
1/13

August 19, 2019

Weaponizing Privileged File Writes with the USO Service
- Part 2/2

itm4n.github.io/usodllloader-part2

In the previous post, I showed how the USO client could be used to interact with the USO

service and thus have it load the windowscoredeviceinfo.dll  DLL on demand with the

StartScan  option. I wasn’t totally satisfied with this though. So, I reverse engineered a part

of the client and the server in order to replicate its behavior as a standalone project

that could be reused in future exploits. This is what I’ll try to show and explain in this second

part.

USO client - Static analysis

Although I also used Ghidra during my research process, I’ll stick to IDA in this

demonstration for consistency and because of its debugging capabilities.

Before opening usoclient.exe  in IDA, I downloaded the corresponding PDB file with the

following command. Theoritically, IDA will do this automatically but I found that it doesn’t

always work. The PDB file can then be loaded with File > Load File > PDB File... .

symchk  comes with Windows SDK and is generally located in C:\Program Files

(x86)\Windows Kits\10\Debuggers\x64\ .

symchk /s "srv*c:\symbols*https://msdl.microsoft.com/download/symbols" 
"c:\windows\system32\usoclient.exe"


Note: PDB stands for “Program Database”. Program database (PDB) is a proprietary file

format (developed by Microsoft) for storing debugging information about a program (or,

commonly, program modules such as a DLL or EXE). Source: Wikipedia

usoclient.exe  is now opened in IDA and the symbols are loaded, where do we go from

here? Well, here the starting point is quite obvious. We know that the StartScan  option is

a valid “trigger” so, we will naturally look for occurrences of this string in the binary and

enumerate all the Xrefs  to find out where it’s used.

https://itm4n.github.io/usodllloader-part2/
https://en.wikipedia.org/wiki/Program_database


2/13

The StartScan  string is used inside two functions: PerformOperationOnSession()  and

PerformOperationOnManager() . Let’s check the first one and generate the corresponding

pseudocode.

This seems to be a “Switch Case Statement”. The input is compared against a list of

hardcoded commands: StartScan , StartDownload , StartInstall , etc. If there is a

match, an action is taken.

For example, when the StartScan  option is used, the following code is run.

https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/21_IDA-StartScan-XrefsTo.png
https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/22_IDA-PerformOperationOnSession.png


3/13

v5 = *(_QWORD *)(*(_QWORD *)v3 + 
168i64);

v6 = _guard_dispatch_icall_fptr(v3, 
0i64);

if ( v6 >= 0 )

 return 0i64;


This code doesn’t make much sense. So, I considered it as a dead end for the moment and

decided to go up instead by looking for Xrefs  to this function.

This function is called only once so it’s pretty straightforward.

I then had a quick look at the pseudocode and I immediately spotted the following calls:

CoInitializeEx() , CoCreateInstance() , CoSetProxyBlanket() , etc. Because I

already played around with COM (Component Object Model) before, I recognized the

sequence of API calls.

Let’s take a closer look at the following call.

https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/23_PerformOperationOnSession-Xrefs.png
https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/24_IDA-USOclient-CoSetProxyBlanket.png


4/13

According to Microsoft documentation, you can call CoCreateInstance()  to create a

single uninitialized object of the class associated with a specified CLSID (Source:

CoCreateInstance function)

Here is the prototype of the function:

HRESULT 
CoCreateInstance(

 REFCLSID  rclsid,

 LPUNKNOWN 
pUnkOuter,

 DWORD     
dwClsContext,

 REFIID    riid,

 LPVOID    *ppv

);

rclsid  is the CLSID associated with the data and code that will be used to create the

object.

riid  is a reference to the identifier of the interface to be used to communicate with

the object.

If we apply this to the call in the USO client, it means that the object with the CLSID

b91d5831-b1bd-4608-8198-d72e155020f7  will be created and the interface with the IID

07f3afac-7c8a-4ce7-a5e0-3d24ee8a77e0  will be used to communicate with it.

Having read the article Exploiting Arbitrary File Writes for Local Elevation of Privilege by

James Forshaw several times, I knew what I had to do next. Thanks to his tool called

OleViewDotNet , it should be quite easy to reverse engineer the DCOM object.

