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Abstract 

Malware usually incorporate mechanisms to avoid their detection. Process 

Injection is a technique that causes malicious code execution by injecting the code 

into a remote running process and forcing the process to execute it, in such a way 

that is concealed from the user. The program that performs the injection is called 

injector.  

The purpose of this thesis is to propose methodologies to detect malware in 

memory. Regarding the malware type, it focuses on two different process injection 

techniques: Hollow process and Classic DLL (Dynamic Link Library) or otherwise 

called, Remote DLL. Various injectors are used. The malwares are executed on 

Windows 10 VMware virtual machines and their memory is acquired. Dynamic 

malware analysis is performed using the Volatility Framework. 

The Hollow process injection technique is presented in detail and applied 

producing various testing memory images. A complete methodology of detection using 

the Volatility Framework is proposed that reveals and detects the anomalies that 

hollow process injection causes to the memory. This methodology has incorporated 

and organized in distinct steps most of the current literature, relevant articles on the 

web and research on the subject. The described steps are performed on the test 

images and the results are confirmed.  

The Remote DLL injection is analyzed and injections are performed in various 

systems resulting various test memory images. A completely new methodology of 

detection is proposed, verified, implemented and tested. The whole idea is 

implemented in a python script of approximately 200 lines of code that has to be 

executed inside Volatility’s volshell plugin environment. The results of the script 

executed on 12 distinct memory images, presented in the relative table, indicate that 

the script works satisfactory. 
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1 Introduction 

1.1 Malware Analysis  

The European Network and Information Security Agency (ENISA), in its annual 

Threat Landscape Report of 2017, classifies Malware as the most frequently 

encountered cyberthreat among the Top 15 Cyber Threats in 2017, exactly in the 

same position as it was in 2016 too. In 2017 some Anti-Virus (AV) vendors detected 

more than 4 million samples of threats per day [1][2]. This statistic demonstrates how 

critical the malware analysis is for anyone who responds to computer security 

incidents.  

Malware analysis is the art of dissecting malware to understand how it works, 

how to identify it, as well as how to defeat or eliminate it. In [3] and [4], the malware 

analysis approaches are categorized as static or dynamic. The purpose of static 

analysis is to detect the malware before its execution. It consists of examining the 

executable file without viewing the actual instructions or reverse-engineering the 

malware’s internals. Dynamic analysis techniques attempt to detect malicious 

behavior during or after the malware execution. It involves executing the malicious 

code, in an isolated environment, and observing its behavior as well as the anomalies 

or inconsistencies it causes. Off course, prerequisite for anomalies’ recognition is the 

knowledge of what is normal. 

The next issue is where to look for these anomalies, which can also be 

considered as evidences (of the way the malware works).  The possible locations can 

be categorized in the same way as the digital forensics: in volatile and non-volatile 

computer storage [5]. Non-volatile electronic evidence is found on hard disks, USB 

flash drives, and removable media. They contain files, system and network logs, 

corrupted files and maybe even the malicious code which could be analyzed. The disk 

drive’s file system can lead to the recovery of deleted files, which may contain further 

evidence. The analysis of data captured from hard disk is also called disk forensics. 

Volatile media, that is the main memory or RAM (Random Access Memory) contain 

information about each running process and thread, open files, deleted files, Windows 

registry keys and event logs, established network connections, recently executed 

commands, URLs, IP addresses, executing code, including malware. It is important to 

notice that while a malicious program is being executed, it cannot be erased from 

memory, unlike the hard disk. In other words, every function performed by an 

operating system or application, results in specific modifications to the computer’s 

memory, which can often persist a long time after the action, essentially preserving 

them [6]. The analysis of data captured from memory is also called memory 

forensics.  

For a malware analyst it is ideal to be able to perform both disk and memory 

forensics, but it is obvious that memory analysis has advantages relative to disk 

analysis. It seems that memory is the best place to identify malicious software 

activity. An analyst can study the system configuration and identify inconsistencies in 

it, bypass packers, rootkits and other hiding tools. Recent activity can be tracked and 

analyzed. Evidences that cannot be found anywhere else can be collected, such as 
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memory-only malware [7]. Memory analysis can be done on the live system, but it 

can also be done on a dump of the volatile memory. A memory dump (also known as 

a core dump or system dump) is a snapshot capture of computer memory data from a 

specific instant. For a no longer live system, crash dumps and hibernation files can 

provide information about it. A hibernation file (hiberfil.sys) contains a compressed 

copy of memory that the system dumps to disk during the hibernation process.  

There are commercial memory analysis tools, such as WindowsSCOPE Cyber 

Forensics [13], F-Response [14], Windows Memory Forensic Toolkit (WMFT) as well as 

open source tools such as the Volatility Framework. For a relatively complete list of 

open source memory analysis tools, see [15]. 

1.2 The Volatility Framework 

The Volatility Framework is a completely open collection of tools, implemented 

in Python under the GNU General Public License, for the extraction of digital 

artifacts from volatile memory (RAM) samples or memory images as they are 

otherwise called. The extraction techniques are performed completely independent of 

the system being investigated but offer unprecedented visibility into the runtime state 

of the system. The framework is intended to introduce people to the techniques and 

complexities associated with extracting digital artifacts from volatile memory samples 

and provide a platform for further work into this exciting area of research. The 

Volatility Framework is maintained and promoted by The Volatility Foundation which is 

an independent non-profit organization [17]. 

Volatility supports memory dumps from all major 32- and 64-bit Windows 

versions. Whether the memory dump is in raw format, a Microsoft crash dump, 

hibernation file, or virtual machine snapshot, Volatility is able to work with it. It also 

supports Linux memory dumps in raw or LiME format and include 35+ plugins for 

analyzing Linux kernels. It supports 38 versions of Mac OSX memory dumps. Android 

phones with ARM processors are also supported [16]. 

The amount of Volatility’s tools, the fact that it continuously maintained, so it 

supports Windows 10 Virtual Machines, the easiness for plugins’ creations and the rich 

documentation, practically make it the most prudent choice as a memory analysis tool 

[18][19][20][21]. 

1.3 Virtualization 

For malware analysis, virtualization can be used to create the isolated 

environment mentioned above. Virtualization refers to the creation of a virtual 

resource such as a server, desktop, operating system, file, storage or network. In this 

case, operating system-level virtualization is used, meaning running multiple 

operating systems on a single piece of hardware. Virtualization technology involves 

separating the physical hardware and software by emulating hardware using software. 

When a different operating system is operating on top of the primary one, by means 

of virtualization, it is referred to as a virtual machine [8].  
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Currently the popular virtual products in the market are VMware Workstation 

player or pro [9], VirtualBox [10], Hyper-V [11] and Parallels [12]. These products 

can give us a snap shot of memory and page file which is an identical to original data 

of the virtual machine. For example, when we suspend a VMware virtual machine, the 

whole activities on it are stopped and the contents of the physical memory are 

contained in a .vmem file which is a raw memory image. 

1.4 What is process injection 

Researchers classify the many types of malware in several different ways: The 

delivery method or attack methodology, the specific type of vulnerability that the 

malware exploits, the objective of the malware, the persistence mechanisms, etc. An 

interesting classification the one referring to the methods that malware authors use to 

avoid detection, called covert launching techniques and mostly refer to the malware 

loader. Loader (also known as a launcher) is a program that is responsible for 

launching the malware itself in such a way that is concealed from the user [3]. 

Process Injection is a loader technique that causes malicious code execution 

by injecting the code into a remote running process and forcing the process to 

execute it, resulting in a different behavior than the expected one. It is a widespread 

defense evasion technique employed often within malware. The program that 

performs the injection is called injector. Direct injection refers to allocating and 

inserting code into the memory space of a remote process. DLL (Dynamic Link 

Library) injection is a form of process injection where the injected item is a DLL that is 

loaded within the context of the remote process. Τhere are many process injection 

techniques, but the most common are: 

▪ Hollow process injection or process replacement  

▪ Remote DLL injection or otherwise called Classic DLL injection  

▪ Portable Executable injection (PE injection) 

▪ Thread execution hijacking 

▪ Hook injection  

▪ APC (Asynchronous Procedure Calls) injection and Atom Bombing  

[22][6]. 

1.5 Prerequisites 

In order to follow the concept of this thesis, some basic knowledge of the Windows 

operating system is required on these topics: 

▪ Window memory management: Virtual memory, physical memory, paging, 

shared memory, Kernel and User Mode [23][24][26] 

▪ Processes and the corresponding _EPROCESS data structure, threads, process 

memory layout [25], Virtual Address Descriptors (VADs) [6][26] 

▪ Portable Executable (PE) File format [27][28][29][30][31] 

▪ Handles [32] 

https://www.virtualbox.org/
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It is not among the goals of this work to present the above issues, so the 

corresponding useful bibliography is cited, for those who believe that they need to 

refresh their knowledge. 

1.6 Problem definition and thesis’ scope 

The purpose of this thesis is to propose methodologies to detect malware in 

memory and regarding the malware type, focuses on two different process injection 

techniques: Hollow process injection and Classic DLL Injection. To perform the 

injection, various injectors are chosen and used as described in the following 

sections. The malwares are executed on Windows 10 VMware virtual machines and 

their memory are acquired. Dynamic malware analysis is performed using the 

Volatility Framework. Windows 10 is chosen as it is the latest windows versions and 

because one of the chosen injectors is tested only on this operating system. 

For the detection of Hollow process injection, a complete methodology, based 

on current literature is presented and tested. The knowledge gained through this 

process, led to the creation of a completely new methodology for DLL Injection 

detection which is also presented in detail and tested. 

1.7 Organization of this document 

In the following chapter 2 is described how the hollow process injection 

technique works. After that, a complete methodology of detection is presented using 

the Volatility Framework, based on current literature. The methodology is explained in 

detail and applied producing various test memory images. The configuration of the 

testing environment, in which injections are performed, is described in detail. 

