Weaponizing Privileged File Writes with the USO Service
- Part 1/2

o itm4n.github.io/usodllloader-part1

August 17, 2019

Posted Aug 16, 2019
By itm4n
11 min read

The DiagHub DLL loading technique found by James Forshaw (a.k.a. @tiraniddo) has
become very famous. Whenever you found an arbitrary file write as SYSTEM in
Windows or in some third-party software, you could use this trick to get code execution

on demand, and without rebooting. Unfortunately (or fortunately depending on your
point of view), this method was mitigated by Microsoft in Windows 10 build 1903.
Andrea Pierini (aka @decoder_it) mentionned this briefly on Twitter. Here, I want to share
an alternative method I found while looking for DLL hijacking weaknesses on the most
recent version of Windows.

Foreword

I want to begin this article by clarifying a few things.

e Itis NOT a vulneratibilty. As we will see, in order to be able to use this trick, a
specifcally crafted DLL must be planted into the C:\windows\System32\ folder first,
which only “privileged accounts” can do of course.

e My objective here is to share some of the Research & Development work I do
on my spare time, and thus show that you don’t need to be a super-elite all-star
researcher to find cool stuff.

e If you are already experienced with Reverse Engineering on Windows, there is a high
chance you won’t learn much from this. Otherwise, I hope you’ll get a few things out of
it.

That being said, let’s dive right into the main subject.

Starting point

As a starting point, I decided to look for low hanging fruits, such as DLL hijacking in
services running as NT AUTHORITY\System . The idea is to monitor services that can be
started or at least “influenced” by a regular user. To do so, I made a very simple PowerShell
script that checks whether a service has been started or stopped every second.

117

https://itm4n.github.io/usodllloader-part1/
https://twitter.com/itm4n
https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-exploiting.html
https://twitter.com/tiraniddo
https://twitter.com/decoder_it
https://twitter.com/decoder_it/status/1131247394031579138

GameDVR (ce_5dob2)

GameDVR

[av]

In the background, I always run Process Monitor to log filesystem operations. I simply
configure the filter to only show operations involving *.d11 files and returninga NAME
NOT FOUND error code. Then, I tried to start every service I could without admin privileges
one at a time. Unfortunately, I didn’t find anything with this method. What I did find
though is the following.

Time of Day Process Name PID Operation Path Result User
8:28:44.2314980 PM W svchostexe 1832 [FhCreateFile AWindows\System32ZWINDOWSCOREDEYICEINFO.DLL - NAME NOT FOUND NT AUTHORITYA\SYSTEM
8.28:48 3877799 PM W-sychostexe 1832 hCreatefile Windows\System3ZWVINDOWSCOREDEVICEINFO.DLL NAME NOT FQUND NT AUTHORITY\WSYSTEM
9:06:03J1374864 PM ‘N-svchostexe 2392 BaCreateFlIe Windows'\System 32 windowscoredeviceinfo dl NAME NOT FOUND NT AUTHORITY\SYSTEM
9:06:03J1886511 PM 'N-svchostexe 2352 BaCreateFlle C:AWindows\System 32'windowscoredeviceinfo dil NAME NOT FOUND NT AUTHORITY\SYSTEM
10:06:03147476 PM 'Nrgychostexe 2352 Bs.CreateFlIe CAWindows'\System 32\ windowscoredeviceinfo dil MAME NOT FOUND NT AUTHORITY.SYSTEM
10:06:03177442 PM W svchostexe 2392 BhCreateFile C:Windows\System 32 windowscoredeviceinfo dil NAME NOT FOUND NT AUTHORITY\SYSTEM

While Process Monitor was running in the background, it captured some attempts to
open the file windowscoredeviceinfo.dll on aregular basis. The frequency varied, it
could happen every hour or every 30 minutes for example. The properties of the event
showed the Command Line of the process: C:\WINDOWS\System32\svchost.exe -k
utcsvc -p .

217

https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/01_monitoring-services.png
https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/02_procmon-windowscoredeviceinfo-loaded.png

7 Event Properties

Event Process Stack

Image
|1"| Host Process for Windows Services

Microsoft Corparation

Mame: svchost.exe
Version: 10.0,18362. 290 (WinBuild, 160101.0800)
Path:

| C:WINDOWSSystem32\svchost. exe

Command Line:
| CAWINDOWS\System32sv chost.exe & utcsve p

PID: 2392 Architecture: 64-bit

ParentPID: ©584 Virtualized: False

SessionID: 0 Integrity: System
fUser: NT AUTHORITY\SYSTEM |

Knowing this, the corresponding service can easily be found with the following PowerShell
command for example. In this case, it is DiagTrack.

Note: I could also have used the PID of the process and looked for it in the task manager for
example. The downside of this method is that the process could terminate before you have
the time to check.