If you’re already familiar with this concept, you can skip the next part. For more information:

https://docs.microsoft.com/en-us/windows/win32/com/inter-object-communication.

https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/25_IDA-USOclient-CoCreateInstance.png
https://docs.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-cocreateinstance
https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-exploiting.html
https://twitter.com/tiraniddo
https://docs.microsoft.com/en-us/windows/win32/com/inter-object-communication


5/13

A quick word about (D)COM

As I said earlier, COM stands for Component Object Model. It’s a standard defined by

Microsoft for inter process communications. Since I don’t know much about this technology

myself, I won’t go into the details.

The key point to keep in mind though is how the communication between a client and

a server is done. It is described on the following diagram. The client’s call goes through a

Proxy and then through a Channel which is part of the COM library. The marshaled call is

transmitted to the server’s process thanks to the RPC runtime and finally, the parameters are

unmarshaled by the Stub before being forwarded to the server.

The obvious consequence is that we will find only the proxy definition on client side and, we

might miss some key information from the server’s side.

Reverse engineering a COM communication (almost) by hand

Let’s start the reverse engineering of the COM object. We already know its CLSID so,

using OleViewDotNet , this step should be straigthforward, right?

https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/dcom-marshaling.png


6/13

First we can enumerate all the objects exposed by the services running on the host by

going to Registry > Local Services . Since we also know the name of the service, we can

narrow down the list with the keywork orchestrator . This yields a few objects that we

can inspect manually to find the one we are looking for: UpdateSessionOrchestrator . The

CLSID matches the one we saw earlier while reverse engineering the USO client:

b91d5831-b1bd-4608-8198-d72e155020f7 .

The next step would be to expand the corresponding node in order to enumerate all the

interfaces of the object. However, in this case it failed with the following error: Error

querying COM interface - ClassFactory cannot supply requested class .

OK, never mind, we will have to do it manually. From this point on, I went for a dynamic

analysis of the client in order to see how the RPC calls worked.

To do so, I used those three tools:

IDA (with debug symbols configured)

IDA’s x86_64 Windows debug server - C:\Program Files (x86)\IDA

6.8\dbgsrv\win64_remotex64.exe

WinDbg (with debug symbols configured)

We already know that the CoCreateInstance()  call is used to instantiate the remote COM

object. As a result the variable pInterface , as its name implies, holds a pointer to the

interface with the IID 07f3afac-7c8a-4ce7-a5e0-3d24ee8a77e0 , which will be used to

communicate with the object. My goal now is to understand what happens next. Therefore, I

put a breakpoint on the first _guard_dispatch_icall_fptr  call that comes right after.

https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/26_OleViewDotNet-Orchestrator-Failed.png


7/13

Here is what happens right before the call:

1. The RCX  register holds the location of the interface’s pointer (i.e. pInterface ).

2. The value pointed to by RCX  is loaded into RAX  - i.e. RAX  = pInterface .

3. The value that was stored in RSI  is copied to RDX - We don’t know what it is yet.

4. The value pointed to by RAX+0x28  is loaded into RAX  - i.e. ProxyVTable[5]  as we

will see.

The value of RCX  is 0x000002344FA53D68 . Let’s see what we can find at this address with

WinDbg.

0:000> dqs 0x00002344FA53D68 L1

00000234`4fa53d68  00007ff8`e48fd560 usoapi!IUpdateSessionOrchestratorProxyVtbl+0x10


We find the start address of the Proxy VTable of the UpdateSessionOrchestrator’s interface.

We can then enumerate all the pointers listed in the VTable.

https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/27_IDA-call-sequence.png
https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/28_IDA-break-1.png
https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/29_IDA-break-1-registers.png


8/13

0:000> dqs 0x00007ff8e48fd560 LB

00007ff8`e48fd560  00007ff8`e48f8040 usoapi!IUnknown_QueryInterface_Proxy

00007ff8`e48fd568  00007ff8`e48f7d90 usoapi!IUnknown_AddRef_Proxy

00007ff8`e48fd570  00007ff8`e48f7ed0 usoapi!IUnknown_Release_Proxy

00007ff8`e48fd578  00007ff8`e48f7dc0 usoapi!ObjectStublessClient3

00007ff8`e48fd580  00007ff8`e48f8090 usoapi!ObjectStublessClient4

00007ff8`e48fd588  00007ff8`e48f7e80 usoapi!ObjectStublessClient5

00007ff8`e48fd590  00007ff8`e48f7ef0 usoapi!ObjectStublessClient6

00007ff8`e48fd598  00007ff8`e48f7e60 usoapi!ObjectStublessClient7

00007ff8`e48fd5a0  00007ff8`e49068b0 usoapi!IID_IMoUsoUpdate

00007ff8`e48fd5a8  00007ff8`e48fefb0 usoapi!CAutomaticUpdates::`vftable'+0x3b0

00007ff8`e48fd5b0  00000000`00000019


The first three functions are QueryInterface , AddRef  and Release . These are the

functions that a COM interface inherits from IUnknown . Then, there are 5 other functions

but we don’t know their names.