Chapter 3 analyzes remote DLL injection and a new approach of detection is 

proposed, tested and evaluated. This approach is implemented by a python script that 

can be executed using the Volatility framework. The testing environment is described 

and the results of the conducted test are presented and evaluated. 
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2  Hollow process or process replacement 

This chapter presents the code injection technique called hollow process or 

process replacement: the main concept of it as well as some of its main variations. A  

methodology is proposed that relevels and detects the anomalies that hollow process 

injection causes to the memory. This injection technique is performed in a testing 

environment, which is also described in detail, using two different malware-injectors 

and producing memory images on which the methodology of detection is applied. 

Alternative memory images available are also used. Each step of the methodology is 

explained and its results on the memory image are analyzed.  

2.1 Introduction and hollow process description 

Hollow Process Injection (or Process Hollowing, or Process Replacement, or 

Dynamic forking as it is otherwise called) is used when the malware needs to be 

disguised as a legitimate process, without the risk of crashing. 

Hollow Process Injection is a code injection technique in which the hollowing 

process starts a new instance of a legitimate process in suspended state. The 

executable section of the legitimate process in the memory is swapped out (hollowed) 

and is replaced with malicious code, mostly malicious executable. After that, the (no 

longer) legitimate process is resumed and it executes the malicious code for the 

remainder of its process lifetime within its legitimate context of the process. The PEB 

(Process Environment Block) still points to the legitimate path and the processes’ data 

structures remain the same, the malware has the same privileges as the process that 

is replacing. So, the user cannot distinguish the hollowed process from a legitimate 

one. For example, if the svchost.exe is replaced, the user would see a process named 

svchost.exe running from C:\Windows\System32 with normal characteristics. 

2.2 Steps to hollow a process 

Three components are involved in process hollowing: Let’s assume that the 

process that performs the hollowing e.g. the injector is called hollow.exe, the 

legitimate process that it creates in order to get hollowed is legitimate.exe (host 

process or remote process) and the malicious code (payload) to be injected is 

malicious.exe.  

Although there are various techniques that can be used for hollow process 

injection, in the most common variant the hollowing process typically follows the 

following steps:  

 

1. Creates a new instance the legitimate process (for example 

C:\Windows\explorer.exe, C:\windows\system32\lsass.exe, 

C:\Windows\system32\svchost.exe), but with its first thread suspended. 

Result:  

The executable section legitimate.exe is loaded in the memory, but is not yet 

executed and its memory space can be modified. Its PEB (Process Environment 

Block) members such as ImagePathName and ImageBaseAddress, have the 

corresponding values. 
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How this can be done: 

Create the legitimate process using CreateProcess with CREATE_SUSPENDED 

option and keep the provided handle for the subsequent function calls that 

modify its memory space. 

2. Acquires the malicious code (mostly executable) to inject. This code can be 

originated from anywhere: from a file on the disk/over the network or the 

resource section of the hollowing process. The malicious PE (Portable 

Executable) file is parsed. Attributes like PE header, PE header size, sections 

and corresponding sizes of the malicious executable are extracted.  

 

3. Reads the legitimates’ processes entry point and image base address (which 

holds the memory address where the executable is loaded), by reading the PEB, 

i.e. PEB.ImageBaseAddress. 

After that, it frees or unmaps the containing memory section. 

Result  

The hollow is created. The legitimate process is just an empty container (the 

DLLs, heaps, stacks and open handles are still intact, but no process executable 

exists). 

How this can be done: 

Get the base address of the legitimate PEB using NtQueryProcessInformation or 

GetThreadContext function and then read PEB.ImageBaseAddress in process 

memory using ReadProcessMemory. After that, the NtUnmapViewOfSection 

function is utilized to unmap the section. The above functions are kernel 

functions, so hollow.exe usually resolves them at runtime using 

GetProcAddress. 

 

4. Allocates a new memory region within the virtual address space of the 

legitimate process. The size of the memory region allocated is determined by 

the size of the malicious code. The starting address of this region depends on 

the technique variation used. If needed, hollow.exe updates the malicious PE 

header and calculates the difference between the two images’ (legitimate and 

malicious) base addresses (delta) which is used in rebasing the malicious 

image. For further details, see Process Hollowing Variations. 

Result: 

The memory needed for the replacement is allocated and contains zeros. 

How this can be done: 

Use VirtualAllocEx with PAGE_EXECUTE_READWRITE permissions (for simplicity 

reasons) and allocation type MEM_COMMIT | MEM_RESERVE 

 

5. Copies the malicious PE header as well as each PE section (.text, .rdata, .data, 

etc) into the hollow created inside the legitimates’ process memory.  

Result: 

The injection is completed. 

How this can be done: 
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Use WriteProcessMemory to write the malicious image into the allocated space 

inside the legitimate process.  

 

6. Updates injected processes’ structures so that the malicious code is going to be 

executed. 

Result: 

The injected processes’ PEB ImageBaseAddress points as the malicious image. 

The thread context of the suspended thread is set so that its first instruction 

(Entry Point) points at the injected executable. 

How this can be done: 

Calculate the new entry point. Call GetThreadContext function, update eax 

register and then call SetThreadContext 

 

7. Resumes the suspended thread. At this point, the malicious code starts 

executing within the container created for the legitimate.exe.  

Result 

The injected (and no longer) legitimate process is executing looking legitimate 

on the outside but being malicious on the inside. 

How this can be done: 

Hollow.exe simply resumes the suspended process using ResumeThread 

function. 

[6][22][33][34][35][36][37][43] 

The advantage of hollow process injection is that the user cannot distinguish 

the injected process from the legit one using conventional tools. The PEB is 

unchanged so it still preserves valid looking fields in important structures, like 

ImagePathName, ImageBaseAddress, etc. It looks normal and not suspicious. The 

only think that has changed is the actual code that is executing.  

In the following figure is shown, at a very abstract level, how the legitimates’ 

Process Address Space changes during the steps described above. 
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Figure 1 - Process Memory Space during hollowing 

Malwares that use Process Hollowing exclusively or as a malware loader, are 

Stuxnet and Careto [6], DarkComet [38], Dridex [39], Skeeyah [35]. Various malware 

examples are also listed in [40].  
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2.3 Process Hollowing Variations 

As mentioned before, there are some variations in the above steps and the 

most common ones regard the following: 

Address of the hollow and address of the allocated memory  

▪ Memory unmapping and then memory allocation is done at the same address 

where the legitimate executable was previously loaded 

(PEB.ImageBaseAddress) and the malicious’ PE header is updated so that its 

ImageBase equals to PEB.ImageBaseAddress of the legitimate image 

[41][6][33]. However, before setting it, the difference between the two images’ 

(legitimate and malicious) base addresses must be calculated (delta) for use in 

rebasing the malicious image, if needed. 

 

▪ The memory unmapping is done at PEB.ImageBaseAddress. The allocation is 

done at the address of the malicious’ PE ΙmageΒase (found in the optional 

header), so no changes are to be done in malicious PE headers. However, after 

writing PE header and sections, the PEB.ImageBaseAddress of the legitimate 

process must be updated to point to the address that came up from the 

memory allocation. This way, PEB points to the injected executable [35]. 

This is convenient, because is more than likely that absolute addresses are 

involved within the code which is entirely dependent on its location in memory. 

Since many executables share common base addresses (usually 0x400000), it is 

not uncommon that the hollowed process’s own executable image exists at the 

same address [37][35]. 

 

▪ The memory allocation is not done at a specific address. This is a more general 

case and the following steps must be performed: 

a. Calculate the difference between the legitimates’ PEB.ImageBaseAddress 

and PE.OptionalHeader.ImageBase. This delta value is used for rebasing. 

b. Update PE header of the malicious image so that its ImageBase equals to 

PEB.ImageBaseAddress of the legitimate image 

c. If the delta calculated in the prior step is not zero, rebase the malicious 

image. This involves recalculating every absolute address and modifying 

the code to use the new values: delta + preferred address. 

d. Calculate the new entry point as the sum of PEB.ImageBasesAddress (of 

the legitimate process) + Malicious PE Header-> 

OptionalHeader.AddressOfEntryPoint 

[42][34] 

Memory protection for the region of pages at memory allocation step  

The memory protection for the region of pages allocated could be for the sake of 

simplicity PAGE_EXECUTE_READWRITE, but this could be improved upon by 

changing each PE section with the appropriate permissions based on the 

characteristics specified in the section header, for example using VirtualProtectEx 

function. In this case, the hollowing should be harder to be detected [43]. 

https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://github.com/m0n0ph1/Process-Hollowing
https://www.trustwave.com/Resources/SpiderLabs-Blog/Analyzing-Malware-Hollow-Processes/


   10 

No memory umapping 

In this case, there is not any hollowing out of the legitimate executable because 

the Unmaping step is not performed. A new memory allocation is done and the 

malicious code is copied there. Then PEB.ImageBase and Entrypoint is updated as 

already described [35]. 

Modifying the legitimate code  

In this case, after creating the legitimate process in suspended mode, the 

hollowing process creates a section in its own address space, copies the malicious 

code in it and finally maps a view of it in the legitimate process with 

PAGE_EXECUTE_READWRITE permissions. So, it injects the malicious code. After 

that is creates a second section, copies there the legitimate.exe and changes it so 

that it jumps to the address of the previously mapped view. This requires that 7 

bytes of address of entry point are modified. Then it unmaps the legitimate.exe 

from the legitimate process and maps the section of the changed code at the same 

address. The “legitimate” process is resumed, so it executes the malicious code 

[35]. 

 

2.4 Testing Environment 

The code injection is performed only in memory, so it is best detected using 

memory forensics. As already mentioned, the open source Volatility Framework is 

used [17].  

There is a complete reference of the commands and plugins used in [18]. In 

https://github.com/volatilityfoundation/volatility/wiki/Memory-Samples, there is a list 

of publicly available memory samples for testing purposes. Also, there are samples in 

https://www.memoryanalysis.net/amf, hyperlink “All memory images”. 

