A dive into the world of MS-DOS viruses
@

Jan 4 2019

Translations are available in: pycckun

This post is a textual version of a talk | gave at The 35th Chaos Computer Congress at the
end of 2018. You can watch the talk that was recorded by the wonderful C3VOC team below
if that’s your preferred medium:

HAVDOL THE LHAOS

Watch Video At: https://youtu.be/xgS1M4e 9 E

Or watch using the C3VOC/media.ccc.de player

1/31


https://blog.benjojo.co.uk/post/dive-into-the-world-of-dos-viruses
https://habr.com/ru/company/edison/blog/440086/
https://events.ccc.de/congress/2018/wiki/index.php/Main_Page
https://c3voc.de/
https://youtu.be/xgS1M4e_9_E
https://media.ccc.de/v/35c3-9617-a_deep_dive_into_the_world_of_dos_viruses

Age of MS-DOS: (19882 for 4.0)
I

Age of Presenter: (1995 barely stable)
I

So | have an admission to make, MS-DOS does slightly outage me, regardless MS-DOS
malware has always fascinated me to some degree, but first we must ask: “What is DOS?”

¢ DOS is the “one up” of CP/M, another very old operating system

o The DOS family covers a wide range of vendors, just because it's DOS does not mean
it’s going to be running on a 8086 CPU or better

o Some of these DOS vendors share APl compatibility, meaning that some have shared
malware!

But really, most of our memories of the DOS era is strong aesthetic for how the computers of
the looked at the time:

2/31



NMick Bair - CC BY-5A 2.0

This is the era of “computing beige” and the Model M keyboard, that may be famous or
infamous depending on if you enjoy loud keyboards or not.

HIMEM is testing extended wmemory...done.

This driver iz provided by Oak Technology, Inc..
OTI-91X ATAPI CD-ROM dewice driver, Rew D91XU35Z2
(C)Copyright Oak Technology Inc. 1987-1997

Device Name : 12345678

Transfer Mode ! Frogrammed I[-0

Number of drives 1

C:N>C:NDOSNSMARTDRU.EXE ~X

MSCDEX Uersion 2.23

Copyright (C) Microsoft Corp. 1986-1993. All rights reserved.
Drive E: = Driver 1£345678 unit O

CuteMouse v1.9 [FreeD0S]
Installed at PS-2 port
The command completed successfully.

Some of us may have memories of using DOS, and some might still use DOS!

3/31



C:35C3 LOOOO3 C16 Insert
NON-DOCUMENT EDIT
CURSOR SCROLL ERASE OTHER MENUS
up “W up G char J help block & =save
down “Z doun T word I tab print controls
left “R up screen Y line U turn insert off gquick functions
right o Del char 0 set tab width shorthand
u N
B L

A A
L .

word left SCreen unerase gplit the line
find-sreplace again

.
FY
.

.

word right top bit

L A - - O e e

Displayglenter hkRestgChklord@lel EBlkgHideBlkgMoveBlk@CopyBlk@Beq BlKkiMEnd Blk
iHe 1p indo EindrlingBold slellineelllordfglign :Ruler glSave & WDone

For example, George R R Martin who wrote Game of Thrones reportedly uses Wordstar on
DOS to write the book!

File Edit Uiew Search BRun Debugy Options Help
Ul 1 1 1 e ]

Helcome to M3S-DOS QBasic

Copyright (C) Microsoft Corporatiom, 1987-199Z2.
All rights reserved.

Press Enter to see the Survival Guide

{ Press ESC to clear this dialog box >

Fi=Help Enter=Execute Ezsc=Cancel Tab=Next Field Arrow=Next Item

We also cannot overlook QBASIC, for many this would have been their first exposure to
programming!

4/31


https://en.wikipedia.org/wiki/George_R._R._Martin

INFGOTOD (2

:»>WORK.COM
ello - This i COM test

IN>GOTO (1

:5\>WORK.COM
ello - This i COM test

INFGOTOD (2

:%>WORK.COHM
ello - This i COM test

IN>GOTO (1

:5\>WORK.COM
ello - This i COM test

INFGOTO (2

:%>WORK.COHM
ello - This i COM test

But sometimes life using DOS was not so great, sometimes you would be using DOS and all
of a sudden things like this would happen. This sample also plays a small tune on the PC
speaker while it’s printing, so this could be really embarrassing in a office environment.