In order to find more information about the VTable, we have to inspect the server. We know

the name of the COM object - UpdateSessionOrchestrator  - and we know the name of

the service - USOsvc . So, theoritically, we should find all the information we need in

usosvc.dll .

.rdata:00000001800582F8 dq offset UpdateSessionOrchestrator::QueryInterface(void)


.rdata:0000000180058300 dq offset UpdateSessionOrchestrator::AddRef(void)


.rdata:0000000180058308 dq offset UpdateSessionOrchestrator::Release(void)


.rdata:0000000180058310 dq offset 
UpdateSessionOrchestrator::CreateUpdateSession(tagUpdateSessionType,_GUID const 
&,void * *)

.rdata:0000000180058318 dq offset 
UpdateSessionOrchestrator::GetCurrentActiveUpdateSessions(IUsoSessionCollection * *)

.rdata:0000000180058320 dq offset UpdateSessionOrchestrator::LogTaskRunning(ushort 
const *)

.rdata:0000000180058328 dq offset 
UpdateSessionOrchestrator::CreateUxUpdateManager(IUxUpdateManager * *)

.rdata:0000000180058330 dq offset 
UpdateSessionOrchestrator::CreateUniversalOrchestrator(IUniversalOrchestrator * *)


Nice! Here is the complete VTable. We can see that the function at offset 5 is

UpdateSessionOrchestrator::LogTaskRunning(ushort const *) .

Finally, the value of RDX is 0x000002344FA39450 . Let’s check what we can find at this

address as well, with IDA this time:

It’s just a pointer to the null terminated unicode string L"StartScan" .

All this information can be summarized as follows.

https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/31_IDA-break-1-startscan-str.png


9/13

RAX = VTable[5] = `UpdateSessionOrchestrator::LogTaskRunning(ushort const *)`

RCX = argv[0]   = `UpdateSessionOrchestrator pInterface`

RDX = argv[1]   = L"StartScan"


If we consider the x86_64 calling convention of Windows, this can be represented by the

following pseudocode.

pInterface-
>LogTaskRunning(L"StartScan");


The same process can be applied to the next call.

This would yield the following:

RAX = VTable[0] = `UpdateSessionOrchestrator::QueryInterface()`

RCX = argv[0]   = `UpdateSessionOrchestrator pInterface`

RDX = argv[1]   = `*GUID(c57692f8-8f5f-47cb-9381-34329b40285a)`

R8  = argv[2]   = Output pointer location 


Here, the returned value is NULL  so, all the code after the if  statement would be ignored.

https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/32_IDA-break-2.png


10/13

Therefore, we can skip it and jump right here:

Nice! Were are getting closer to the target PerformOperationOnSession()  call.

With the same reverse engineering process, we find the following.

RAX = VTable[3] = 
`UpdateSessionOrchestrator::CreateUpdateSession(tagUpdateSessionType,_GUID const 
&,void * *)`

RCX = argv[0]   = `UpdateSessionOrchestrator pInterface`

RDX = argv[1]   = 1

R8  = argv[2]   = `*GUID(fccc288d-b47e-41fa-970c-935ec952f4a4)`

R9  = argv[3]   = `void **param_3 (usoapi!IUsoSessionCommonProxyVtbl+0x10)` --> 
IUsoSessionCommon pProxy 


Here, we can see that another interface is involded: IUsoSessionCommon . It’s identified by

the IID fccc288d-b47e-41fa-970c-935ec952f4a4  and its VTable has 68 entries so I

won’t list all the functions here.

Next there is a CoSetProxyBlanket()  call. This is a standard WinApi function that is used

to set the authentication information that will be used to make calls on the specified proxy

(Source: CoSetProxyBlanket function).

https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/32_IDA-break-2.png
https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/34_IDA-break-3.png
https://docs.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-cosetproxyblanket
https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/35_IDA-CoSetProxyBlanket.png


11/13

If we translate all the hexadecimal values back to Win32 constants, this yields the following

API call.