For the investigation, KALI Linux 2017.1 was used (downloaded file name kali-

linux-2017.1-amd64.iso from https://www.kali.org/downloads/) which includes 

Volatility’s Foundation Volatility Framework 2.6. KALI and was opened with Oracle 

VirtualBox version 5.2.12 r122591 (Qt5.6.2) [10]. 

The proposed methodology is applied in the memory images: 

▪ Stuxnet.vmem which is a memory sample that came from a virtual machine 

infected with Stuxnet and is downloaded from https://volatility-

labs.blogspot.gr/2016/08/automating-detection-of-known-malware.html.  

▪ Three different test memory mages that are created in the context of this 

thesis.  

These test images came from a windows 10 virtual machine (Enterprise 

Evaluation Build 14393.rs1_release.180209-1727, downloaded from 

https://az792536.vo.msecnd.net/vms/VMBuild_20160802/VMWare/MSEdge/MSEdge.

Win10_RS1.VMWare.zip, which was opened with VMware® Workstation 12 Pro 

software, version 12.5.2 build-4638234 [9].  

https://www.volatilityfoundation.org/
https://github.com/volatilityfoundation/volatility/wiki/Memory-Samples
https://www.memoryanalysis.net/amf
https://www.kali.org/downloads/
https://volatility-labs.blogspot.gr/2016/08/automating-detection-of-known-malware.html
https://volatility-labs.blogspot.gr/2016/08/automating-detection-of-known-malware.html
https://az792536.vo.msecnd.net/vms/VMBuild_20160802/VMWare/MSEdge/MSEdge.Win10_RS1.VMWare.zip
https://az792536.vo.msecnd.net/vms/VMBuild_20160802/VMWare/MSEdge/MSEdge.Win10_RS1.VMWare.zip
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To perform the process replacement, the source code of two different projects 

was used: InjectProc [41] and Process-Hollowing [34]. The source code was compiled 

using Microsoft Visual Studio Community 2017, version 15.5.6. In both cases, the 

“malicious” executable just pops up a window with title “pwnd” displaying “Injected” 

or displaying “Hello World” respectively. After the injection, the memory image was 

retrieved by suspending the virtual machine and copying the corresponding .vmss and 

.vmem files.  

The memory images that are hollowed using InjectProc project are MSEdge - 

Win10_preview-eaaa27c2-onrepl.vmem and MSEdge - Win10_preview-eaaa27c2-

onreplNew.vmem. In both images, the hollowed process is notepad.exe. Using 

Process-Hollowing project, which hollows svchost.exe, the memory image created is 

MSEdge - Win10_OnHollow-m0.vmem. For details on how the injection is performed, 

see Hollow process injection and detection examples section. In the specific section is 

also demonstrated how needed information is retrieved in order to verify a) that the 

injection is performed and b) that the results of the proposed methodology are 

correct. 

In the following sections, the methodology is presented using MSEdge - 

Win10_preview-eaaa27c2-onrepl.vmem. The Volatility’s profile parameter used is --

profile="Win10x64_14393" which corresponds to the windows version of the virtual 

machine.  

  

https://github.com/secrary/InjectProc
https://github.com/m0n0ph1/Process-Hollowing
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2.5 Methodology of Detection 

Before analyzing the giveaways of process hollowing, some issues regarding 

Windows’ architecture, must be reminded: 

The executive process structure EPROCESS exists in system address space 

(kernel memory) except the PEB (Process Environment Block) structure which exists 

in process address space (process memory) and thus can be modified, as described in 

process hollowing steps.  

The Virtual Address Descriptors (VADs) are data structures that the memory 

manager uses to keep track of the virtual addresses the process is using and is an 

excellent forensic resource because when a process allocates memory using 

VirtualAlloc, the memory manager creates an entry in the VAD tree. A process’ VAD 

tree describes the layout of its memory segments at a slightly higher level than the 

page tables and is maintained by the operating system, in kernel memory. The VADs 

contain information such as the starting and ending addresses of the allocated 

memory block, mapped file name, the initial protection (read, write, execute) and 

several other characteristics that are objects of interest for the detection method 

[6][26].  

In the following sections, the methodology is presented in two ways: first, 

presenting the Volatiliy command using a hypothetically memory image called 

mem.bin and secondly executing the corresponding command using MSEdge - 

Win10_preview-eaaa27c2-onrepl.vmem, which was introduced in the previous 

paragraph. After that, the results are analyzed. 

The steps to detect Process Hollowing are: 

2.5.1 Process Listing  

The purpose of this step is to determine suspicious processes, meaning 

processes which are not started from the corresponding parent process or parent 

process that is terminated, although it should be present. The last case is not a 

sufficient proof, rather than a simple indication. But the first case is a strong 

indication that something is wrong. For example, there should be only one instance of 

lsass.exe running from the system32 directory and its parent should be winlogon.exe 

on pre-Vista machines, or wininit.exe on Vista and later systems. Stuxnet for 

example, creates two fake copies of lsass.exe, and their parent is not winlogon.exe. 

Similarly, services.exe should be the parent for any svchost.exe instances. As already 

mentioned, another point to be taken into account is whether the number of instances 

of a specific process is the right one [6][35][43]. To list the processes of the system, 

volatility’s pslist plugin is used. 

python vol.py – f mem.bin pslist   

In any step, it is a good practice to compare the data regarding the suspicious process 

with the data regarding corresponding legitimate. 
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Figure 2 - Process Listing in test image 
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It is observed that services.exe is the parent of all svchost.exe instances, as 

they should. Everything looks normal, but it is also observed that there are two 

instances of notepad.exe with pids 5764 and 3912. The parent process id (ppid) of 

process 5763 is 3280 that corresponds to explorer.exe, but the parent of 3912 (pid 

2664) is not found in the process list.  

2.5.2 Comparing kernel and process memory structures  

The purpose of this step is to discover any discrepancies, indicating that a 

process is hollowed out, between the two primary data structures used by processes: 

the PEB (Process Environment Block) which exists in process memory and the VADs 

(Virtual Address Descriptors) which exist in kernel memory. In a noninfected system 

the results from the Volatility’s plugins: 

▪ dllist (which displays a process's loaded DLLs and retrieves the information by 

walking the load order list of PEB)   

▪ vadinfo (which displays extended information about a process's VAD nodes and 

retrieves the information from the VAD structures) 

▪ ldrmodules (which retrieves the information from the PEB and also correlates 

it with VADs) 

 should be compatible [6][35][36]. 

Dynamic Link Library Listing   

Since the data in PEB are initialized at process creation, dlllist may not provide 

any direct clue, but the columns PATH (full path) and BASE (Image Base) of the 

executables found should be used as a reference for the following commands. An 

interesting point is that all instances of a process should have the same executable 

size as explained in a next step. 

Concentrating on the results from the previous step, the commands for this step are: 

python vol.py – f mem.bin  

dlllist –p <suspicious process_id> |grep -i <suspicious process_name>  
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Figure 3 – DLL listing in test image 

As seen above, both notepad processes (pid 3912 and 5764) have the same 

executables’ full path and same image base, but not the same size. The last is an 

indication that something is wrong, as explained in a next step.  

Virtual Address Descriptor information 

As mentioned in earlier sections, VAD structure resides in kernel memory and 

contains information about contiguous process virtual address space allocation and in 

case there is an executable loaded, the VAD node contains information about start 

address, end address, permissions and the full path to the executable. Vadinfo is used 

to extract this information and a process is considered hollowed in case its VAD 

characteristics (for the specific Image Base found with dlllist) are different than its 

PEB characteristics. 

python vol.py – f mem.bin  

vadinfo -p <suspicious process_id> --addr=<Image Base> 

 

One possible anomaly of process replacement is that the name field of FileObject, 

which contains the memory mapped file name, does not exist. This is the result of 

process hollowing because when memory unmap is done, the name entry is removed 

from VAD structure and it is no longer associated with the specific memory region, 

while the PEB structure is not affected by unmapping [6]. The fact that FileObject 
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pointer is none/NULL, means that the memory isn't backed by a file. It would be 

backed by a file if the PE was loaded via LoadLibrary [45]. 

 

Figure 4 – VAD information in test image 

The legitimates’ process (pid 5764) VAD information is correct (name field of 

FileObject contains the executable’s full path) while the corresponding entry for the 

hollowed process (pid 3912) does not exists, meaning it is null. The output of vadinfo 

plugin is used for other forensics reasons too, as it will be shown in the following 

sections. 

Module linked lists and VAD 

When the process is loaded, the process executable is added to the load order, 

init order and memory order module lists in the PEB. The plugin ldrmodules cross-

references this information with the memory-mapped files in the VAD. Specifically, it 

looks for large nodes with PAGE_EXECUTE_WRITECOPY protections, a VadImageMap 

type, and the Image control flag set [6]. 

python vol.py – f mem.bin  

ldrmodules –p <suspicious process_id> | grep <Image Base> 

 

It is suspicious when the MappedPath column (the name field of the memory 

mapped file) is blank for the specific Image Base Address or there isn’t any output for 

the specific Image base address. These are indications that most likely there is code 

injected via VirtualAlloc(Ex) and WriteProcessMemory. If the same full path exists in 

both dlllist and ldrmodules but in a different base, is also suspicious. That might 

happen for example in case of “No memory unmapping” variation.  

It follows the corresponding output using Stuxnet.vmem, which shows that the 

MappedPath column is blank for a hollowed process: 
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Figure 5 – Comparing module linked list and VAD information in Stuxnet.vmem 

But using the demonstration test image, there is no output for the hollowed process’s 

(pid 3912) Image Base, compared to the legitimate one (pid 5764): 

 

 

 

Figure 6 – Comparing module linked list and VAD information in test images 
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The fact that ldrmodules gives not any output for the hollowed process at 

Ιmage Βase Αddress made impression and triggered an in-depth analysis of 

ldrmodules plugin. It turned out that ldrmodules filters the VADs with 

mapped_file_filter, meaning Private memory flag equals to zero and vad.ControlArea 

is set. As shown in Figure 4 – VAD information in test image, ControlArea is not set. 