Some are a little more “cute”, this example just shows a ascii art ambulance scrolling across
the screen, and then allows the program you ran to continue, at worst a mild inconvenience.




Thanks to a bunch of archivists for malware running under the name VX Heavens, we have a
good historical archive of DOS Malware, or at least we would until the Ukrainian Police would
raid the site:

Friday, 23 March, the server has being seized by the police forces due to the criminal
investigation (article 361-1 Criminal Code of Ukraine - the creation of the malicious
programs with an intent to sell or spread them) based on someone’s tip-off on
“‘placement into the free access malicious software designed for the unauthorized
breaking into computers, automated systems, computer networks”.

Luckily, there are still copies of the sites database around on popular torrent websites that
can provide us a lovely dataset:

$ tar -tvf viruses-20070914.tar | wc -1
66714

$ 1s -alh viruses-20070914.tar
6.6G viruses-20070914.tar

However to begin to take a look into these samples, we need to at first understand the typical
propagation flow of these samples, giving that these programs are running in a pre-internet
era:

IDownload ~
IRun infected+
Iprogram 1

+Those Files
1IGive others Ilbecome infectedl
linfected Filesl

Once you have got an infected file on your system and run it, the malware will either actively
search or install syscall hooks to programs you run after. It will often do this in a subtle and
non visible way to avoid detection. The importance of subtlety is important since to spread

6/31



this malware need to either be given to another system through media (floppy disk) copy, or
uploaded to another distribution point like a BBS

Are pavyload
+ conditions met® +——+

1 Display 1
1 Pauload I

At runtime, the malware has two options; it can either stay hidden and infect new files, or it
can display it's payload.

Some of the payloads are quite pretty! With the below example using fancy features such a
256 color:



https://en.wikipedia.org/wiki/Bulletin_board_system

Or this one that is playing around with your screen buffer:

syscalls

IScan for Files
To Infect

However for the most part the malware will stay quiet and try and find files to infect. Infection
of most files are super easy, for example, if you view a COM file as a long tape of machine
code:



https://en.wikipedia.org/wiki/COM_file

Then “all you need to do” is insert a JMP at the start of the program, and append the data to
the end of the program. Leaving you with something that looks like this:

3 Buyte Jump
o end of File

Some code was smarter and would find “empty space” in a binary and rewrite itself there,
this prevented a binary from getting bigger, a possible red flag for a antivirus to use.




Are pauload
conditions met? +—-————+

syscalls 1 Display |1
Pauload 1

|
IScan for Files +
To Infect

However thinking back before, | also mentioned syscall hooking. Even though the execution
runtime of MS-DOS is very basic, and carries almost no protection at all (you can trivially
boot Linux from a COM file). It still carries a full API to prevent applications from needing to
have their own file system implementations. Here is what some of the syscalls functions look
like:

Int 21h Syscalls

Terminate ZA Gget Date

Keyboard input 2 Get Time
Display output 21 TSR

Wait for device Write to File

input
Delete File

Allocate RAM
2 — Print string

Exit with return
F — Open File




These work by calling a software interrupt, in where the program will ask the CPU to jump to
another section of system memory to handle something:

However MS-DOS also offers the ability to add/modify these calls (with another call),
allowing the system to be extended so that new drivers can be loaded in at runtime. However
this also is a perfect place to add hooks for malware:




This was a well used trick, since you could hook the “Open File” call and then use that to
discover new binaries being run on the system... and infect them.

As a quick example of how these are used, let’s look at a simple “Hello World” program:

Corg 100h1

» M=9

As we can see there are two int calls here. We use 21h (h = hex) as the master syscall
number, and we can specific what action we want MS-DOS to do based on the value of Ah

Int Z21h Syscalls

Get Date

Terminate 20
Keyboard input Z2C
Display output a1

Wait fTor dewvice
input

9 - Print string

F — Open File

Get Time

TSR

Write 1o File
Delete File
Allocate RAM

Exit with return




In this case, the program calls a call to print a string, and then a exit with a 0 (unset) return
code.

