretation
from Windbg

Fig. 6 View of the assembly
code executed where there is no
Windbg

Listing 2 Final version of the Windbg’s detection shellcode.

main proc

push ebp
mov ebp, esp
assume fs:nothing

; Register the SEH.
push offset__handler
push fs:[0]
mov fs:[0], esp

; In case of misinterpretation.
; [add ebp , ebx] [sub ebp , ebx] [jmp $+0E]
db 0CDh , 003d, 0EBh , 02Bh, 0EBh , 0EBh , 00Eh
; [int 3h] [jmp $+2B]
; In case of correct interpretation.

; Restore original SEH.
pop fs:[0]
add esp, 4

mov esp, ebp
pop ebp
ret

; Return one if there is a debugger.
or eax, 1
jmp $-7 ; Go upper to the epilogue of the main function.

__handler:
push ebp
mov ebp, esp
mov eax, [ebp+08h] ; Retrieve the first parameter.
mov edx, dword ptr [eax,+0B8h] ; Get access to the value of instruction pointer.
add edx, 2 ; Add two to jump correctly over "int 3h".
mov dword ptr [eax+0B8h], edx ; Store the new value of rip.
xor eax, eax ; Return zero.
mov esp, ebp
pop ebp
ret

main endp
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It results that the execution flows depends on the present or
the absence of Windbg debugger. Since assembly program-
ming can be complex to understand, we propose to illustrate
the execution flow of the program with a the Fig. 7. This one
represents the different jumps the code uses to achieve the
Windbg detection goal.

The first case is where there is no debugger. In such a
case, the ”int 3h” instruction is handled by the __handler
function registered just before and displayed in blue boxes.
The role of the handler [31,32] is to retrieve, form its first
parameter (stored at [ebp+08h]) a pointer to an EXCEP-
TION_RECORD structure [33] where it will be able to
change the instruction pointer where the exception handler
must give back the hand to the main code. In the case where
there is no debugger, the execution still continue to restore
the original version of the SEH and finish the function, with
the return value (stored in eax) equals to zero.

The main right arrow symbolizes when there is Windbg
debugger. In such a case,misinterpretation forces to go a little
further on a bloc of code responsible to return one (or eax,
1) and reuses the epilogue of the main’s function by a jump
with a negative offset (jmp $-7, the small left array) to get
access tomov esp, ebp instruction. Such a way, the function
returns one when there is a debugger.

Finally, if there is a debugger able to handle correctly the
long form of ”int 3h” instruction, this one will execute next
instruction which is an unconditional jump with a positive
offset (jmp $+2b). Compiled withMASM compiler, this last
jump in our codes goes on the epilogue of the handler func-
tion, the same than the main function. Such a way, it does not
change the logic of instructions present in the main functions
and it returns zero.

4 Wrong jump interpretation

To work properly, debuggers need a disassembler. Gener-
ally, the compilation procedure aims to move from a code,
written for example inC, to a single compiled code. The com-
piled version of the code then depends on the style chosen
by the compiler used. The disassembling procedure, which
starts from the compiled code to retrieve a human-readable
form, is more complex. Indeed, it is necessary to take into
account various backwards compatibility issues of the assem-
bler language or the architecture of the CPU manufacturers.
There are also the different optimizations, compilers style
procedures and various freedoms taken or imposed by CPU
manufacturers. In short, it is notoriously complex to write a
truly perfect disassembler.

But there is more, since assembly language is a complex
mix of different norms. Historically, Intel was leader in the
32-bits architecture. In the old days, when a new architecture
was released by Intel, AMD had no choice but to follow it

Fig. 7 Graphical view of the Windbg’s detection procedure

in order to keep its market share. However, when a 64-bit
architecture rose on the market, Intel and AMD both pro-
posed their own norms. The fist was the IA-64 architecture,
with Itanium CPU, developed by Intel, a totally new archi-
tecture which broke with the x86 one. The second was the
AMD64 architecture developed byAMD,whichmainly con-
sist of adding 64-bit operations in existing x86 architecture.
At the end, the success of the IA-64 architecture was miti-
gated, which resulted, for the first time, that Intel followed
the architecture developed by AMD (AMD64) and under the
name Intel 64. A more neutral name for the AMD64 and
Intel 64 architecture has been finally used in the industry to
identify this architecture: x64. This architecture is very well
documented by both Intel and AMD. However, there are still
few differences between AMD and Intel to know in order to
disassemble code correctly. Therein lies the rub.