Also, ldrmodules looks for large nodes with PAGE_EXECUTE_WRITECOPY protections 

[6]. For reasons of more profound research, a python script is written to enumerate 

all the Vads’ characteristics of the specific process from the volatility’s volshell 

environment and the output of it is (regarding the specific Image Base Address): 

 

 [snip] 

 

[snip] 

The above is also confirmed from the vadinfo output in the previous step. 

The code of VadEnumerate.py is: 

 

2.5.3 Checking memory permissions 

As described in the 4th step of hollowing a process, the hollowing process 

allocates a new memory region with PAGE_EXECUTE_READWRITE permissions, while 

an executable normally loaded has PAGE_EXECUTE_WRITECOPY permission. This 

difference is spotted at Protection field in vadinfo output: Protection equals to 6 

(PAGE_EXECUTE_READWRITE) instead of 7 (PAGE_EXECUTE_WRITECOPY). 

The malfind plugin is designed to hunt down remote code injections. The 

concept is that there will be a readable, writeable, and executable private memory 

region (that is, no file mapping) with all pages committed. The region will contain a PE 

header and/or valid CPU instructions [6], so it is used: 

python vol.py – f mem.bin  

malfind –p <suspicious process_id> 
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Malfind plugin spotted the suspicious memory permissions in the suspicious 

process (pid 3912), while it gives no output for the legitimates one (pid 5764): 

 

 
 

Figure 7 – Checking memory permissions in test image 

For the legitimate process, there should not be any output *, but we observe 

that the suspicious one has Protection: PAGE_EXECUTE_READWRITE at addr=<Image 

Base> and the hex dump begins with an MZ signature, indicating that there is an 

executable at the specific address. 

* Legitimate programs may allocate executable private memory for legitimate 

reasons. So, the malfind plugin may produce false positive results. One way to 

distinguish the false positive is to look for MZ signature in hex dump. 

 

2.5.4 Vadinfo – Looking Deeper 

For now, vadinfo volatility plugin is used for comparing kernel and process 

memory structures, but there are some extra points that need attention. One can 

compare the vadinfo output for the legitimate (pid 5764) and suspicious process (pid 

3912), to make these points more comprehensible.  
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Figure 8 – Comparing VAD of legitimate and suspicious process 

Besides File Object’s Name and Protection fields that have been already 

mentioned, it is observed that the VADs’ flags have the following characteristics 

that could be used to reduce the false positive results or confirm the injection: 

[6][35][33][36] 

▪ The hollowed process’s VAD is marked as private memory (PrivateMemory :1 

in flags output line), meaning it is not shared with or inherited by other 

processes. Executables and DLLs can be shared with other processes. A 

process’ memory ranges allocated with VirtualAlloc or VirtualAllocEx are usually 

marked as private. Thus, if the PrivateMemory bit is set for a memory region is 

a factor when looking for injection. 

▪ The hollowed process’s VAD has a VadS tag which means there is no memory 

mapped file already occupying the space. Dynamically allocated memory pages 

created via VirtualAllocEx /WriteProcessMemory are of type _MMVAD_SHORT 

(VadS). Regular loaded libraries in the address space of a process are of type 

_MMVAD (Vad) or _MMVAD_LONG (VadL), meaning it is representing a memory 

mapped file. 

▪ Only the legitimate process has a copy of its executable into the region, 

meaning that the output fields VadImageMap (in Vad Type output line) and 

Image (in Control Flag output line) have value 1.  

▪ The hollow process variation that changes each PE section with the appropriate 

permissions, described previous section, is covered by the way vadinfo works: 

It displays the original protection specified for all pages in the range when they 

were first reserved or committed [18] and because the initial memory allocation 

is made with protection PAGE_EXECUTE_READWRITE, this info is revealed by 

this plugin.  

If the hollowing process used VirtualAlloc to reserve for example ten pages with 

PAGE_NOACCESS and later it commits three of the pages as 

PAGE_EXECUTE_READWRITE and four others as PAGE_READONLY, the 

Protection field still contains PAGE_NOACCESS. Older Zeus samples from 2006 

used this technique, so its injected memory regions appeared as 

PAGE_NOACCESS [6] 
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▪ In some cases, there might exist a File Object’s Name and should be 

confirmed that is the same as the one stated in ImagePathName of the 

PEB (Process Environment Block), displayed by pslist plugin. 

 

2.5.5 Hollowfind plugin 

HollowFind is a Volatility plugin created to detect different types of process 

hollowing techniques created by Monnappa K.A. [56][35], who won the 2016 Volatility 

Plugin [21]. 

python vol.py – f mem.bin hollowfind  

HollowFind works (in general) as follows: 

1. Creates a list of processes using pslist plugin (unless it is used with a -p pid 

parameter)  

2. For each process, it retrieves information from the process structure, PEB and 

the VAD that is pointed by PEB.ImageBaseAddress and checks whether there is 

an executable in the processes’ s VADs  

3. Detects whether the process is hollowed. The criteria used are: 

▪ VAD’s Protection equals to PAGE_EXECUTE_READWRITE or  

▪ There is no VAD entry corresponding to PEB.ImageBaseAddress 

▪ There is an executable in processes’ VADs that PEB.ImageBaseAddress 

does not point to and has PAGE_EXECUTE_WRITECOPY protection 

4. For each suspect process, it displays similar processes’ information  

Hollowfind detected the hollowed process in test image, as shown below: 

 
[snip] 

 

Figure 9 – Hollowfind plugin in test image 

But it produced some false positive results also, like the following, regarding process 

explorer.exe, with pid 3280: 
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[snip] 

 

Figure 10 – Hollowfind plugin false positives 

Analyzing the corresponding VADs’ information, it is confirmed that it is indeed a false 

positive alarm: 

 

A good strategy could be to run hollowfind plugin and then follow the steps described 

in Vadinfo – Looking Deeper. 
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2.5.6 Extracting executables 

The volatility plugin procdump [18] is used to dump a process's executable to 

disk. 

mkdir dump 

python vol.py – f mem.bin  

procdump –p <suspicious process_id> -D dump/ 

ls -a -l dump 

 

 

Similar plugins that could be used are dlldump, vaddump or memdump. The 

difference between memdump, procexedump and procmemdump is analyzed in [57]. 

  

Figure 11 – Extracting malicious executable in test image 

The executables are now available for further static analysis using file or strings 

commands, ssdeep [https://ssdeep-project.github.io/ssdeep/], IDA Pro, readpe or a 

hex editor, YARA and other tools. YARA detects hidden and injected code and provides 

a framework for general-purpose signature-based memory scanning [33][43]. This is 

helpful especially in case there are any IOC (Indicators Of Compromise). For example, 

in case there is a suspicion that the malicious executable references libraries such as 

LoadLibrary and GetProcAddress, someone could look for them. As another example, 

using the string command on executable.3912.exe, “MessageBoxW” string is found 

which probably is the command that pops the “malicious” window. The executables 

could also be submitted for analysis, for example to virustotal or using the volatility’s 

vscan plugin. Static analysis is outside the scope of this document, however here is an 

example of using readpe: 

 

Figure 12 – Extracting malicious executable in test image 

2.5.7 Comparing executables sizes  

Now that there is a strong indication about which process is injected and which 

is the legitimate one, it is useful to compare their executable sizes to evaluate 

whether the executables are different. Alternatively, diff command could be used. 
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Another way to compare the executables is to retrieve the percentage of 

similarity between them using fuzzy hashing. The industry standard tool for fuzzy 

hashing is called 'ssdeep' [43]. 

As already mentioned and seen in the next figure, the aforementioned 

executables’ sizes are different: 

 

Figure 13 – Comparing malicious and legit executable in test image 

2.5.8 Determining the owner of the hollowed process 

Security Identifiers (SID) identify user, group and computer accounts. Every 

account has a unique SID. Each process in Windows has an associated token that 

describes which Security Identifier (SID) owns the process and what kind of privileges 

have been granted to it [44]. Viewing the SID associated with a process is useful only 

when the hollowed process belongs to specific users, like winlogon.exe, so it can be 

compared with the legitimates’ process information. Either way, it can help identifying 

processes which have maliciously escalated privileges. 

python vol.py – f mem.bin getsids –p <suspicious process_id>, <legitimate 

process_id>  

 

 

In our test image this does not apply, because the process notepad.exe doesn’t 

belong to specific user. However, it follows an example taken from [33] that shows 

the difference between the SIDs for the legitimate winlogon.exe and a process which 

was started by a user from Explorer: 

# This is a legitimate winlogon.exe 
winlogon.exe (632): S-1-5-18 (Local System) 
winlogon.exe (632): S-1-5-32-544 (Administrators) 
winlogon.exe (632): S-1-1-0 (Everyone) 
winlogon.exe (632): S-1-5-11 (Authenticated Users) 
# This is a process started from Explorer by the user 
aelas.exe (1984): S-1-5-21-1614895754-436374069-839522115-500 (Administrator) 
aelas.exe (1984): S-1-5-21-1614895754-436374069-839522115-513 (Domain Users) 
aelas.exe (1984): S-1-1-0 (Everyone) 
aelas.exe (1984): S-1-5-32-544 (Administrators) 
aelas.exe (1984): S-1-5-32-545 (Users) 
aelas.exe (1984): S-1-5-4 (Interactive) 
aelas.exe (1984): S-1-5-11 (Authenticated Users) 
aelas.exe (1984): S-1-5-5-0-59917 (Logon Session) 
aelas.exe (1984): S-1-2-0 (Users with the ability to log in locally) 

 

Based on the output, one should know that if he/she ever sees a process named 

winlogon.exe that has SID owners like the aelas.exe process, then the winlogon.exe is 

probably not the real winlogon.exe. 

http://www.forensicswiki.org/wiki/Context_Triggered_Piecewise_Hashing
http://www.forensicswiki.org/wiki/Context_Triggered_Piecewise_Hashing
http://ssdeep.sourceforge.net/
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2.5.9 Priority level 

User applications and services start with a normal base priority, so their initial 

thread typically executes at priority level 8. However, some Windows system 

processes (such as the session manager, service control manager, and local security 

authentication process) have a base process priority slightly higher than the default 

that ensures that the threads in these processes will all start at a higher priority than 

the default value of 8 [26]. In some cases, the hollowed process is a process that is 

normally created by Windows system processes, meaning that their threads have 

priority level higher than 8. So, priority level check and comparison make sense. The 

process base priority is stored in EPROCESS.Pcb.BasePriority. A simple Volatility’s 

volshell script is created to retrieve this information.  