StartMame : Loca

Our first target: DiagTrack

The Event Properties in Process Monitor revealed a bit more about how the DLL was
loaded. The stack tab shows the list of calls that lead to this operation. Here, we can see
that the initial call was made from diagtrack.dll . That’s where the DiagTrack service is
implemented so this makes sense. The FlightSettings.dll file was loaded which, in
turn, used the GetCensusRegistryLocation() method from dcntel.dll , and finally,

windowscoredeviceinfo.dll was loaded using the standard LoadLibraryEx() WinApi
call.

3/17

https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/03_procmon-properties.png
https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/04_powershell-wmi-service-details.png

7 Event Properties
Event Process Stack
Frame Module Location Address Path
KERMELBASEdI LoadLlibranyExW + =170 (o Afa 79ae56d0 CAWINDOW S System 32\KERMELBASE dll
U 20 denteldl GetCensusReqistryLocation + kZe1bl Oa'Afabh76b26al C::Windows'System 32%dentel dll
U 21 denteldl GetCensusReqgistrylLocation + (elc8c1 v Afaby6aldbl C:Windows'System 32 dentel dll
U 22 denteldl GetCensusReqgistrylLocation + nlcelb (ffabvbalZb C:Windows'System 32 dentel dll
U 23 denteldl GetCensusRegistryLocation + (kd51b [Afa5768820b C:\Windows System 32°dentel dll
U 24 denteldl GetCensusPropertyAlloc + eS7 (o ATab 768427 C:\WindowshSystem 32°dentel dll
U 25 FightSettings.dl ServiceMain + (1763 [Afab825435c CAWINDOW S System 324 Flight Settings dll
U 26 FightSettings.dl ServiceMain + Bx1ecd0 [A 268253560 CAWINDOW S System 324 Flight Settings dll
U 27 FightSettings.dl ServiceMain + Ox1fbcd [268254824 CAWINDOW 5 System 324 Flight Settings dll
U 283 FightSettings.dl ServiceMain + 0x22c9%¢ [A a68257%c CAWINDOW S System 324 Flight Settings il
U 29 FightSettings.dl ServiceMain + 0x1f8ad [A ab82545cd CAWINDOW S System 324 Flight Settings dll
L) 30 FightSettings.dl ServiceMain = Ox1fb48 [Afabd254868 CAWINDOW S System 324 Flight Settings dll
L) 31 FightSettings.dl ServiceMain + lx22c9% [Afabd257%c CAWINDOW S System 324 Flight Settings dll
U 32 FightSettingsdl ServiceMain + O 1f8ad [Afab32545cd CAWINDOW S System 32%Flight Settings dll
U 33 FAightSettings.dl ServiceMain + G 1291f [A 2632536 CAWINDOW S System 324 Flight Settings dll
U 34 FightSettings.dl ServiceMain + Ge1a7d1 (o A abB24 401 CAWINDOW S System 324 Flight Settings dll
U 35 FightSettings.dl ServiceMain + 018222 [AfabB24db42 CAWINDOW 5 System 324 Flight Settings dll
U 36 FightSettings.dl ServiceMain + 0x18a% [A ab824d Tba W INDOW S System 324 Flight Settings dll
IU 37 diagtrack dil |kt SysprepGeneralize + (k86304 [A abc7adood c:\windowsksystemﬂf?\diagtrack.du
U 38 diagtrack.dil Lo SvsprepGeneralize + (wabb#1 [Afabc fcddel o windowssystem 32 diagtrack dll
U 39 diagtrack.dll Lo SysprepGeneralize + (wad423 [Afabc 7o ided o windows system 32 diagtrack dll
U 40 diagtrack dl Lt SysprepGeneralize + (kadfea M Afabcic2aa cwindows system 32 diagtrack dll
U 41 diagtrack dil LtcSysprepGeneralize + (67367 (oAb 785d27 cwindows system 32 diagtrack dll
Il 47 Aiadtrack Al | b SuerrenGeneralize + (wReG7a M Hahr 7741 rhwindrwe evetem TP diamtrack Al

To be sure I was on the right track, I opened the last DLL in IDA and looked for occurences

of windowscoredeviceinfo.dll .The Strings subview is really great for this kind of

use case.

Note: you have to configure the view to include unicode strings because it’s not the default

setting in IDA...

‘; IDA - C\Users\Lab-User\Documents\workspace-ida\dentel.dll

File Edit Jump Search

S IR i

View Debugger

i & 4) B @

Options Windows Help

J ¢

mﬂﬁ"ﬂ' ,ﬁ'._j"vgﬂ'gx P @ [no debugger

~| %k &
oy

Library function Data [Regular function Unexplored Bl Instruction External symbaol
Functions window 0O &/ x DA View-A x| Strings window B [Hex View-1
Function name Segment Start || Address Length Type String
_tlgEnableCallback text 00000001800 .rdata:0000000180067350 : 00000034 unicode windowscoredeviceinfo.dllI
TraceLoggingRegister_EventRegist... .text 0000000180(
_tlgWriteTemplate<long (_tlgProvi... .text 00000001300
[F1 tleWriteTransfer FuentWriteTransfer et NN AN

Then, we can go straight to its location in the .rdata section and look for xrefs . In this

case, there is only one. This string is indeed used in the QuerywcosbeviceInformation()
method. Well, the name looks promising at least!