As previously mentioned. When you call int 21h the CPU will lookup in the IVT table for
where to jump to, inside that handler is often a router type segment, that directs different
major calls around, in the case of Int 21h it routes to different functions based on the value
of ah. Once we get there a actual call handler will deal with the task at hand, then it will run
iret to return back execution to the main program, often leaving behind registers about the
results of the call:

Program Code

[org 100h1
mov dx,msg

Interrupt Handler
mov ah,?9

int 21h
ah, Ox6Cc

mov ah,d4Ch Oxd4 260
int 21h ah, 0x33
db "hi'!', ODh, 0Ah, "s5° ] Oxd42ab

Oxgd 237
ah, Ox649
OxdZab
Ox4251

So. If we wanted to see all syscalls a program ran, we can breakpoint the start of the
Interrupt handler and check what the value of ah is:

13/31


https://en.wikipedia.org/wiki/Interrupt_vector_table

Program Code
[org 100h1
mov dx, msg

ah,9
21h

ah, 4Ch
21h

mo W
int

mowv
int

db "hi'!',oDh,0Ah, "$°

We do this because the Interrupt handler is always in a fixed location in MS-DOS (this is way
before the era of ASLR and Kernel ASLR) and the program location is not.

Extended Memory Specification (XMS) Version 3.0
copyright 1988-1992 Microsoft Corp.

Installed AZ20 handler number 2.

ERROR: No available extended memory was found.
XMS Driver not installed.

ymartdrv double buffering manager installed.

2 :N\N>REM C:\WINDOWSNSMARTDRV.EXE

2:iN>rem PATH C:N\WINDOWS:

>:N>rem SET TEMP=C:\WINDOWSN\TEMP

2iIN>rem win

2IND>
SiN>a:

‘N>test.exe
oat file (COM).

Size=0000C738h/00000510004 bytes.

Interrupt Handler

Oxd 260
ah, 0x33
OxdZab
Oxqd237
ah, Ox64
Oxd2ab
Ox34251

Syscall 0Op I Syscall Hame

4% Get DOS wversion

&1 Open file

66 Mowve file pointer

63 Read file or device (Read 2 bytes on
handle 35)

&2 Close file

48 Get DOS wversion

61 Open file

66 Move file pointer

63 Read file or dewvice (Read 6500 bytes on
handle 52

66 Move file pointer

64 Write file or dewvice (MWrite 6500 butes
on handle 352

66 Move file pointer

64 Write file or dewice (Write O bytes on
handle 52

87 Get or set file date and time

62 Close file

4% Get DOS wversion

41 Parse filename

41 Parse filename

75 Execute proaram

9 Display string

KL= Terminate with return code (Return code
= '36"')>

64 Write file or device (Write ¢ bytes on
handle 1)

Once we run it, we can see the calls this sample made. While we can see on the screen it
only printed out a Goat file notice (Goat files are a file designed to be infected, like a
sacrificial goat). We also see that this program is doing more than just printing a string. It's



https://en.wikipedia.org/wiki/Address_space_layout_randomization

checking the DOS version (likely for compatibility checks) and then opening, reading and
writing data!

Syscall Op 1Syscall MName
Get DOS version

Move file pointer

Read file or device {(Read 2 bytes on handle 352
Close file

Get DOS wversion

Move file pointer
Read file or device {(Read 6800 bytes on handle 5%
Move file pointer

Move file pointer

Write file or device (MHrite ¢ bytes on handle 5%
Get or set file date and time

Close file

Get DOS version

Execute program

Terminate with return code (Return code = '"36"'")
Write file or device {(Hrite O bytes on handle 17

This is interesting! But we would like to know more about what the syscalls in red are doing,

since they must have input data in them for things like filenames, and data to write to the
files/screen.