In the test image, the hollowed process is notepad.exe and it does not belong 

to this category. Thus, comparing the priority does not give any evidence. Instead, 

the Stuxnet memory image is used as an example. Process 680 is the legitimate one 

and processes 868 and 1928 are injected. As shown below, the legitimate one has a 

higher priority than the other ones: 

 

 Figure 14 – Comparing legitimates’ and injected process’ priority 

This isn't a strong artifact, because it is possible to change the priority by using 

SetPriorityClass. Also, since the base priority of threads is inherited from the base 

priority of the process which owns the thread (unless SetThreadPriority is called), then 

the differences should be visible using the threads plugin [45]. 

2.5.10 Malfofind plugin 

At 2016 Volatility Plugin Contest, Dima Pshoul won the 3rd place with 

“Advanced Malware Hunter's Kit” [21] which includes Malfofind plugin, created to 

detect Process Hollowing. 

As the author claims in his submission paper, “This plugin will scan currently 

loaded modules (using the VAD) for each process and will check if they are all 
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accordingly mapped in the process’ PEB. So why should this scanning technique work? 

If we examine the implementations of this technique we will notice how all the 

implementations contain the step of NtUnmapViewOfSection(ProcessHandle, 

ProcessImageBase) and then using VirtualAllocEx to map the injected executable into 

the same address. This will create an inconsistency between the VAD mapped images 

and the PEB linked images.” [46]. 

python vol.py – f mem.bin malfofind  

Malfofind was tested and successfully detected the hollowed process (pid 3912), as 

demonstrated in the next figure: 

 

Figure 15 – Malfofind output for test image 

2.5.11 Threadmap plugin 

Threadmap [47] is a plugin whose authors won the 2nd place in 2017 Volatility 

Plugin Contest for it [21]. The working team was based on John Leitch’s Process 

Hollowing project [34] and created three different variations of the hollowing process. 

The first was not detected by malfind but was detected by hollowfind. The second 

variation was detected only by malfofind plugin and the third was detected only by 

threadmap plugin. Threadmap uses _ETHREAD structure information in order to relate 

a thread with a VAD. Then it compares the corresponding _EPROCESS structure to the 

VAD using the key points referenced above as well as some extra points needed for 

detecting the created variations.  



   27 

This plugin was initially tested with the Memory Dump sample that the author 

used, meaning the file KSLSample.vmem, downloaded from 

[https://www.mediafire.com/file/jlmtbbinanuh6jr/KSLSample.rar] and the results 

were as it is expected, based on the Threadmap documentation [47]. In order the 

Threadmap to produce results and not any error messages, the parameter --

profile="Win7SP1x64" was used for the specific memory image. 

python vol.py – f mem.bin threadmap  

 

For Stuxnet memory image, many profiles were tested. In all cases, the plugin 

produced many results and then errors occurred, as shown below: 

 

[snip] 
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Figure 16 – ThreadMap output for Stuxnet memory image 

Regarding the main testing image, ThreadMap produced nothing but errors: 

 

Figure 17 – ThreadMap output for test image 

Probably ThreadMap works correctly for memory images of specific Windows versions, 

such as Win7SP1x64. 
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2.6 Summary 

As seen in the previous paragraphs, the proposed methodology detects the 

Hollow Process Injection performed in a system and reveals the possible systems’ 

memory anomalies. These steps were followed to detect the Injection in various 

memory images additionally to the main one demonstrated in the current section, as 

already mentioned. The good results of the methodology are verified in three created 

memory images as well as in two downloaded images.  

The methodology requires that memory analysis is conducted using the 

Volatility Framework and more specific core Volatility’s plugins, custom made scripts 

and plugins created for the specific purpose of Hollow Process Injection detection were 

used.  

Since Process Hollowing is a commonly used Process injection technique, it has 

caused a great deal of concern to the analyst community. This is also clear from the 

number of dedicated plugins created and the number of related articles found on the 

World Wide Web. 
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3 DLL Injection  

In this section, classic DLL (Dynamic Link Library) injection technique is 

presented and injections are performed in various systems resulting various test 

memory images. A new detection method is proposed, verified, implemented and 

applied on the test images. After that, the conclusions are extracted and presented. 

Classic DLL injection, or remote DLL injection, is an injection technique that 

loads a malicious DLL inside the context of a running legitimate (target) process. The 

remote process is manipulated by functions such as CreateRemoteThread and its 

memory content is altered. Once the compromised process loads the malicious DLL, 

the OS (Operating System) automatically calls the DLL’s DllMain function, which is 

defined by the author of the DLL. This function contains the malicious code and has as 

much access to the system as the process in which it is running [48][3]. The 

prerequisite is the existence of the malicious DLL in disk. It is considered as the 

easiest and simpler injection technique.  

3.1 How DLL Injection works 

The steps that the malicious process, or otherwise called the injector performs in 

this technique are:  

1. Enables debug privilege (SE_DEBUG_PRIVILEGE) that gives it the right to read 

and write in other process’ memory as if it were a debugger. 

 

2. Finds the target process’ ID using its name. 

This is usually done by creating a snapshot of all processes and searching in it 

for the specific process. CreateToolhelp32Snapshot, Process32First and 

Process32Next APIs (Application Program Interfaces) are used for this purpose. 

 

3. Opens the target process with the desired access rights and gets a handle to it. 

This is done by calling OpenProcess function with at least 

PROCESS_CREATE_THREAD, PROCESS_VM_OPERATION and 

PROCESS_VM_WRITE access rights. 

If the caller has enabled the Debug Privilege, the requested access is granted 

regardless of the contents of the security descriptor.  

 

4. Gets the full path and name of the DLL, which already exists on the disk. 

 

5. Allocates a new memory region within the virtual address space of the target 

process of size as the length of the malicious DLL full name (including its path) 

and gets the address this memory region. VirtualAllocEx with 

PAGE_READWRITE protection is used. 

 

6. Writes the DLLs’  full name into the newly allocated memory using 

WriteProcessMemory at the address retrieved in the previous step. 

 

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx
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7. Creates a new thread within the context of the legitimate process that executes 

the LoadLibrary function using as parameter the written DLL full name. This 

practically loads the malicious DLL and the injection is completed.  

This step is performed as follows: First, a handle for kernel32.dll is fetched and 

the address of LoadLibrary function is retrieved from it. Then the thread is 

created by using APIs such as CreateRemoteThread, NtCreateThreadEx, or 

RtlCreateUserThread. The important parameters for these APIs are the handle 

on the target process (retrieved in step 3), the pointer to the address of 

LoadLibrary function and the pointer to the address of the memory region that 

holds the Dll name. This means that LoadLibrary loads the malicious DLL. The 

thread runs in the virtual address space of the target process immediately after 

its creation. 

 

8. Cleans up by freeing the allocated memory and closing the handle on the target 

process and created thread, using VirtualFree and CloseHandle functions 

respectively. 

Note: “The thread object remains in the system until the thread has terminated 

and all handles to it are closed through a call to CloseHandle” [58]. 

[6][22][23][49] 

Α malware that uses this technique is for example Poison Ivy. 

The following figure presents the described steps. 

 

Figure 18 – Remote DLL injection steps 

Most legitimate processes should not need to use APIs such as 

CreateRemoteThread, so it is characterized as a very suspicious API and is detected 

by many security products which also may detect the malicious DLL on the disk [22]. 

These are the reasons this technique is considered as simple and is not frequently 

used by the attackers who are trying to evade defenses.  

https://msdn.microsoft.com/9b84891d-62ca-4ddc-97b7-c4c79482abd9
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3.2 DLL Injection Detection: A different approach 

The DLL Injection described in previous section uses LoadLibrary function to 

load the malicious DLL in the process, which is the perfectly normal way, so it cannot 

be distinguished from any other legitimately loaded DLL. The malicious DLL appears 

through Volatility’s dlllist plugin and can be detected by its unexpected name paths. 

Anomalies in memory can be detected using Volatility in case a) the injected DLL is 

hidden (by unlinking its _LDR_DATA_TABLE_ENTRY from one or more of the ordered 

lists) using ldrmodules and b) the injected DLL is packed, and the unpacking 

procedure copies the decompressed code to a new memory region which can be 

located by malfind plugin. In any other case, an analyst must use typical analysis such 

as context analysis, Yara scan, etc. [6]  

This thesis assumes that the DLL is not hidden and does not focus on 

standard DLL injection detection techniques (such as memory permissions, priority 

changes, analyzing the Process Environment Block), nor it analyzes the DLL itself for 

signatures for example. A different approach is used which focuses on the fact that 

LoadLibrary and CreateRemoteThread functions are used and on time sequence 

of events which is presented in the following timeline, along with the key points 

explained below. 

 

Figure 19 – Key points of DLL Injection Detection  

 

The key points in which the idea of detection is based are presented below 

together with comments that help to understand the produced code:  

1. Since the injected DLL is not commonly used, the process’ corresponding VAD 

(Virtual Address Descriptor) node is marked with the value 1 in its 

NumberOfMappedViews and NumberOfUserReferences fields. This applies to 

the first time the malware is executed. In case the same DLL is injected in 

different processes, this does not apply. This is the reason why in the final 
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script, it is chosen a parameter (OneProcess) to be used that determines 

whether the above condition should be checked or not. 