4/17

https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/05_procmon-stack-diagrack.png
https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/06_ida-dcntel-strings-windowscoredeviceinfo.png

IDA View-A 3¢ E Strings window B @ Hex View-1 x| Structures B [53

=]

-rdata:-0000606180067338
.rdata: 0000080180067 34F align 16h
.ridata:AA0BRAMIBABG7350 ; const WCHAR aWindowscoredew

.rdata: 000000180067 350 unicode B8, <windowscoredeviceinfo.dl1Z>,8
Fdata-OG00GAAGYSAGAT SN alion 8

-rdat xrefs to aWindowscoredey Od *
.rdat
.rdat| Direction Type Address Text

.I‘ga: Up ‘o Utils:QuenyWCOSDevicelnformation(_DEVICE |... lea rex, aWindowscoredey; "windowscoredeviceinfo.dll”
-Fda
.rdat
.rdat
.rdat

-rdat Cancel Search Help

.rdat| .
T rdat Line 1 of 1 ,

-kdata: ARARARRTR ARGT L2 alinn R

The pseudocode generated by IDA is pretty clear. We spot the
LoadLibraryEx("windowscoredeviceinfo.d11") call we saw earlier with Process
Monitor . Then, if the library is successfully loaded, the following call is made:

GetProcAddress("QueryDeviceInformation") , which means that this function should
be exported by windowscoredeviceinfo.dll .

; DATA XREF: Utils::QueryWCOSDevic

.rdata:00000001800673%0 alWindowscoredev: ; DATA XREF: Utils::QueryWCOSDevic

ef

eF

ke

ke

IDA View-A x| Pseudocode-A B [s] strings window x| =] Hex View-1 B8
1%1"1:6’4 _ fastcall Utils::QueryWCOSDeviceInformation{unsigned int a1, void *aE]l
2 —
3| wvoid =u2; ff rsi@ o
4 unsigned int v3; /7 ebx@E1
%! HHMODULE wh; /7 rdiE1
6| int vw5; fF ebx@E2
7| signed _ intéh vé; f/ rBET
8 __int16 Dst[1824]; // [sp+56h] [bp-828h]@1
9

18] w2 = a?;

11 [;= al;

12| vk = LoadLibraryExW{L"windowscoredeviceinfo.dll", 8i64, ﬂxsﬂﬂu};le
13 s H, 1

18 if { uh)

15 4

16 IiF { GetProcAddress{vi, "QueryDevicelnformation®) }Ie
17 4

18 uv5 = quard dispatch_icall fptr{v3, Dst, 1824i64, Bidh);
19 if ('S)

28 {

o4

AL F N~+TR1T 1

Let’s sum up the situation. At this point, we know the following:

e An unkown task is run by the DiagTrack service on a regular basis (every 30 minutes

or every hour).

e Each time, it tries to load a DLL called windowscoredeviceinfo.dll , which doesn’t

exist by default.
If it is successfully loaded, the QueryDeviceInformation function isimported.

That’s a good start but I'm missing some key elements. For example, I have no clue how this
“task” is run. I don’t even know whether I would be able to trigger it as a regular user. So,

rather than starting to reverse enginneer the service without really knowing what I was

5/17

https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/07_ida-xrefsto-windowscoredeviceinfo.png
https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/08_ida-pseudocode-QueryWCOSDeviceInformation.png

looking for, I decided to create a PoC DLL and verify if I could really get arbitrary code
execution as NT AUTHORITY\System .

Crafting a PoC DLL

My objective for this PoC DLL was very simple. I wanted to log some key information
about the process that loaded it: the command line, the current username, the PID,
and the PPID. All of this would be logged to C:\temp\dll.log .

For a start, I came up with the following code. The TrackCall() function is responsible
for gathering and logging the info. It is called from D11Main() and
QueryDeviceInformation() to keep track of which function is called.

#include <Windows.h>

#include <iostream>

#include <Lmcons.h> // UNLEN + GetUserName
#include <tlhelp32.h> // CreateToolhelp32Snapshot()

int TrackCall(const wchar_t * callingFrom)
{
WCHAR strSt[4096], strUsername[UNLEN + 1];
WCHAR * strComandLine;
SYSTEMTIME st;
HANDLE hFile, hToolhelpSnapshot;
PROCESSENTRY32 stProcessEntry,
DWORD dwPcbBuffer = UNLEN, dwBytesWritten, dwProcessId, dwParentProcessId;
BOOL bResult;

strComandLine = GetCommandLine(); // Get Command line of the current process
bResult = GetUserName(strUsername, &dwPchBuffer); // Get current user name
dwProcessId = GetCurrentProcessId(); // Get PID