For this we need to look at the other registers during the syscall:

Ax: 0000 BX: DEOO Cx: 929F DX: 0116
5I: F91% DI: 0116 SP: OAGe BP: OATYZ
CS5: FOOO DS5: 0116 ES: 0040 55 0116

IP: 92BD EIP: O000092BD

C5:TP: FOOO:92BD <(OxF92BD)>
S5:5P: 0116:0A66 (Ox01BC&)
S5:BP: 0116:0AYZ (Ox01BDZ2)




Using the “Print String” as a simple example, we can see what the usage looks like:

AH = 09
D5:DX = pointer 1o string ending in "H"

What is Ds:Dx ? Why are there two registers here, and how do we get the data location out
of these two?

For this we need to understand a little more about the 8086 CPU.

Memory Layyouts

1 MB of RAM




The 8086 CPU is a 16 bit CPU, but with 20 bits of memory addressing. This means the CPU
can only hold values that point to 64KB, this is a problem when the memory space is up to
1MB.

To get around this, we need to understand segmentation registers:

Memory Layouits
i BIT CPU

The 8086 CPU has 4 Segmentation registers that we will need to care about:

¢ CS - Code Segment
e DS - Data Segment
e SS - Stack Segment
e ES - Extra Segment ( In case you need another one to pass around )

There is a whole bunch of other “general purpose” registers too, that save you from using the
memory too much, and let you pass along parameters to other functions.

Segmentation registers work by changing a sliding window across the RAM:

17/31



This is allows a 16 bit CPU to see all 20 bits of RAM, by ensuring that for every value of DS,
the window is shifted by 16 bytes.

C100x16) +

In the case of this call DS is used as a pointer inside the 16 bit window as to where the start
of the string is. The string printer will then scan until it finds a $ symbol and then stops. This
is similar to other systems that use a null byte instead of a $.




16 BIT CPU

Not much has changed as the x86 ISA aged, instead as the bit size of the CPUs have gone
up, the same registers have just gotten wider.

So with that known, we can build a “todo” list for tracing these programs:

Tracing checklist

Breakpoint on Int Z21 handler

I
¥ Save registers

¥ Save 100 bytes from (DS ¥ 16 + DXHDY
=

Also record the screen Tfor gquick
analysis

With this setup, we can throw some big computers at the problem for a few hours, and
collect up the results!




:\>rem SET TEMP=C:\WINDOWSN\TEMP sNorem SET TEHP=C:\WINDOWSNTERE

. JINO>rem win
Norem win

N>
N\NJa:

4
NJac:

‘\>test.exe :\>test.com

N> N\ND

« NnI°CEM RN L-\HJ.HUUW.),
:N>rem SET TEMP=C:\WINDOWSNTEMP
\N>rem win

N2
‘N\N>a:

‘\N>test.exe
soat file (EXE). Size=00002968h/0000010600d bytes.

Nothing.

That’s disappointing. We burned at least a hamsters worth of power and got almost no cool
activations!




:N\N>REM C:\WINDOWSNSMARTDRV.EXE

:\>rem PATH C:\WINDOWS:
Syscall op | Suscall Hame

:\>rem SET TEMP=C:\WINDOWS\TEMP 45 I Get DOS version

\N>rem win 255 UNKHOWN T

T=5 Release memory

IND T Allocate memory

\N>a: ! Reallocate memory
¥4 Reallocate memory
‘\N>test.com TG Terminate with return code

N>

If we look at some of the samples, we see a smoking gun here. A decent chunk of samples
are checking for the date or time.

If we take a look at the documentation for these calls, we see that the syscall returns the
values as registers to the program:

Int 21h
ZA (Get Dated

return:

day of the week (O=Sundayl
year (1980-20907%

month <(1-12>»

day (1-31>

Int 21h
2C (Get Timed

return:
hour (O-23)
minutes (O-59)
seconds (O-539)
hundredths (O-99)

So we can brute force this! All we need to do is something like this:




IWait for
Idate.time
I request

I0bserve

Isyscall +test valuel
Ilchanges |l instead

But there is one problem with this method.