IUsoSessionCommonPtr usoSessionCommon;

CoSetProxyBlanket(usoSessionCommon, RPC_C_AUTHN_DEFAULT, RPC_C_AUTHZ_DEFAULT, 
COLE_DEFAULT_PRINCIPAL, RPC_C_AUTHN_LEVEL_DEFAULT, RPC_C_IMP_LEVEL_IMPERSONATE, 
nullptr, NULL);


Now, we can enter the PerformOperationOnSession()  function and, we are back to the

piece of code that didn’t make sense before. However, thanks to the reverse engineering

process we just went through, this is now getting clearer. This is a simple call on the

IUsoSessionCommon  proxy. We just need to determine which function is called and with

which parameters.

With this final breakpoint, the function’s offset and the parameters can be easily determined.

RAX = VTable[21] = combase_NdrProxyForwardingFunction21

RCX = argv[0]    = IUsoSessionCommon pProxy

RDX = argv[1]    = 0

R8  = argv[2]    = 0

R9  = argv[3]    = L"ScanTriggerUsoClient"


This would be equivalent to the following pseudocode.

pProxy->Proc21(0, 0, 
L"ScanTriggerUsoClient");


If all the pieces are put together, the “StartScan” action in the USO client can be summarized

with the following simplified code.

https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/36_IDA-break-4.png
https://itm4n.github.io/assets/posts/2019-08-19-usodllloader-part2/37_IDA-break-4-instructions.png


12/13

HRESULT hResult;

// Initialize the COM library

hResult = CoInitializeEx(0, COINIT_MULTITHREADED);

// Create the remote UpdateSessionOrchestrator object

GUID CLSID_UpdateSessionOrchestrator = { 0xb91d5831, 0xb1bd, 0x4608, { 0x81, 
0x98, 0xd7, 0x2e, 0x15, 0x50, 0x20, 0xf7 } };
IUpdateSessionOrchestratorPtr updateSessionOrchestrator;

hResult = CoCreateInstance(CLSID_UpdateSessionOrchestrator, nullptr, 
CLSCTX_LOCAL_SERVER, IID_PPV_ARGS(&updateSessionOrchestrator));

// Invoke LogTaskRunning() 

updateSessionOrchestrator->LogTaskRunning(L"StartScan");

// Create an update session 

IUsoSessionCommonPtr usoSessionCommon;

GUID IID_IUsoSessionCommon = { 0xfccc288d, 0xb47e, 0x41fa, { 0x97, 0x0c, 0x93, 
0x5e, 0xc9, 0x52, 0xf4, 0xa4 } };

updateSessionOrchestrator->CreateUpdateSession(1, &IID_IUsoSessionCommon, 
&usoSessionCommon);

// Set the authentication information 

CoSetProxyBlanket(usoSessionCommon, RPC_C_AUTHN_DEFAULT, RPC_C_AUTHZ_DEFAULT, 
COLE_DEFAULT_PRINCIPAL, RPC_C_AUTHN_LEVEL_DEFAULT, RPC_C_IMP_LEVEL_IMPERSONATE, 
nullptr, NULL);

// Trigger the "StartScan" action

usoSessionCommon->Proc21(0, 0, L"ScanTriggerUsoClient")

// Close the COM library  

CoUninitialize();


Conclusion



13/13

Knowing how the USO client works and how it can trigger privileged actions, it is now

possible to replicate this behavior as a standalone application: UsoDllLoader. Of course, the

transition from this reverse engineering process to the actual C++ code requires a bit more

work but it’s not the most interesting part so I skipped it. The only thing that I should

mention though is that the DiagHub PoC did help a lot.

Regarding the reverse engineering part, I have to say that it wasn’t too difficult because the

COM client already exists and is provided with Windows by default. OleViewDotNet did help

a lot in the end as well. It was able to generate the code for the second interface

(UsoSessionCommon) - you know, the one with 68 functions!

Well, that wraps it up for this post. I hope you enjoyed it.

Links & Resources

Microsoft Documentation - CoCreateInstance



https://docs.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-

cocreateinstance

Microsoft Documentation - Inter-Object Communications



https://docs.microsoft.com/en-us/windows/win32/com/inter-object-communication

Microosft Documentation - x64 calling convention



https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=vs-2019

Windows Exploitation Tricks: Exploiting Arbitrary File Writes for Local Elevation of

Privilege



https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-

exploiting.html







https://github.com/itm4n/UsoDllLoader
https://docs.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-cocreateinstance
https://docs.microsoft.com/en-us/windows/win32/com/inter-object-communication
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=vs-2019
https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-exploiting.html