 

2. The injected DLL is explicitly loaded at run-time using LoadLibrary (or 

LoadLibraryEx) API function [50], meaning that: 

▪ there isn’t any corresponding entry in the processes΄ IAT (Import 

Address Table) and  

▪ DLLs’ LoadReason attribute in corresponding windows data structure is 

LoadReasonDynamicLoad or its ObsoleteLoadCount is 6. 

For further details, see sections Determine whether a DLL file is loaded 

via LoadLibrary using its attributes and Scan processes’ memory for IAT 

entries. 

 

3. The injected DLL has a load time difference in relation with the last DLL 

that the remote process loads for legitimate reasons. This is due to the delay of 

the malware execution in relation to the legitimate process’s creation time. 

Because this time difference cannot be estimated, inside the context of this 

work, it is considered that the injected DLL may be loaded just one second after 

the last legitimate one. 

 

4. The thread that executes the LoadLibrary function is created by the malware 

just before the malicious DLL loading. The TimeWindow parameter is used to 

express the time interval between malicious thread creation and DLL 

loading. Usually this is done in the same second, but the default value for 

TimeWindow is 10 sec, so that any possibly suspicious thread is not excluded. 

From all the legitimate’s process threads, the interesting ones are those that 

are not terminated and are created between 10 seconds before the DLL loading 

until the DLL loading. This means that one suspicious DLL may be correlated to 

more than one possibly responsible threads that caused its loading. 

 

5. This thread is created by the malware using the handle to the legitimate 

process. So, from all processes’ handles of type THREAD, we are interested in 

the ones that refer to the specific couple of process-thread id and are handled 

from the legitimate process. Handles created by csrss.exe, which is involved 

in the creation of every process and thread [6] are excluded. 

 

6. To reduce the false positive results, there is the option to store in a list 

(WhiteList) the full path of DLLs that are considered harmless. If a DLL from the 

White List is characterized by the code as suspicious, a corresponding warning 

message is displayed.  
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3.2.1 Detection Flowchart 

The idea of the detection method, at a high level (without much detail) is 

presented in the following flowchart. The key points mentioned above are included in 

Characterize DLL subprocess. 

  

Figure 20 - DLL Injection Detection Flowchart 
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Figure 21 - Characterize DLL subprocess flowchart 
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3.2.2 Detection Idea Verification 

Initially, the concept described above was confirmed by calling a script inside 

volshell Volatilitys’ plugin environment that enumerates the VADs with the specific 

characteristics and manually combining its results with the following Volatility’s 

plugins: a) timeliner which creates a timeline from various artifacts in memory and b) 

handles which displays the open handles in a process [18]. These plugins are time 

consuming and produce more information than the needed.  

The IAT entries were also manually found, creating the processes’ exe with 

procdump plugin and using readpe command. Example of this procedure is presented 

in a following section.  

After confirmation, all the steps of the detection flowchart were 

combined in a single python script, called FindDLLInj.py, which is called from 

Volatility’s volshell plugin.  

3.3 Detection Code - FindDLLInj.py 

The parameters that the script uses are:   

OneProcess 

 Boolean that determines the characteristics of VADs selected while traversing  

processes’ memory looking for DLL names. Consequently, it determines the  

characteristics of corresponding DLL. It is used in Characterize DLL step.  

Possible values: 

True : we are suspicious only of  DLLs that their NumberOfMappedViews and  

NumberOfUserReferences are equal to 1. 

False : we are suspicious of any DLL, regardless their NumberOfMappedViews  

and NumberOfUserReferences values. 

 

TimeWindow  

Integer that represents the time interval (in sec, before DLL load time) during 

which it is being searched for starting threads. This is used to correlate the 

DLLs with threads that possibly loaded them. The default value is 10 seconds. 

 

WhiteList  

A list of DLLs’ full names that are considered as not suspicious. 

 

The output file is a Tab delimited text file named SuspectedDlls.txt which includes: 

▪ an introduction line that contains information about the memory image and 

parameters used, e.g. Time of execution, memory image on which the script is 

executing, TimeWindow and OneProcess parameters values,  

▪ a columns header line and       

▪ output lines which consist of the following fields: 
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Field Name Field Explanation 

Pid Process ID 

Description In case of DLL injection detection: “Suspicious process” 
Otherwise, warnings such as:  
“No Imported Dll found”,  

“No Loaded Dlls found”, 
“No handle found”, 

“Dll in WhiteList” 

ImageFileName Process Name 

Dll DLL full name  

DllLoadTime Date and Time that the DLL was loaded (UTC+0000) 

TimeDifference from 
previously loaded Dll 
in sec 

Time Difference from the previously loaded DLL inside 
the context of the specific process  (in sec) 

ThreadPid ID of the process under which the injection thread is 
created (injected process, same as Pid) 

ThreadTid ID of the injection thread created by the malicious 

process, inside the context of the Pid  

ThreadLoadTime Date and Time that the Thread begun executing 
(UTC+0000) 

ThreadExitTime Thread Exit Date and Time or ‘ ‘ 

ThreadHandlePid ID of the process that handles the injection Thread 
(injector process ID) 

 

The complete script that implements the steps described above is cited in 

FindDLLInj Script section and alternatively can also be found in the repository: 

https://github.com/Soterball/DLLInjectionDetection, together with some produced 

output files. 

Note: Warning messages are displayed when no loaded DLLs are found and in case 

the IAT table cannot be reconstructed due to the high likelihood that one or more 

pages in the PE header or IAT are not memory resident (paged). Also, a warning is 

displayed when no handle that correspond to the suspicious DLL/thread pair is found. 

3.3.1 Explanations relating the script 

Before looking at the entire script, it is necessary to give some explanations, to 

make clear how the above-mentioned key points of detection are implemented 

through the code. 

Determining whether a DLL file is loaded via LoadLibrary using its attributes 

In windows operating system, the DLLs are represented though 

_LDR_DATA_TABLE_ENTRY data structure which is analyzed below, using Sysinternals 

Livekd on the testing environment (Win10 Build 14393) to debug the Windows kernel 

[59]. The _LDR_LOAD_REASON structure, representing the LoadReason described 

https://github.com/Soterball/DLLInjectionDetection
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above is also shown. The command dt("_LDR_DATA_TABLE_ENTRY") inside Volatility’s 

volshell environment gives the same output. 

 

 

Figure 22 - _LDR_DATA_TABLE_ENTRY and _LDR_LOAD_REASON sturctures 

In [6] is mentioned that when the LoadCount field of 

LDR_DATA_TABLE_ENTRY is 0xffff (or -1 because it is a short integer), it means that 

the DLL is loaded because this was specified in the IAT. This statement is tested and 

confirmed in a memory image of older windows version called Stuxnet.vmem, 

downloaded from [21] (In Blog Archive, 2016, August, post: Automating Detection of 

Known Malware through Memory Forensics). In windows 8 and later, the LoadCount is 

replaced with ObsoleteLoadCount [60].  

To find out how ObsoleteLoadCount is manipulated by Windows, since it is not 

sufficiently documented by Microsoft, a list of all loaded modules in the testing 

memory images with their corresponding attributes is created. This list is compared 

https://volatility-labs.blogspot.com/2016/08/automating-detection-of-known-malware.html
https://volatility-labs.blogspot.com/2016/08/automating-detection-of-known-malware.html
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with the IAT reproduction output and some paradoxes were found: a) the district 

values for ObsoleteLoadCount are 0xffff (or 65535 or -1) and 6, b) there are DLLs that 

have corresponding entries in the IAT and their ObsoleteLoadCount is 6 (and not 

0xffff). The situation is a bit confusing, but it becomes clearer when 

ObsoleteLoadCount is associated with LoadReason field of _LDR_DATA_TABLE_ENTRY 

structure. It is safe to conclude that the DLLs that are loaded using LoadLibrary 

have either ObsoleteLoadCount equal to 6 OR LoadReason equal to 

LoadReasonDynamicLoad. The OR logical operand is used in a pessimistic way so 

that more DLLs are going to be checked. LoadReasonDynamicLoad corresponds to the 

value of 4, as shown in the above figure, which is confirmed in file 

\volatility\plugins\overlays\windows\ win10_x64_vtypes.py and also stated in [60].  

Note: The dlllist Volatility plugin still shows the LoadCount (with the default value of 

0) and not the contents of ObsoleteLoadCount, even when the profile is determined as 

“Win10x64_14393”. 

The code used for this test is (inside Volatility’s volshell plugin) is: 

 

Scan processes’ memory for IAT entries  

When an executable is first loaded in memory, the Windows loader, amongst 

others, is responsible for loading the needed DLLs. This information is stored in the 

IAT (Import Address Table), which is part of the PE structure. On the other hand, the 

DLLs loaded using LoadLibrary function are explicitly loaded at run-time [61] and 

there isn’t any corresponding entry in the IAT. So, a useful step to the detection 

process is the reproduction of the IAT. Loaded DLLs stored in it are not considered 

suspicious, in contrast with the other loaded DLLs.  

Although the PE (Portable Executable) file format is outside the scope of this 

thesis, it follows a visual representation of PE file structure at an abstract level and 

only to assist the understanding the code used for retrieving the names of the 

imported DLLs. The cells with black background refer to the structure names and the 

gray cells to their fields. The blue dashed lines show how the respective fields are 

analyzed and the blue arrows represent pointers. All these data structures are defined 

in WINNT.H [51]. 