4.1 Technical description

Some of the 64-bit instructions have a strange behavior.
These behaviors are described as unpredictable in the Intel
documentation [34]. However, it does not mean that these
behaviors are really unpredictable. In fact, it just means that
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Fig. 8 Correct interpretation under AMD CPU but misinterpretation on Intel CPU due to the prefix used

Fig. 9 What will be executed on an Intel CPU with the provided opcodes

the x64 instruction set reference does not provide a precise
behavior for these instructions.

One of this undocumented behavior is the use of an
operand-size override prefix (encoded with 0x66 value at
compilation time) on a relative jump. This use of the operand-
size override prefix is not a common practice because there
is no real operational use for it. Usually, to obtain the desti-
nation of the relative jump, we use the following formula:

instruction_pointer = address_of_jump + size_of_jump

+ sign_extended_displacement

To illustrate with a real example, let’s suppose we have a
jump at address 0x100000, supposed to jump 5 bytes after.
This one is encoded on 3 bytes (0x66 for the prefix, 0xEB for
the jump and one byte to encode the offset of 5 bytes). The
final result jumps at address 0x100008, since it is the sum of
the size of the instruction, plus the offset inducted.

0x0100008 = 0x100000+ 3+ 0x05

The logic which is described above is always true on
Intel processor. Nevertheless, on AMD processor the use
of operand-size override prefix creates a totally new logic.
Indeed, when a relative jump gets an operand-size override
prefix on AMD processor, the formula is different, including
now a final operation to only keep the last 2 bytes. The fol-
lowing equation illustrates the procedure to compute the new
address where to jump. Note that 0xFFFF represents a cast
to only keeps the last two bytes of the resulting operation.

instruction_pointer = (address_of_jump + size_of_jump

+ sign_extended_displacement) & 0xFFFF

Now, with a jump which has the same conditions (base
address 0x100000 and an inducted offset of 5 bytes) as the
one we use before, it will result in a jump at address 0x0008.
Details of the computation are provided as follows.

0x0000008 = (0x100000+ 3+ 0x05) & 0xFFFF

4.2 Technical exploitation

Windbg is able to partially handle this kind of behavior. For
instance, we will use a relative jump with an operand-size

override prefix and an 8-bits displacement (sign extended to
64-bits) with the same characteristic as the precedent exam-
ple. Such a jump will be encoded ”0x66 0xEB 0x05” and
Windbg will give the following interpretation (Fig. 8).

Wecan see that the result is exact ifwe assumeweare on an
AMD processor. Moreover, when we execute it on an AMD
processor wewill jump at address 0x000000000001738. The
issue stands in the fact that Windbg interprets this jump the
same way on Intel processor. However, on Intel processor, it
is the first logic presented which is used for jump calculation.
Indeed, when we execute the ”0x66 0xEB 0x05” jump on an
Intel processor, we will jump at address 00007FF634111738
instead of address 0x000000000001738. Thus, the correct
interpretation that is expected fromWindows, when running
on Intel processor, is the following (Fig. 9).

This behavior also concerns any conditional jumps (Jcc
instructions) although and it can be easily checked by exe-
cuting them. It is not a big deal since it does not change
execution of the process, but it could lead to misunderstand
the assembly code analyzed by the debugger. Even if this
error will not impact the functioning of the debugged pro-
cesses, it could confuse the user of Windbg and negatively
affecting the analysis. This is one of the few tricks about CPU
differences we can find online on Wikipedia [35].

5 Partial instruction prefix handling

5.1 Technical detail

All AMD64 and Intel64 instructions have a structured form
which is described in the documentation of themanufacturer:
the Intel documentation [36]. An instruction is described as
represented in the Fig. 10 below. First, before the opcode
itself, we find prefixes. These ones are used as extended infor-
mation provided to an instruction. Usually, the main purpose
is to custom or repeat a specific instruction. In the area of
prefixes, we can split them in two different types.