IWait for
Idate"Time
I request

I0bserve
Done! <—-——+ Isyscall +test valuel
I changes I instead

The sample testing stage takes around 15 seconds since it is using a full gemu emulation
process, and it could take up to 15 seconds for the program to fully run in the VM. Since
DOS does not have power saving features, this means when DOS is idle, it is in a busy loop

So we could look at this problem in a different way, by looking at what code would be run
after a date/time request.



https://en.wikipedia.org/wiki/Busy_waiting

Since our tracer is placed in the Interrupt Handler, we do not know out of the box where the
program is:

Program Code
We want to +
know where |
here is I [org 100h1
I mov dx,msg

mov ah,9
int 21h

mov ah, 4Ch Ox4260
int 21h ah, 0x33
db "hi'?',OoDh,0AK, "S5 i Ox42ab
i Ox4237
ah, 0xG64
Ox42ab
Ox4251

For that we need to look at the stack, where there is the cs and 1P registers waiting for us!

+[ STACK 1+
010Aa 1294 Y246 0000 0000 Q000 Q000 QOO0
Q000 0000 0000 Q000 QOO0 QOO0 0000 OO00

Located at SS:SP

Once we grab these two off the stack, we can use them to obtain the return code, making
our checklist look like this:




Tracing checklist

Breakpoint on Int Z21 handler

Save 100 bytes Tfrom DS % 16 + DX

3*

¥ Save registers
I

I

Also record the screen Tfor quick
analusis

¥ Grab 4 bytes Trom 55:5P

#*® Grab 100 bytes fTrom the return
address

Once we have done that and re run the testing on the dataset, we get to see what some of
the return code looks like!

Oxl12bGeCc: Je Ox12b70

Ox1zZbGe: Jmp Ox12bb9

Ox1Z2bT0: mo W ah, Oxxde

Ox1Z2b7TZ: mo W Cx, T

Oxl12b75: lea dx, word ptr [bp + O0x5058]1
Ox12b7o: int Oxel

Ox12b7h: Jjae Ox12b7f

Ox12b7d: imp Ox12b9c

Oxl12b7 f: mo W ax, OxZ3doz

Oxl1zZb&ZF: lea dx, word ptr [bp + 0x55e2l]
Ox12b86!: int Ol

Ox1Z2bEE: xchg ax, bx

Ox12b&E9: mo W ah, Qx40

Oxl12b&hb: mo W cx, Ox7F1

Oxl1zZzb&e: lea dx, word ptr [bp + 0xZb5]
Ox1Z2b92Z: int Ox2 1

Ox12b94: mo W ah, Ox3e

Ox12b96!: int Ox21

Ox12bas: Mo ah, O0Oxd4f

Here is a sample of one. Here we can see a comparison is being done on DL and Ox1e.




Int 21h
AH 2A (Get Datel

return:

day of the week (O=Sunday?l
year (1980-2099)3

month <(1-12)

day (1-3F1>

Int 21h
AH 2C (Get Time)

return:

hour (O-23)
minutes {(O-59)
seconds (O0-59)
hundredths (O-—99)%

If we look back to our documentation, we can see that DL is the day of the month, meaning
we can parse the top 3 opcodes as the following:

Ox12ZbGCc: je Ox12bT0
Ox1Z2bce: imp Ox12bb9

I¥ (HdagygdfMonth ==
Goto Ox12b70;
¥} else {

Goto Ox12bb9:;
H

We could go and manually review all of these, but there are a lot of these samples that check
for the time, around 4700:




=
=]
N
-
=

|
B B
O B B

All Returns Touch Check

Samples Invoke Files date. time
Dos shell

So instead, we need to do something different. We need to write something... We need to
write...

The world's warst
&5 emulator

The world’s worst x86 emulator, dubbed Benxs86 is a emulator that is designed exactly for our
needs, and not much else:




BenXx&So

* 16 bit only

* pointer memory access ends
emulation

¥ Fake stack, push = nop, pop = end of
emulation

¥ S50~ ppcodes implemented (Most of them
are jumps)

¥ Logs every opcode that is ran

¥ Can be run with just a x86 code snippet
and a register snapshot

But it does have some advantages in it's speed

BenXxSo

¥ All days from 19580 to 2005 (9125 days)d
can be tested in ~100ms

* Most programs have 3~ code paths based
on dates

¥ That yields us...




