
1/31

A dive into the world of MS-DOS viruses
blog.benjojo.co.uk/post/dive-into-the-world-of-dos-viruses

Jan 4 2019

Translations are available in: русский
This post is a textual version of a talk I gave at The 35th Chaos Computer Congress at the
end of 2018. You can watch the talk that was recorded by the wonderful C3VOC team below
if that’s your preferred medium:

Watch Video At: https://youtu.be/xgS1M4e_9_E

Or watch using the C3VOC/media.ccc.de player

https://blog.benjojo.co.uk/post/dive-into-the-world-of-dos-viruses
https://habr.com/ru/company/edison/blog/440086/
https://events.ccc.de/congress/2018/wiki/index.php/Main_Page
https://c3voc.de/
https://youtu.be/xgS1M4e_9_E
https://media.ccc.de/v/35c3-9617-a_deep_dive_into_the_world_of_dos_viruses

2/31

So I have an admission to make, MS-DOS does slightly outage me, regardless MS-DOS
malware has always fascinated me to some degree, but first we must ask: “What is DOS?”

DOS is the “one up” of CP/M, another very old operating system
The DOS family covers a wide range of vendors, just because it’s DOS does not mean
it’s going to be running on a 8086 CPU or better
Some of these DOS vendors share API compatibility, meaning that some have shared
malware!

But really, most of our memories of the DOS era is strong aesthetic for how the computers of
the looked at the time:

3/31

This is the era of “computing beige” and the Model M keyboard, that may be famous or
infamous depending on if you enjoy loud keyboards or not.

Some of us may have memories of using DOS, and some might still use DOS!

4/31

For example, George R R Martin who wrote Game of Thrones reportedly uses Wordstar on
DOS to write the book!

We also cannot overlook QBASIC, for many this would have been their first exposure to
programming!

https://en.wikipedia.org/wiki/George_R._R._Martin

5/31

But sometimes life using DOS was not so great, sometimes you would be using DOS and all
of a sudden things like this would happen. This sample also plays a small tune on the PC
speaker while it’s printing, so this could be really embarrassing in a office environment.

Some are a little more “cute”, this example just shows a ascii art ambulance scrolling across
the screen, and then allows the program you ran to continue, at worst a mild inconvenience.

6/31

Thanks to a bunch of archivists for malware running under the name VX Heavens, we have a
good historical archive of DOS Malware, or at least we would until the Ukrainian Police would
raid the site:

Friday, 23 March, the server has being seized by the police forces due to the criminal
investigation (article 361-1 Criminal Code of Ukraine - the creation of the malicious
programs with an intent to sell or spread them) based on someone’s tip-off on
“placement into the free access malicious software designed for the unauthorized
breaking into computers, automated systems, computer networks”.

Luckily, there are still copies of the sites database around on popular torrent websites that
can provide us a lovely dataset:

$ tar -tvf viruses-20070914.tar | wc -l

66714

$ ls -alh viruses-20070914.tar

6.6G viruses-20070914.tar

However to begin to take a look into these samples, we need to at first understand the typical
propagation flow of these samples, giving that these programs are running in a pre-internet
era:

Once you have got an infected file on your system and run it, the malware will either actively
search or install syscall hooks to programs you run after. It will often do this in a subtle and
non visible way to avoid detection. The importance of subtlety is important since to spread

7/31

this malware need to either be given to another system through media (floppy disk) copy, or
uploaded to another distribution point like a BBS

At runtime, the malware has two options; it can either stay hidden and infect new files, or it
can display it’s payload.

Some of the payloads are quite pretty! With the below example using fancy features such a
256 color:

https://en.wikipedia.org/wiki/Bulletin_board_system

8/31

Or this one that is playing around with your screen buffer:

However for the most part the malware will stay quiet and try and find files to infect. Infection
of most files are super easy, for example, if you view a COM file as a long tape of machine
code:

https://en.wikipedia.org/wiki/COM_file

9/31

Then “all you need to do” is insert a JMP at the start of the program, and append the data to
the end of the program. Leaving you with something that looks like this:

Some code was smarter and would find “empty space” in a binary and rewrite itself there,
this prevented a binary from getting bigger, a possible red flag for a antivirus to use.