The firsts are legacy prefixes used in x86 architecture to
compute specific actions on instructions. One type is lock
prefix which is used on certain read-modify-write instruc-
tions in order to prevent simultaneous access to the memory.
A second one is the repeat prefix that causes string han-
dling instructions to be repeated. This one is usually driven
by the content of the rcx (ecx when using 32-bits address
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Fig. 10 Illustration of the
assembly semantic by Intel

Fig. 11 Illustration of undocumented use of REX prefix in assembly
semantic

size) register to evaluate the number of times an instruc-
tion must be repeated. The same way, we can talk about
branch taken/not taken prefixes which give clues to the CPU
to lessen the impact of branch misprediction. Another one
is the operand-size override prefix, which is normally used
to switch between an instruction from 32-bits to 16-bits
operand. Finally, there is the address-size override prefix,
which can be used in 64-bit mode to use 32-bit addressing
memory.

The second type of prefixes is REX prefix. This last one
has a particular encoding. In fact, unlike the legacy prefix,
this one is encoded using values from 0x40 to 0x4F range.
Its lower nibble allows encoding several properties that have
two main purposes. The first is to allow 64-bits operand size
on some instructions which usually use 32-bits operand size.
This is a smart way to extend existing opcodes from x86 to
be usable easily for x64. The second use is to access newly
added registers in 64-bit mode (r8 to r15, xmm8 to xmm15,
ymm8 to ymm15, cr8 to cr15 and dr8 to dr15). In fact, the
REX prefix could modify the initial behavior of theModR/M
byte and SIB byte [37] to make them access new registers.
But the REX prefix, despite being part of the x64 instruction
semantic and defined in the documentation, is still perfectly
optional.

Then, it comes the remaining of the instruction encod-
ing with the opcode itself which provides the real meaning
of the operation. Finally, the last bytes are about mem-
ory or register involved in the operation and how they are
involved.

Even though the position of the REX prefix is defined, in
this figure extracted from Intel documentation [34], between
the legacy prefix and the opcode, it is not always encoded in
such a way. Indeed, the REX prefix property (64-bit instruc-
tion and access to new registers) will only be taken into
account when it is right before the opcode. However, there
could be several REX prefixes mixed with legacy prefixes,
as long as the total instruction size does not exceed the
instruction maximum size of 15 bytes [38]. One example of
undocumented use of the REX prefix can be seen in Fig. 11.

In this example, we can see that there is a legacy pre-
fix (lock) between the REX prefix and the opcode (direct
addition of a value stored in memory where its address is
referenced via rax register). This lock prefix is used for two
main purposes. Firstly, the access to the memory is protected
during the operation. Secondly, the impact of the REX prefix
is nowdisable andwe can consider the 0x48 byte as irrelevant
(sort of ”nop” prefix, in a way). However, the operand-size
override prefix is still valid and it impacts the size of the
operand. Thanks to the operand-size override prefix, the oper-
ation is using WORD instead of DWORD operand size.

5.2 Technical exploitation

Nevertheless, Windbg does not handle this kind of use of
the REX prefix correctly. Thus, for the preceding example
encoded ”0x66 0x48 0xF0 0x01 0x38”, Windbg is going to
interpret it baldy (Fig. 12).

The correct answer would be about to accept the REX
prefix inside the instruction but to ignore its property and
therefore the operand-size override prefix. Thus, the cor-
rect interpretation of the instruction would be the following
assembly code (Fig. 13).

This, behavior —which also concerns GDB [1] debugger
— allows shellcode to be potentially unreadable by Windbg
when they are analyzed. In fact, it would be very easy to
abuse the use of useless prefix in order to disturb the use of
Windbg and GDB or any vulnerable debugger. Indeed, we
can easily make Windbg guess wrong more than half of the
opcodes bytes used in a single instruction. Thus, it would
be very troublesome to analyze assembly code for human
readers while preserving the correct behavior of the code
executed by the CPU.

6 Unsupported instruction

Despite the fact that most of theAMD64 instructions arewell
documented, some instructions are not. These instructions
are not documented for two reasons. The first reason is that
they could be used internally by Intel or AMD for their own
purposes. The second reason stands in the fact that they could
create new instructions in the future. In order to keep these
instructions work on former processor, they assign them at
nop (no operation).
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Fig. 12 Misinterpretation of
code by Windbg due to REX
prefix

Fig. 13 The code provided in
Fig. 12 should be interpreted
like this one

In consequence, it could be complex to handle every sin-
gle instruction. In that respect, there is not a lot of tools
that handle all instructions. Indeed, radar2, GDB, x64gdb
as well as Windbg [1,4,6,39] do not manage all instructions.
For instance, there is a nop encoded 0F 19 /r1 that Windbg
does not handle correctly. This one, encoded with any reg-
ister selected, should be observed in a debugger as a regular
nop (Fig. 14).