// Get PPID

hToolhelpSnapshot = CreateToolhelp32Snapshot (TH32CS_SNAPPROCESS, 0);

stProcessEntry = { 0 };

stProcessEntry.dwSize = sizeof (PROCESSENTRY32);

dwParentProcessId = 0;

if (Process32First(hToolhelpSnapshot, &stProcessEntry)) {

do {
if (stProcessEntry.th32ProcessID == dwProcessId) {

dwParentProcessId = stProcessentry.th32ParentProcessID;
break;

} while (Process32Next(hToolhelpSnapshot, &stProcessEntry));

}
CloseHandle(hToolhelpSnapshot);

// Create log entry

GetLocalTime(&st);

wsprintfW(strSt, L"[%.2u:%.2u:%.2u] - PID=%d - PPID=%d - USER='%s' -
CMD="'%s' - METHOD='%s'\n", st.wHour, st.wMinute, st.wSecond, dwProcessId,
dwParentProcessId, strUsername, strComandLine, callingFrom);

6/17

// Save to log file
hFile = CreateFile(L"C:\\Temp\\dll.log", FILE_APPEND_DATA, 0O, NULL,
OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
if (hFile != INVALID_HANDLE_VALUE)
bResult = WriteFile(hFile, strSt, lstrlenW(strSt)*sizeof(WCHAR),
&dwBytesWritten, NULL);

CloseHandle(hFile);

return S_OK;

}
HRESULT __stdcall QueryDeviceInformation()
{
TrackCall(L"QueryDeviceInformation()");
return S_OK;
}
BOOL APIENTRY DllMain(HMODULE hModule, DWORD ul_reason_for_call, LPVOID
1pReserved)
{
switch (ul_reason_for_call)
{
case DLL_PROCESS_ATTACH:
TrackCall(L"D11Main()");
break;
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL_PROCESS_DETACH:
break;
}
return TRUE;
}

717

8/17

Then, as an administrator, I copied this DLLto C:\Windows\System32\ and, I
waited...

9/17

| = | System32
Home 5hare
« v

3+ Quick access
& Onelrive

£ This PC
. 30 Objects
I Desktop
Docurmnents
& Downloads
J) Music
= Pictures

E Videos

‘o Local Disk (C:)

|:_} Metwork

Wiew

o

» ThisPC » Local Disk (C:) » Windows » System32

Mame Date modified Type
D WindowsCodecsRaw 6/2/2019 11:38 AM Text Document
I windowscoredeviceinfo.dll i Einn exten...
o ith Sublime Text
WindowsDefaultHeatProces pv..en IR SUBime 1 fion exten..
windowsdefenderapplicatior -Zip 2 tion exten...
WindowsInternal.Composab LB b tion exten..
WindowslInternal.Composab Ea SETELL s R fion exten...
windowslivelogin.dll 12 Share bion exten..
WindowsManagementServic Open with.... tion exten...
windewsperformancerecord Restore previous versions fion exten..
WindowsSecuritylcon tend to > B
windewsudk.shellcommen, fion exten..
[5 WindowsUpdateElevatedinst Cut fion
winethe.dll Copy bion exten..
WinFax.dll Create shortcut bion exten...
winhttp.dll) Delete bion exten...
winhttpcom.dll) Rename fion exten...
[s m

After a moment, the first hits finally showed up in Process Monitor . All the
CreateFile operations returned successfully. However, there was no sign of a log file
being created in C:\temp\ . Of course, this means that the DLL wasn’t properly loaded, the
question is: why? My assumptation was that the DLL I created didn’t export all the
functions that were required by the process.

v O

Size
2KB
0 KB
125 KB
TR KB
812 KB
1591 KB
252 KB
63 KB
1,167 KB
1KB
429 KB
41 KB
92 KB
I KB
1,002 KB
100 KB

anr wn

| 2F Process Monitor - Sysinternals: www.sysin

ternals.com

| File Edit Event Filter Tools Options Help

FEHIABE A@ B AL ABLaM

Time of Day Process Name PID Operation Path Command Line User
4:34:43 8424125 PM 'N- svchost.exe 6776 @CreateFi\e C:\Windows\System 32\windowscoredeviceinfo.dl C\Windows"System32'evchost exe k utcsve p NT AUTHORITM™SYSTEM
4:34:43 8424352 PM 'B- svchost.exe 6776 gaQueryBasicln...C:\Windows System 32\wind deviceinfo.dll C:\Windows\System32'svchost.exe & utcsve ¢ NT AUTHORITYASYSTEM
4:34:43.8424998 PM 'N- svchost.exe E776 gCloseFile C:\Windows"\System 32\windowscoredeviceinfo.dll - C\Windows'\System32\avchost exe & utesve p NT AUTHORITY.SYSTEM
4:34:43 8426233 PM 'N- svchost.exe 6776 @CreateFi\e C:\Windows'\System32\windowscoredeviceinfo.dl C:\Windows'\System32\svchost exe & utcsve NT AUTHORITYWSYSTEM
£:34:47 BAIRED PM B-surhact sva BT8R B CrastaFilaMs CAlind Custam 2 Huind Aavirsingn dll 4 RlnA Custam AMeurhnot ava b idmoun o NT LHITHARITYSYSTERM
434:438 | | = | Temp B
4:34:43.8
4:34:43. 5 Home Share View
434438
434438 € v » ThisPC » Local Disk () » Temp v O Search Temp
4:34:43.8 ~
4:34:43.8 Mame Date modified Type Size
434438 7 Quick access
4:34:43.8 Working on it...
434438 @ OneDrive
4:34:43.8
434438 [This PC
4:34:43.8 o
434:438 - 3D Objects
434438
sa4sg B Desitop
A4 R [Z Nerimants