17k
camples

10k date"Time
variations

We added 10k different execution tests based on paths we found with bruteforce using
BenX86. So I'll finish up with some of my favorite discoveries that are time activated:

This sample activates on new year’s day and hangs your system after displaying a greeting.
This might be a good thing if you are stuck in the office for new years day, or might be a bad
thing if you really needed to do something on new year’s day




C:srrem win

C:iny

C:x>»date

Current date is Tue 12-Z5-2018

Enter new date (mm-dd-yyl: 91-01-1995

C:vdac:

A:%>test.com

The previous year you have been infected by a wvirus
without knowing or removing it. To be gentle to you

I decided to remove myself from your system. [ suggest
you better buy ViruScan of McAfee to ensure yourselfl
complete security of your precious data. Next time you
could be infected with a malevolent virus.

May I say goodbye to you for now....

CyberTech Uirus - 3train B
(C) 1992 John Tardy of Trident

AIN>_

This sample was very surprising to me, It activates at the start of 1995 and informs the user
of all of the infected files that it had infected, and then removes the infection (by removing the
jump at the start), and then does nothing else, though for some reason it does say you
should buy McAfee, clearly this message didn’t age well.

Installed AZE handler number 2.
ERROR: Mo awvailable extended memory was found.
XMS Driver not installed.

Smartdrv double buffering manager installed.
:»>REM C:\WINDOWSNSMARTDRU.EXE
:»>rem PATH C:s\WINDOWS:
:»>rem SET TEMP=C :s\WINDOWSSTEMP
INPrem win
N
nrdate

Current date is Tue 12-Z5-ZZ18
Enter new date (mm-dd-yy): 11-38-198%F




This one frankly really confuses me, On 8th of November of any year, it will turn all O’s on the
system into tiny “hate” glyphs. This really confuses me, if you know why you would do this,
let me know...

This one is might my nightmare output of any program, this program upon start will tell you
that it failed to “eat” your primary drive. This would be incredibly alarming to see out of the
blue.

:5NPREM C:SWINDOWSSSMARTDRY . EXE
nryrem PATH C:NWINDOWS:
:srrem SET TEMP=C :\WINDOWSSTEHP

INFrEm Wwin

Enter new date (mm-dd-yy): 11-08-1980
HAST.

Nrtest.com

am an assasin, | want to and shall kill you!?

also hate Aladdin and will also kill it?t

will eliminate you with the touch of just one finger
Look at my revenge?! Crying wont help yout
I am a dangerous virus, I livet I am created by:

The [HACKING HELL1 ttt?

Fear met I am more powerfull than GOD?

ANy _




Finishing off, we have what I'm pretty sure if the Navy Seal Copypasta version of DOS
malware. Unsure what this author dislikes Aladdin, but whatever, you do you person.

If you are interested in the code that ran behind this, | have released my tooling_on github,
with no guarantees, if you want make this code yourself, you will need to do some work to
ensure it works with your MS-DOS install (correcting the handler breakpoint)

However if you are just looking to see what | saw when looking at this project, | have
archived the webui interface here: https://dosv.benjojo.co.uk/

If this kind of obscurity is the thing you dig, then you may like the rest of my blog, If you want
to stay up to date for the new stuff | post, you should either use my sites RSS or follow me
on twitter

Until next time!
Related Posts:

From VNC to reverse shell (2018)

x86 assembly doesn't have to be scary (interactive) (2018)
Random Post:

Hacking_Ethernet out of Fibre Channel cards (2020)

31/31


https://github.com/benjojo/dive-into-dos/
https://dosv.benjojo.co.uk/
https://blog.benjojo.co.uk/rss.xml
https://twitter.com/benjojo12
https://blog.benjojo.co.uk/post/qemu-monitor-socket-rce-vnc
https://blog.benjojo.co.uk/post/interactive-x86-bootloader-tutorial
https://blog.benjojo.co.uk/post/ip-over-fibre-channel-hack