 

for proc_id in getprocs(): 

 p_id= proc_id.UniqueProcessId     

 cc(pid=p_id) 

 process=proc() 

 

 mods = process.get_load_modules() 

 

 for mod in mods: 

  print  p_id, mod.FullDLLName, mod.BaseDLLName, mod.LoadCount, 

mod.ReferenceCount, mod.ParentDLLBase, mod.ObsoleteLoadCount,  

mod.LoadReason ,mod.ParentDLLBase, mod.DLLBase 
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Figure 23 - Diagram showing PE File structure and IAT 

As shown in the above diagram, the IAT (Import Address Table) is represented 

as an array of IMAGE_IMPORT_DESCRIPTORs. The last element of the array is 

indicated by an IMAGE_IMPORT_DESCRIPTOR that has fields filled with NULLs. The 

import table (or .idata section) of the PE begins with this array. The import table is 

the second entry of the DataDirectory table which is an array of 

IMAGE_DATA_DIRECTORY structures that resides inside IMAGE_OPTIONAL_HEADER, 

field of IMAGE_NT_HEADERS Header [27][28][51]. 

Going in the opposite direction to that described in the previous paragraph, the 

procedure of scanning each process’s memory for IAT entries using the 

Volatility’s volshell plugin, has the following steps:   

▪ Create a _IMAGE_DOS_HEADER object using as offset the process’ base 

address 

▪ Get the NT header, using the get_nt_header function (which is the same as 

following the e_lfanew member to it) 

▪ Find DataDirectory[1] inside OptionalHeader 

▪ Scan the IAT and create _IMAGE_IMPORT_DESCRIPTOR objects until an empty 

one is found. The name field is the address of an ASCII string that contains the 

name of the DLL and is relative to the image base. Read the DLL Name and 

append it in the list of Imported DLLs [6][52]  
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The code that reproduces the IAT table follows. Part of it is taken from file 

plugins/overlays/windows/pe_vtypes.py, imports() function of class 

_LDR_DATA_TABLE_ENTRY. 

 

Confirmation of the IAT reproduction 

The above code has been tested in various processes of various images. The 

results are identical to those of using objdump and readpe commands to the 

corresponding .exe files, created by procdump volatility. The following screenshots 

show the results for process 6120 (notepad) on one of the testing memory images. 

At first, the process 6120 is dumped and the corresponding .exe is created using 

procdump plugin.  

  

Using the readpe command, the PE structure as described above, is presented. 

# "Scan" PE to reconstruct the IAT table - 1st method  

 DLLsFromImport=[] 

dos_header = obj.Object("_IMAGE_DOS_HEADER",offset =    \ 

process.Peb.ImageBaseAddress,vm = process_space) 

 nt_header = dos_header.get_nt_header() 

 data_dir = nt_header.OptionalHeader.DataDirectory[1] 

 

 i = 0 

 

 #desc_size = self.obj_vm.profile.get_obj_size('_IMAGE_IMPORT_DESCRIPTOR') 

 desc_size=20 

 

 while 1: 

      desc = obj.Object('_IMAGE_IMPORT_DESCRIPTOR',   

         vm = process_space,      

         offset = process.Peb.ImageBaseAddress +  

data_dir.VirtualAddress     

+ (i * desc_size), parent = self) 

 

      # Stop if the IID is paged or all zeros 

      if desc == None or desc.is_list_end(): 

   break 

 

      # Stop if the IID contains invalid fields  

      if not desc.valid(nt_header): 

   break 

 

      DLLName=obj.Object("String", offset =  

desc.Name+process.Peb.ImageBaseAddress, 

vm = process_space, length = 128) 

      DLLsFromImport.append(str(DLLName).lower()) 

       

      i += 1 
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[snip] 
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As one can see, the IAT is displayed as well as the imported DLL’s names. Then the 

information of the .text is displayed. The following objdump command is used to 

create a text file with the disassembly information. 

 

which confirms the readpe output. Part of this text file is shown below. 
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On the other hand, the list of imported DLLs resulting from the code, has the 

same entries: 

 

So, this part of the code is sufficiently tested. The only problem seems to be 

what will happen in case one or more pages in the PE header or IAT are not memory 

resident. For now, in case the IAT cannot be reproduced, a warning is displayed. 

Process’s Threads 

The following figure is created to help understanding the code for getting the 

process’s threads with just one look. Once again, the blue dashed lines show how the 

respective fields are analyzed and the blue arrows represent pointers. 

 

Figure 24 – Diagram showing Processes’ and Threads’ data structures 
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All that must be done is following the processes’ ThreadListHead which is a 

doubly linked list that chains together all the process’ threads (each list element is an 

_ETHREAD) [6]. The ThreadListEntry of each _ETHREAD points to the next _ETHREAD 

[26][53][54]. This is implemented by a for loop (taken from 

\volatility\plugins\malware\threads.py):  

As seen above, the items of interest regarding the threads are creation and exit 

time as well as process and thread id. The last are stored in Cid structure. This 

information is needed so that one thread can be correlated to a loaded DLL using 

TimeWindow parameter, as explained before. 

All the involved Windows data structures are presented below, inside Volatility’s 

volshell plugin environment (alternatively to the Windows kernel debugger used 

before). 

 

[snip] 

 

[snip] 

#---- Get Threads in the context of the process (in Thread List) ---- 

Thread_List=[] 

for thread in process.ThreadListHead.list_of_type("_ETHREAD", "ThreadListEntry"): 

timestamp_utc = calendar.timegm(time.strptime(str(thread.CreateTime), 

 "%Y-%m-%d %H:%M:%S UTC+0000")) 

 Thread_List.append([int(thread.Cid.UniqueProcess),int(thread.Cid.UniqueThread, 

str(thread.CreateTime), timestamp_utc,  

str(thread.ExitTime or ' '), hex(thread.StartAddress)]) 
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  Figure 25 - Processes’ and Threads’ data structures 

Handles on the Threads 

As already mentioned, one key point for DLL injection detection is the fact that 

the thread that executes the LoadLibrary function inside the context of the legitimate 

process is created by the malicious process. Consequently, in case a thread is 

handled by the same process under which it is executed, the thread is not 

suspicious. To derive this conclusion a list of the process handles (Handle_List) is 

created (code taken from \volatility\plugins\handles.py):  

#---- Get Process’ Handles (in Handle_List) and update ALL Processes' handles 

#(AllProcessHandle_List) ---- 

Handle_List=[] 

process.ObjectTable.HandleTableList 

pid=int(p_id) 

for handle in process.ObjectTable.handles(): 

 if not handle.is_valid(): 

  continue 

 object_type = handle.get_object_type() 

 if object_type == "Thread": 

  thrd_obj = handle.dereference_as("_ETHREAD") 

  # Details handle PID, TID, process id that owns the handle  

  Handle_List.append([int(thrd_obj.Cid.UniqueProcess),   

                            int(thrd_obj.Cid.UniqueThread),p_id]) 

  AllProcessHandle_List([int(thrd_obj.Cid.UniqueProcess),  

                            int(thrd_obj.Cid.UniqueThread),p_id]) 
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For each possibly suspicious thread and DLL combination (per process), the 

processes’ handle list is checked and in case a corresponding entry is found, the 

thread is considered as not suspicious. AllProcessHandle_List is also updated so at the 

end it contains information about all handles from the memory image.  

As presented in the detection flowchart, after “scanning” all processes, 

each pair of suspicious DLL/thread is checked to ascertain whether there is a 

handle on the thread. If the handle exists, the process that created this handle is 

the one that also created the thread and consequently is the malicious process. The 

malicious’ process id is also updated in the suspicious DLL/thread list. On the other 

hand, if no handle is found, a warning is displayed because although this is an 

anomaly, it is not indicating a DLL injection with certainty. Maybe the region of 

memory that holds the handles is mapped.  

 

3.4 Calling FindDllInj.py 

At first, FindDllInj.py must be copied in Volatility’s directory, e.g. 

/usr/share/volatility/ and then the script is called inside Volatility’s volshell plugin, for 

example: 

 

while the script is executing, it displays the various processes’ context 

 

and the output file can be manipulated as a text file or imported in spreadsheet  

[snip]

 

 

3.5  FindDLLInj Testing  

3.5.1 Testing Environment  

In websites https://gist.github.com/zmwangx/e728c56f428bc703c6f6 and 

https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/ there are many 

https://gist.github.com/zmwangx/e728c56f428bc703c6f6
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
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windows virtual machines available for and for testing was downloaded Windows 10 

Enterprise Evaluation, Build 14393.rs1_release.180209-1727 

(https://az792536.vo.msecnd.net/vms/VMBuild_20160802/VMWare/MSEdge/MSEdge.

Win10_RS1.VMWare.zip) which was processed with VMware® Workstation 12 Pro 

software, version 12.5.2 build-4638234 [9]. 

To perform the DLL injection, the source code of two different malware Projects 

was used: injectAllTheThings [55] and InjectProc [41]. The source code was compiled 

using Microsoft Visual Studio Community 2017, version 15.5.6. In both cases, the 

“malicious” DLL (dllmain.dll and mbox.dll respectively) just pops up a window 

displaying “Process attach” or “Injected”. 

On the investigating hand, KALI Linux 2017.1 was used (downloaded file name 

kali-linux-2017.1-amd64.iso from https://www.kali.org/downloads/ ) which includes 

Volatility’s Foundation Volatility Framework 2.6. KALI and was opened with Oracle 

VirtualBox version 5.2.12 r122591 (Qt5.6.2) [10]. 

Memory images are taken at various moments, as described in the following 

table: Before Injection, on DLL execution, after terminating the DLL, after terminating 

the injected process, after terminating the injection process, on DLL injection in more 

than one process, e.t.c. 

In each case, just before the memory image was created, the running Windows 

Virtual Machine environment was checked to validate that the DLL injection was 

achieved. For this purpose, ProcessHacker software was used (downloaded from 

https://processhacker.sourceforge.io/downloads.php). To be more precise, it was 

checked that the “malicious” DLL was loaded within the specific process address space 

and was recorded any information needed to verify that FindDllInj.py works correctly: 

the malicious full path and name, the injected process ID, the thread ID that loaded 

the DLL and the injection process ID. In appendix, section A DLL injection testing 

example, is shown exactly how this information was retrieved, using image 

InjectAllThings_before_ok.vmem as an example. It is also shown how the script was 

tested and its output confirmed. 