Result
SUCCESS C
SUCCESS C
SUCCESS
SUCCESS C
FTETrrRE. 5

O X |

o |
P |

At this point, I wasn’t sure how to proceed but, when I got back to Process Monitor ,I
saw some events that I hadn’t seen before.

10/17

https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/09_copy-dll-system32.png
https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/10_procmon-DiagTrack-accessing-windowscoredeviceinfo.png

The file windowscoredeviceinfo.d1ll was also loaded by a process called
usocoreworker.exe as NT AUTHORITY\System . This time, some information was logged

to C:\Temp\dll.log , which means that the code was properly executed.

j dll.log - Notepad

File Edit Format View Help

[16:53:56] - PID=892 - PPID=820 -
[16:53:56] - PID=892 - PPID=828 -
[16:53:56] - PID=892 - PPID=828 -
[16:53:56] - PID=892 - PPID=820 -
[16:53:56] - PID=892 - PPID=820 -
[16:53:56] - PID=892 - PPID=820 -
[16:53:56] - PID=892 - PPID=820 -
[16:53:56] - PID=892 - PPID=828 -
[16:53:56] - PID=892 - PPID=828 -
[16:53:56] - PID=892 - PPID=820 -
[16:53:57] - PID=892 - PPID=820 -
[16:53:57] - PID=892 - PPID=820 -
[16:53:58] - PID=892 - PPID=820 -
[16:53:58] - PID=892 - PPID=828 -
fA.-52-507 _ DTN-QQ7 - DDTN-274 -

USER="SYSTEM' -
USER="SYSTEM' -
USER="SYSTEM' -
USER="SYSTEM' -
USER="SYSTEM' -
USER="SYSTEM' -
USER="SYSTEM' -
USER="SYSTEM' -
USER="SYSTEM' -
USER="SYSTEM' -
USER="SYSTEM' -
USER="SYSTEM' -
USER="SYSTEM' -
USER="SYSTEM' -

HEER_"CVCTEM' _

ﬂ’:'::i-_f-_'- Vonitor - Sysinternals ysinternals.com

File Edit Ewent Filter Tools Options Help
EHABE CASG B AN &AM

Time of Day Process Name PID Operation Path User Result

4:53:56 6293542 PM I'l_-usocoreworker.exe 852 BhCreateFile C\Windows "\ System 32'windowscoredeviceinfo dll NT AUTHORITY\WSYSTEM SUCCESS I
4:53:56 6299577 PM ‘N- usocoreworker exe GueryBasicln... C:\Windows'\5ystem 3 windowscoredeviceinto dll NT AUTHORI

4:53:56.6299949 PM 'B-usocoreworkerexe 892 &Closeﬁle C:\Windows\System 32windowscoredeviceinfo dll NT AUTHORITY\WSYSTEM SUCCESS
4:53:56.6301164 PM 'B-usocoreworkerexe 892 &Createﬁle C:\Windows\System 32windowscoredeviceinfo dll NT AUTHORITY\WSYSTEM SUCCESS
4:53:56.6301630 PM 'B-usocoreworkerexe 892 BaCreate FileMa... C:\Windows\System 32 windowscoredeviceinfo dil NT AUTHORITY\SYSTEM FILE LOCKE...
4:53:56.6301790 PM 'B-usocoreworkerexe 892 Ba@uer:.'Standar...C:\Windows\S‘,'stem32’\windowscoredeviceinfo.dII NT AUTHORITY\SYSTEM SUCCESS
4:53:56.6302084 PM 'B-usocoreworkerexe 892 Baﬂeadﬁle C:Windows'\System 32'windowscoredeviceinfo dll NT AUTHORITY\SYSTEM SUCCESS
4:53:56.6309347 PM 'B-usocoreworkerexe 892 Baﬂreateﬁlel\"la... C:Windows'\System 32'windowscoredeviceinfo dll NT AUTHORITY\SYSTEM SUCCESS
4:53:56.6315023 PM 'B-usocoreworkerexe 892 gaf:reateﬁle C:\Windows'\System 32\windowscoredeviceinfo dll NT AUTHORITY\SYSTEM SUCCESS
4:53:56 GA1RARN PM H: reree ava AR B rreataFils A Wlindnwe’ Suetam 1 windrweraradsviceinta Al MT ALTHORITYLWSYSTEM SUFTESS
4:53:56.6; | @ = | Temp