10/31

However thinking back before, I also mentioned syscall hooking. Even though the execution
runtime of MS-DOS is very basic, and carries almost no protection at all (you can trivially
boot Linux from a COM file). It still carries a full API to prevent applications from needing to
have their own file system implementations. Here is what some of the syscalls functions look
like:

11/31

These work by calling a software interrupt, in where the program will ask the CPU to jump to
another section of system memory to handle something:

However MS-DOS also offers the ability to add/modify these calls (with another call),
allowing the system to be extended so that new drivers can be loaded in at runtime. However
this also is a perfect place to add hooks for malware:

12/31

This was a well used trick, since you could hook the “Open File” call and then use that to
discover new binaries being run on the system… and infect them.

As a quick example of how these are used, let’s look at a simple “Hello World” program:

As we can see there are two int calls here. We use 21h (h = hex) as the master syscall
number, and we can specific what action we want MS-DOS to do based on the value of Ah

13/31

In this case, the program calls a call to print a string, and then a exit with a 0 (unset) return
code.

As previously mentioned. When you call int 21h the CPU will lookup in the IVT table for
where to jump to, inside that handler is often a router type segment, that directs different
major calls around, in the case of Int 21h it routes to different functions based on the value
of ah. Once we get there a actual call handler will deal with the task at hand, then it will run
iret to return back execution to the main program, often leaving behind registers about the
results of the call:

So. If we wanted to see all syscalls a program ran, we can breakpoint the start of the
Interrupt handler and check what the value of ah is:

https://en.wikipedia.org/wiki/Interrupt_vector_table

14/31

We do this because the Interrupt handler is always in a fixed location in MS-DOS (this is way
before the era of ASLR and Kernel ASLR) and the program location is not.

Once we run it, we can see the calls this sample made. While we can see on the screen it
only printed out a Goat file notice (Goat files are a file designed to be infected, like a
sacrificial goat). We also see that this program is doing more than just printing a string. It’s

https://en.wikipedia.org/wiki/Address_space_layout_randomization

15/31

checking the DOS version (likely for compatibility checks) and then opening, reading and
writing data!

This is interesting! But we would like to know more about what the syscalls in red are doing,
since they must have input data in them for things like filenames, and data to write to the
files/screen.

For this we need to look at the other registers during the syscall:

16/31

Using the “Print String” as a simple example, we can see what the usage looks like:

What is DS:DX ? Why are there two registers here, and how do we get the data location out
of these two?

For this we need to understand a little more about the 8086 CPU.

17/31

The 8086 CPU is a 16 bit CPU, but with 20 bits of memory addressing. This means the CPU
can only hold values that point to 64KB, this is a problem when the memory space is up to
1MB.

To get around this, we need to understand segmentation registers:

The 8086 CPU has 4 Segmentation registers that we will need to care about:

CS - Code Segment
DS - Data Segment
SS - Stack Segment
ES - Extra Segment (In case you need another one to pass around)

There is a whole bunch of other “general purpose” registers too, that save you from using the
memory too much, and let you pass along parameters to other functions.

Segmentation registers work by changing a sliding window across the RAM:

18/31

This is allows a 16 bit CPU to see all 20 bits of RAM, by ensuring that for every value of DS,
the window is shifted by 16 bytes.

In the case of this call DS is used as a pointer inside the 16 bit window as to where the start
of the string is. The string printer will then scan until it finds a $ symbol and then stops. This
is similar to other systems that use a null byte instead of a $.

19/31

Not much has changed as the x86 ISA aged, instead as the bit size of the CPUs have gone
up, the same registers have just gotten wider.

So with that known, we can build a “todo” list for tracing these programs:

With this setup, we can throw some big computers at the problem for a few hours, and
collect up the results!