In fact, Windbg is totally lost when it met this instruction
above and it describes it as something entirely different, as
we can see below (Fig. 15).

Moreover, Winbdg, like IDA, radar2, GDB and x64dbg,
only partially checks the cpuid instruction of the proces-
sor before disassembling and debugging. It means, they
do not take into account the exact features supported by
the CPU of the machine they are executed from. Thus,
when Windbg faces Intel MPX instructions [40], it would
always describe them as if they were supported on the
current CPU, even if the CPU does not support them. It
means that the debugger tries to interpret them even if such
instructions behave as NOP or invalid instruction when they
are not supported. This is a disadvantage since the debug-
ger is describing a reality that is quite different from the
one perceived by the program currently debugged on the
machine. The debugger is interpreting its own reality, not
the one of the current CPU. The Fig. 16 shows an instance
of such Intel MPX instruction not supported on our CPU
(AMD Ryzen 7 1800X).

This reality is also true for the IDA software [5], which
decompiles everything it can. It should be noted, however,
that IDA is not just only a debugger and that its role is first and
foremost to disassemble. Thus, having the ability to inter-
pret instructions that the CPU of the host machine cannot
execute is not a bad thing in itself, even if IDA could high-
light in a better way the fact that some instructions are not
supported.

A good remediation would be to take into account the
information from the current CPU to determine on which
architecture the debugged program is running. This is true for

1 http://ref.x86asm.net/coder32.html#x0F19.

debuggers who are required to execute code on the machine
on which the targeted program is running (the case of the
network debug aims to identify the remote hardware in the
same way). The case of static analysis tools such as IDA is
more complex. Indeed, they may have to evaluate binaries
that are not supported by the CPU architecture of the current
machine.

7 Conclusion

This paper aims to present bugs in Windbg debugger and
to explain how to exploit existing generic vulnerabilities in
debuggers to detect Windbg. More than the result about vul-
nerability exploitation, the method presented and used here
is sufficient to allow that some kind of bugs or misinterpre-
tations in a debugger to be exploited by a malware. The goal
formalware is to avoid detectionwhen it knows it is currently
executed in an analyzed environment. Otherwise, it is possi-
ble to complicate the analysis task by human through the help
of debugger tools by the use of misunderstand specificities
between different architectures of processors. Debuggers,
since they allow to find bugs in software or to analyze mal-
ware, should be reliable, efficient and accurate. Otherwise,
the trust between the analyst and the tool could be broken,
complicating much more the work of analysis.

Our study has been mainly focused on Windbg since it is
one of the most famous debugger and one of the most largely
used by malware analysts. All the tests reported here have
beendriven on third party debuggerswith the results provided
in the table below. The main conclusion is that there is no
debugger definitely perfect and that all could improve their
software in order to provide a much more accurate result.
Note that, we have contacted Microsoft the 13/06/2019 and
the 23/07/2019 to inform them about troubles in Windbg.
After acknowledging receipt of emails and forwarding them
to the appropriate person, we had no further news. Of course,
bugs are always present and they are still exploitable. The
disclosure time elapsed from a long time, this is why we
publish them.
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Fig. 14 Unsupported instruction
should be interpreted as a nop

Fig. 15 Unsupported instruction is not correctly interpreted by Windbg which tries to provide a meaning

Fig. 16 Instance of unsupported CPU instruction interpreted as nop

Windbg IDA Radare2 GDB x64dbg

Manage Rex No Yes Yes No Yes
Manage int 3 No Yes Yes Yes Yes
Manage AMD specific instruction Yes Yes No No Yes
Manage CPUID No No No No No
Manage undocumented instruction Partially Yes Yes Partially Yes

More than Microsoft, all the possible bugs exploitation
reported in this paper have been submitted organizations
responsible to develop debuggers. The main recommenda-
tion is to fix disassembling issues and to use cpuid instruction
check so that the debugger knows exactly on which architec-
ture it is running. Such a way, it could be able to calibrate
efficiently the methods it uses to perform the disassembly
operations. In addition, a better implementation of debug
break management for Windbg is strongly recommended so
that it is not exploitable by malware.

Finally, this study could be continued by the test of new
instructions provided by last generations of CPU on the
market in addition to other old ones, kept for backward com-
patibility purposes. Checking the differences between what
the debugger expects and the reality of process execution is
always a goodway to find tricks to detect or evade debuggers.
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