4:53:56.6,

4:53:515.65 Home Share Wiew

4:53:56.6

453566 < S » ThisPC » Local Disk(C:) » Temp v @
4:53:56.61 ~

4:53:56.61 MNarme Date modified Type Size

4:53:56 61 3+ Quick access -

45356 6l |5l diLiog 7/21/2019 4:54 PM Text Document 38 ke |
4.53:56.61 @ OneDrive

4:53:56.61

4:53:56 61 I This PC

4:53:56.61 o

A-R7-RC 1 M AN Nhierts

CMD="C:\Windows\System32\usocoreworker.exe -Embedding’' - METHOD='Dl11Main()’
CMD="C:\Windows\System32\usocoreworker.exe -Embedding’ -
CMD="C: \Windows\System32\usocoreworker.exe -Embedding' - METHOD='D11Main()"'
CMD="C:\Windows\System32\usocoreworker.exe -Embedding’ -
CMD="C: \Windows\System32\usocoreworker._exe -Embedding’' - METHOD='Dl1lMain()"'
CMD="C:\Windows\System32\usocoreworker.exe -Embedding’ -
CMD="C:\Windows\System32\usocoreworker.exe -Embedding’' - METHOD='Dl11Main()’
CMD="C:\Windows\System32\usocoreworker.exe -Embedding’ -
CMD="C: \Windows\System32\usocoreworker.exe -Embedding' - METHOD='D11Main()"'
CMD="C:\Windows\System32\usocoreworker.exe -Embedding’ -
CMD="C: \Windows\System32\usocoreworker._exe -Embedding’' - METHOD='Dl1lMain()"'
CMD="C:\Windows\System32\usocoreworker.exe -Embedding’ -
CMD="C:\Windows\System32\usocoreworker.exe -Embedding’' - METHOD='DllMain()’
CMD="C:\Windows\System32\usocoreworker.exe -Embedding’ -
M= " - AL ndanc A Quctam2Mncararaunrbar avae —Fmhaddina' - METHAN-"MTTMa3n /"

De

De
Sy
All

Sy
De
M=

METHOD="QueryDeviceInformation()"'
METHOD="QueryDeviceInformation()'
METHOD="'QueryDeviceInformation()"'
METHOD="QueryDeviceInformation()"'
METHOD="QueryDeviceInformation()'
METHOD="'QueryDeviceInformation()"'

METHOD="'QueryDeviceInformation()"'

This looked much more promising so I decided to leave the DiagTrack service aside and take

a look at this new target.

Moving on to the next target...

We are back to square one. We need to find out how the usocoreworker.exe process was

created. To do so, we can look for the process corresponding to the PPID that was written to
the log file. According to the task manager, it’s an instance of svchost.exe , just like most
of Windows services, so it’s not very helpful.

11/17

https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/11_procmon-usocoreworker-loading-windowscoredeviceinfo.png
https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/12_dll-log-file-content.png

1% Task Manager — O *
File Options View

Processes Performance App history Startup Users Details Services

Mame PID Status User name CPU Memory (3. UACvirtualizat...
(85l msdte.exe 692 Running 0o 0K

[l lsass.exe 704 Running 00 G20 K

[Esvchostexe 830 Running 00 1,502 K

[z svchost.exe 244 Running 0o BO6 K

[l fontdrvhost.exe 242 Running 0o 0K

M=l fontdrrhnst.eve A5h Runninen nn MK

~

The corresponding service is BrokerInfrastructure , which “handles background tasks”
as its description states. Well, that’s not really helpful either...

CF htheane

Let’s see what we can learn from Process Monitor . Accessing the properties of an event
related to this process and, going to the Stack tab will show the following. We can see that

QRA

Bliiatmnth Cimnart Canvira

Broimmima

1% Task Manager — O =
File Options View
Processes Performance App history Startup Users Details Services
Marne PID Description Status Group
54 BITS Background Intelligent Transfer Servi... Stopped netsves
S BluetoothUserService Bluetooth User Support Service Stopped BthAppGroup
% BluetoothUserService_3a3de Bluetooth User Support Service_3a5de Stopped BthAppGroup
I %, Brokerlnfrastructure 820 Background Tasks Infrastructure Serv... Running Deomlaunch
L BTAGService 992 Bluetooth Audic Gateway Service Running Local5erviceM...
S BthvwetpSve G54 AVCTP service Running LocalService

| mealCameira

there is a lot of references to rpcrt4.d1ll and combase.dll . This is potentially a very

good news! Indeed, it probably means that this process was triggered by a COM-related RPC

call. If so, it might also be possible to trigger it as a regular user, depending on the
permissions of the remote object and interface.

Note: COM is used for Inter Process Communications (IPC). Therefore it can provide the

ability for a low privilege process to run high privilege actions thanks to RPC calls (more
details about this in the second part...).

12/17

https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/13_TaskManager-PPID820.png
https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/14_TaskManager-Services-BrokerInfrastructure.png

Looking at the properties of the binary file, we can see the following description: USO Core

Worker Process .