20/31

And after around a CPU core month, we get…

Nothing.

That’s disappointing. We burned at least a hamsters worth of power and got almost no cool
activations!

21/31

If we look at some of the samples, we see a smoking gun here. A decent chunk of samples
are checking for the date or time.

If we take a look at the documentation for these calls, we see that the syscall returns the
values as registers to the program:

So we can brute force this! All we need to do is something like this:

22/31

But there is one problem with this method.

The sample testing stage takes around 15 seconds since it is using a full qemu emulation
process, and it could take up to 15 seconds for the program to fully run in the VM. Since
DOS does not have power saving features, this means when DOS is idle, it is in a busy loop

So we could look at this problem in a different way, by looking at what code would be run
after a date/time request.

https://en.wikipedia.org/wiki/Busy_waiting

23/31

Since our tracer is placed in the Interrupt Handler, we do not know out of the box where the
program is:

For that we need to look at the stack, where there is the CS and IP registers waiting for us!

Once we grab these two off the stack, we can use them to obtain the return code, making
our checklist look like this:

24/31

Once we have done that and re run the testing on the dataset, we get to see what some of
the return code looks like!

Here is a sample of one. Here we can see a comparison is being done on DL and 0x1e.

25/31

If we look back to our documentation, we can see that DL is the day of the month, meaning
we can parse the top 3 opcodes as the following:

We could go and manually review all of these, but there are a lot of these samples that check
for the time, around 4700:

26/31

So instead, we need to do something different. We need to write something… We need to
write…

The world’s worst x86 emulator, dubbed BenX86 is a emulator that is designed exactly for our
needs, and not much else:

27/31

But it does have some advantages in it’s speed

28/31

We added 10k different execution tests based on paths we found with bruteforce using
BenX86. So I’ll finish up with some of my favorite discoveries that are time activated:

This sample activates on new year’s day and hangs your system after displaying a greeting.
This might be a good thing if you are stuck in the office for new years day, or might be a bad
thing if you really needed to do something on new year’s day

29/31

This sample was very surprising to me, It activates at the start of 1995 and informs the user
of all of the infected files that it had infected, and then removes the infection (by removing the
jump at the start), and then does nothing else, though for some reason it does say you
should buy McAfee, clearly this message didn’t age well.

30/31

This one frankly really confuses me, On 8th of November of any year, it will turn all 0’s on the
system into tiny “hate” glyphs. This really confuses me, if you know why you would do this,
let me know…

This one is might my nightmare output of any program, this program upon start will tell you
that it failed to “eat” your primary drive. This would be incredibly alarming to see out of the
blue.

31/31

Finishing off, we have what I’m pretty sure if the Navy Seal Copypasta version of DOS
malware. Unsure what this author dislikes Aladdin, but whatever, you do you person.

If you are interested in the code that ran behind this, I have released my tooling on github,
with no guarantees, if you want make this code yourself, you will need to do some work to
ensure it works with your MS-DOS install (correcting the handler breakpoint)

However if you are just looking to see what I saw when looking at this project, I have
archived the webui interface here: https://dosv.benjojo.co.uk/

If this kind of obscurity is the thing you dig, then you may like the rest of my blog, If you want
to stay up to date for the new stuff I post, you should either use my sites RSS or follow me
on twitter

Until next time!

Related Posts:

From VNC to reverse shell (2018)

x86 assembly doesn't have to be scary (interactive) (2018)

Random Post:

Hacking Ethernet out of Fibre Channel cards (2020)

https://github.com/benjojo/dive-into-dos/
https://dosv.benjojo.co.uk/
https://blog.benjojo.co.uk/rss.xml
https://twitter.com/benjojo12
https://blog.benjojo.co.uk/post/qemu-monitor-socket-rce-vnc
https://blog.benjojo.co.uk/post/interactive-x86-bootloader-tutorial
https://blog.benjojo.co.uk/post/ip-over-fibre-channel-hack