7 Event Properties — O
Event Process Stack
Frame Module Location Address
U6l meotddl C5tdStubBuffer Invoke = b (e A dFEE 1530
U 61 combasedl lsEmorPropagationEnabled + (ed463 (o A6 d243
U 62 combasedl |sEmorPropagationEnabled + (nd228 (e AT df 62 d 008
U 63 combasedl CoGetMalloc + 216 (e AT df63744d6
L) 64 combasedl RoGet Apatment ldentifier + (x343d (o AfdfE31a31d
L) 65 combase.dl ColGet Apartment Type + One7d (o A df63695ed
U 66 combasedl ColUnmarshallnterface + (x8bad (o A df6333F24
U 67 combasedl ColUnmarshallnterface + (k8332 (e A df63336b2
U 62 combasedl ColUnmarshallnterface + (k520 (e A 6331220
&y mpotddl RpcEsceptionFitter + (38 (e A df6614acs
U700 mpotddl NdrServerContext MewMarshall + (e 1046 (e A df 6650546
U7 mpotddl MdrServerContext MewMarshall + (koo (o A df 665010
U372 mpeotddl |_RpcBindingingClient TokenAttributes + Oe3ddf | O A dfe654c 3
U 73 mpeotddl |_RpcBindingingClient TokenAtributes + (e343a | O Adfee5425a
U 74 mpetddl |_RpcBindingingClient TokenAttributes + (a2l | O A df6653881
U775 motddl |_RpcBindingingClient TokenAtributes + (eZ48e | O A dfe6532ee
U7 motddl |_RpcBindinglngCliert TokenAtributes + (k355 | O ATdFREST 1S
U777 rtdidl TpCallback Independent + (294 D A6 726284
U738 nidldl FtlRelease SRW Lock Exclusive + (x4f6 (e FfdFE 78556
U739 kemel32dl BaseThreadinit Thunk + (=14 (e AT df 5521824
U ad ntdidi RtlUserThread Start + (21 (e A dF6 721561

13/17

https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/16_Procmon-Stack-combase-rpcrt4.png

| = | Manage _: E'.E'“;-';
Home Share View Application Tools
= w A ¥ ThisPC » Local Disk (C:) * Windows System32
Mame Date modified Typ
7 Cuick access L
[=] usocoreworker.exe B/15/201912:27 PM Apg
& OneDrive usosve.dll B/15/201912:27 PM Apg
usol0.dll 3192019 5:.44 AM Apg
B8 This PC ufs ‘M usocoreworker.exe Properties X OP195:43AM Apg
_J 30 Objects L 019 5:43 AM Apg
General Securty Details Previous Versions b)
I Desktop ut 019 544 AM Apg
Decuments o g B |usucurewurker.exe 019344 AM Apg
* Downloads (=] Ut 019 544 AM Apg
i 019 5:44 AM A
J‘ﬁ Music ul Type of file: Application (exe) a P
- Uy 019 5:44 AM Apg
ICTUres w Description: US0O Core Warker Process 019 1:02 PM Apg
B videos o e S a2 0191:03PM Apy
“_ Local Disk (C:) ul cation: SWindowsoystem 019 1:03 PM Apy
v Size: 1.37 MB (1,437,184 bytes) 0544 A A
= Network Ui 019 5:44 AM Apg
[¢] ux Sizeondisk: 756 KB (774.144 bvtes) 019 5:45 AM Apt

Based on these first few elements, I tried to find more information on Google. The first
result lead me to a thread on answsers.microsoft.com . According to one of the
messages, this file is related to the “Update Orchestrator Service”.

google.fr

GC} gle "uso” core worker service Q

Q Tous (&) Images B Actualités [Vidéos <2 Shopping i Plus Paramétres Outils

Environ 9 540 000 résultats (0,24 secondes)

Conseil - Recherchez des résultats uniguement en frangais. Vous pouvez indiquer votre langue de
recherche sur la page Préférences.

Out of curiosity does anyone know.... - Microsoft Community
hitps://fanswers.microsoft.com/.. /c0f214f3-5184-4c54-97d6-aeb11... ~ Traduire cette page

15 janv. 2019 - 11 posts - 8 auteurs

When | Searched for USO Core Worker Process it found results leading .. like it could have something
to do witl—l"Update Orchestrator Service” I

US0 Core Worker Process 1 post 10 juil. 2019
US0 Core worker process 1 post 27 juin 2019
Autres résultats sur answers_microsoft.com

Refining the research, I found this very interesting unofficial documentation about the
“USO client”. First, we learn that “USO” stands for “Update Session Orchestrator”.

14/17

https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/17_usocoreworker-properties.png
https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/18_google-uso-core-worker.png

Update Orchestrator uso Rechercher

Q Tous ¢ Shopping & Actualités [Vidéos [&) Images i Plus Paramétres OQutils

Page 2 sur environ 741 000 résultats (0,33 secondes)

USOCLIENT Documentation & Switches - Up & Running Technologies ...
hitps:/iwww.urtech.ca/2018/11/usoclient-documentation-switches/ » Traduire cette page

19 nov. 2018 - First]US0 stands for Update Session Orchestrator]and it's the replaced Windows
Update Agent. Windows Update senice, usoclient.exe, ...

We also learn that the “USO client” (usoclient.exe) is the tool that replaced
“WUAUCLT”, which was used to manage Windows updates in previous versions of
Windows. Actually, this tool is well known by Windows System Administrators because,
although it is not officialy supported by Microsoft, it enables them to automate the update
management process.

USOCLIENT Documentation & Switches

If you are trying to manage Windows Updates on a Windows 10 or Server 2016 / 2019 computer you have no doubt

already figuredout that WUAUCLT no longer functions. We are not sure why Microsoft has done this because the only

replacement we can find isfa new undocumented tool named USOCLIENT that is built into Windows 10 and Server|
|201 6/19 at C:\W|NDOWS\SYSTEM32\USOCIient.EKE.|

We say undocumented and mean it. Microsoft has made no information available on this app and has gone so far as to
say:

This command isn't meant to be called outside of the internal OS. Nobody outside the OS should be trying to run the
usoclient directly
SOURCE

However unless you want to use complex powershell or VBS scripts there is no ready way to manage Windows Update
without USOClient.exe so we scoured the internet and collected this documentation.

Note: they even quoted a reply from a Microsoft employee on TechNet, which says that you
shouldn’t run this tool directly. This is getting interesting. We love to do what we are not
supposed to, don’t we?! :)

The documentation lists all the options you can use. So, I tried to play around with the
usoclient command to see if I could trigger the same behavior I observed previously. I

started with StartScan which seemed to be the less invasive option according to the

description. It is supposed to trigger a scan that will simply fetch available updates.

With Process Monitor running in the background as usual, I ran the command and... ...
victory!

15/17

https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/18_google-uso.png
https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/19_usoclient-unofficial-doc-intro.png

EX Command Prompt — O X fiar
* ~ | File Edit Event Filter Tools Options Help
C:\U \lab- > = —. | : -
SErs\abrusera ERABE S AG [M F ML R
Process Name Path User PID Result
v
Settings
. < >
ﬁ WI n d OWS U pd ate No events Backed by virtual memory
You' d o
ou're up to date
File Home Share View
@ Last checked: Today, 2:24 PM - o
o v T « Local Disk (C) » Temp v U | Search Temp Pl
Check for updates ~ Name Date modified Type Size
7 Quick access
. This folder is empty.
@ Pause updates for 7 days @ OneDrive
Visit Advanced options to change the pause period
- S This PC
@® Change active hours -8 3D Objects v
S Currently 8:00 AM to 5:00 PM 0 itens =

4:39 PM
8/17/2019

F1) ENG

Conclusion

With a simple command, we are able to have the Update Orchestrator service run arbitrary
code as NT AUTHORITY\System . Another benefit of this method is the fact that we can run
our code outside of D11Main (i.e. outside of the loader lock).

Note: According to Microsoft, running code within DIIMain should be avoided because it
can cause an application to deadlock. More info here: Dynamic-Link Library Best Practices.

However, this technique also comes with some drawbacks:

e It requires a privileged file creation or move operation that you're are able to control.
e Vulnerabilities which result in ACL overwrites for example won’t be enough.
e As aregular user, we don’t know if the DLL has been successfully loaded or not.

Being dependant on the usoclient tool without understanding how it worked was also
something I didn’t like about this technique. So, I reverse engineered both the client and the
service in order to produce an open source tool I could reuse in future projects:
UsoDIllLoader. I'll try to explain this process in the second part of this article. Stay tuned!

Links & Resources

16/17

https://itm4n.github.io/assets/posts/2019-08-17-usodllloader-part1/20_usoclient-startscan-trigger-dll-loading.gif
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-best-practices
https://github.com/itm4n/UsoDllLoader

e Windows Exploitation Tricks: Exploiting Arbitrary File Writes for Local Elevation of
Privilege

https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-
exploiting.html

e Twitter - MS finally fixed the “Diag Hub Collector” exploit on Win 10 1903
https://twitter.com/decoder_it/status/1131247394031579138

e Unofficial USO client documentation

https://www.urtech.ca/2018/11/usoclient-documentation-switches/

e Thread about the “USO client” tool on TechNet
https://social.technet.microsoft.com/Forums/en-US/7619f7fa-ffc1-433b-a885-
12e26f9762bf/usoclientexe-usage?forum=win1oitprogeneral

e Dynamic-Link Library Best Practices

https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-best-
practices

Windows

This post is licensed under CC BY 4.0 by the author.
Share

17/17

https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-exploiting.html
https://twitter.com/decoder_it/status/1131247394031579138
https://www.urtech.ca/2018/11/usoclient-documentation-switches/
https://social.technet.microsoft.com/Forums/en-US/7619f7fa-ffc1-433b-a885-12e26f9762bf/usoclientexe-usage?forum=win10itprogeneral
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-best-practices
https://itm4n.github.io/categories/windows/
https://creativecommons.org/licenses/by/4.0/