3.5.2 Testing results 

The following table presents the results of the created script execution 

(FindDLLInj.py) using several memory images files. The second column contains 

details about the system when the memory image is taken, the corresponding image 

file name and the output file name created by the script. The third column contains 

one or more lines of the output file regarding the suspicious process found. In case 

there is not any suspicious process, no output line is included. Not all the warnings are 

presented, only a few as an example. The output line of the first test is explained in 

detail and analyzed according to the output file layout. The output lines of the 

remaining tests have the same structure. All the results were confirmed as described 

in A DLL injection testing example. 

 

https://az792536.vo.msecnd.net/vms/VMBuild_20160802/VMWare/MSEdge/MSEdge.Win10_RS1.VMWare.zip
https://az792536.vo.msecnd.net/vms/VMBuild_20160802/VMWare/MSEdge/MSEdge.Win10_RS1.VMWare.zip
https://github.com/secrary/InjectProc
https://www.kali.org/downloads/
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The testing results on the memory images injected using the code presented in injectAllTheThings  project [55] are:  

 

Test 

No. 

Test Memory Image Characteristics Output line of interest 

1 DLL injection in process notepad.exe 
(pid=6108)  

During DLL execution (respective window 

popped up) 

Injecting process still active 
(injectAllTheThings.exe , pid 5248) 

Image File name:  
InjectAllThings_before_ok.vmem 

Output file name: SuspectedDlls - 

InjectAllThings_before_ok.txt 

 

 

6108 Suspicious process notepad.exe
 c:\users\ieuser\desktop\injectallthethings-
master\x64\release\dllmain.dll 2018-06-04 14:23:27 113

 6108 5304 2018-06-04 14:23:27 UTC+0000  
 5248 

 

This output line is analyzed as:  

 

 Pid 6108 

Description Suspicious process 

ImageFileName notepad.exe 

Dll c:\users\ieuser\des

ktop\injectallthethin
gs-
master\x64\release

\dllmain.dll 

DllLoadTime 2018-06-04 
14:23:27 

TimeDifference  113 

ThreadPid 6108  

ThreadTid 5304 

ThreadLoadTime 2018-06-04 

14:23:27 

ThreadExitTime  

ThreadHandlePid 5248 
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2 Injection in process notepad.exe  

(pid 6108) achieved 

During DLL execution (respective window 

popped up) 

Injecting Process terminated 

Image File name:  
InjectAllThings_closeExe.vmem 

Output file name: SuspectedDlls - 
InjectAllThings_closeExe.txt  

Note: process 1140 is ProcessHacker 

6108 Suspicious process notepad.exe
 c:\users\ieuser\desktop\injectallthethings-
master\x64\release\dllmain.dll 2018-06-04 14:23:27 113

 6108 5304 2018-06-04 14:23:27 UTC+0000  
 1140 

 

 

3 Injection in process notepad.exe (pid 6108) 
achieved 

DLL terminated (respective window closed) 

Injecting Process terminated 

Image File name:  
InjectAllThings_after_ok.vmem 

Output file name: SuspectedDlls - 
dll_inj_after_ok.txt 

No suspicious processes, just warnings. 

Since the corresponding thread is terminated, the script gives no 
output.  

 

4 Virtual machine restarted 

Injection in two different processes 

explorer.exe (pid 5000) and notepad.exe 
(pid 2560) 

During DLL execution (respective window 

popped up) 

Injecting Processes still active   

Image File name:  InjectAllThings_2proc.vmem 

Output file name: SuspectedDlls - 
InjectAllThings_2proc.txt 

Note: Process 6060 is ProcessHacker, the 

OneProcess parameter is set to False 

5000 Suspicious process explorer.exe
 c:\users\ieuser\desktop\injectallthethings-
master\x64\release\dllmain.dll 2018-06-04 15:05:16 195

 5000 68 2018-06-04 15:05:16 UTC+0000  
 244 

2560 Suspicious process notepad.exe
 c:\users\ieuser\desktop\injectallthethings-

master\x64\release\dllmain.dll 2018-06-04 15:02:09 125
 2560 2540 2018-06-04 15:02:08 UTC+0000  

 6060 

2560 Suspicious process notepad.exe
 c:\users\ieuser\desktop\injectallthethings-
master\x64\release\dllmain.dll 2018-06-04 15:02:09 125

 2560 2540 2018-06-04 15:02:08 UTC+0000  
 3492 
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5 Injection in two different Processes 

DLL terminated (respective window closed) 

Injecting Process active 

Image File name:  
InjectAllThings_2proc_afterOK.vmem 

Output file name: SuspectedDlls - 
InjectAllThings_2proc_afterOK.txt 

Note: The OneProcess parameter is set to False 

No suspicious processes,  

Just warnings 

 

The testing results on the memory images injected using the code technique presented in InjectProc project [41] are: 

Note: Inject proc author in its website states that it is only tested on Windows 10 build 1703, 64bit. 

Test 

No. 

Test Memory Image Characteristics Output line of interest 

6 Clean system, notepad.exe which is going to 
be injected (pid 6120) is running but not 

injected. 

Image File name:  MSEdge - Win10_preview-
eaaa27c2-dll_inj_before.vmem 

Output file name: SuspectedDlls - MSEdge - 
Win10_preview-eaaa27c2-dll_inj_before.txt 

No suspicious process found. 

Warnings such as:  

4 Warning: No Imported Dll found System 

4 Warning: No Loaded Dlls found System 

664 Warning: No handle found svchost.exe
 c:\windows\system32\licensemanagersvc.dll 2018-03-31 

10:38:03 5 664 912 2018-03-31 10:37:57 
UTC+0000   0 

1136 Warning: No handle found svchost.exe

 c:\windows\system32\cryptsvc.dll 2018-03-31 
10:35:49 3 1136 1684 2018-03-31 10:35:46 

UTC+0000   0 
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7 DLL Injection in process Notepad.exe (pid 
6120). 

During DLL execution (respective window 
popped up). 

Injecting Process (pid 1080) still active.   

Image File name:  MSEdge - Win10_preview-

eaaa27c2-dll_inj_after.vmem 

Output file name: SuspectedDlls-MSEdge - 
Win10_preview-eaaa27c2-dll_inj_after.txt 

 

Output (other than warnings) 

6120 Suspicious process notepad.exe

 c:\users\ieuser\desktop\injectproc-master\injectproc-
master\x64\debug\mbox.dll 2018-03-31 12:52:14 8026

 6120 3140 2018-03-31 12:52:14 UTC+0000  
 1080 

 

 

8 Virtual Machine restarted 

DLL Injection in process notepad.exe  (pid 6756) 

achieved. 

DLL terminated (respective window closed) 

Injecting Process just terminated 

Image File name:  MSEdge - Win10_preview-
eaaa27c2-dll_inj_after_term-new.vmem 

Output file name: SuspectedDlls -MSEdge - 

Win10_preview-eaaa27c2-dll_inj_after_term-
new (-oneproc=False).txt 

 

No suspicious process found 

 

 

9 Virtual Machine restarted 

Injection in process explorer.exe (pid 

2760) 

During DLL execution (respective window 
popped up) 

injecting Process still active (pid 5336) 

Image File name:  MSEdge - 

Win10_dll_inj_before_ok.vmem 

Output file name: SuspectedDlls-MSEdge - 
Win10_dll_inj_before_ok.txt 

2760 Suspicious process explorer.exe
 c:\users\ieuser\desktop\injectproc-master\injectproc-
master\x64\debug\mbox.dll 2018-05-29 14:50:54 61
 2760 5620 2018-05-29 14:50:54 UTC+0000  

 5336 
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10 Virtual Machine not restarted 

Injection in process explorer.exe (pid 2760) 

completed 

DLL terminated (respective window closed) 

Injecting Process terminated 

Image File name:  MSEdge - 
Win10_dll_inj_after_ok.vmem 

Output file name: SuspectedDlls - MSEdge - 
Win10_dll_inj_after_ok.txt 

 

No suspicious process found, just warnings. 

Since the corresponding thread is terminated, the script gives no 

output.  

 

11 Virtual Machine restarted 

Injection in three different Processes 

During DLL execution (respective windows 
popped up). 

Image File name:  MSEdge - Win10_preview-
eaaa27c2-3_DifferentProcs.vmem 

Output file name: SuspectedDllsWin10_preview-
eaaa27c2-3_DifferentProcs.txt 

Note: The OneProcess parameter is set to False 

408 Suspicious process explorer.exe
 c:\users\ieuser\desktop\injectproc-master\injectproc-

master\x64\debug\mbox.dll 2018-08-31 14:14:42 26
 408 3908 2018-08-31 14:14:42 UTC+0000  

 5372 

 

6052 Suspicious process notepad.exe
 c:\users\ieuser\desktop\injectproc-master\injectproc-
master\x64\debug\mbox.dll 2018-08-31 14:12:21 43

 6052 3632 2018-08-31 14:12:20 UTC+0000  
 5436 

 

4328 Suspicious process mspaint.exe

 c:\users\ieuser\desktop\injectproc-master\injectproc-
master\x64\debug\mbox.dll 2018-08-31 14:13:48 56

 4328 2144 2018-08-31 14:13:48 UTC+0000  
 5056 
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12 Injection in three different Processes 

One of them terminated (pid 6052) 

injecting Processes still active   

Image File name:  MSEdge - Win10_preview-
eaaa27c2-3_DifferentProcs-1_Term.vmem 

Output file name: 

SuspectedDlls- Win10_preview-eaaa27c2-

3_DifferentProcs-1_Term.txt 

Note: The OneProcess parameter is set to False 

408 Suspicious process explorer.exe
 c:\users\ieuser\desktop\injectproc-master\injectproc-
master\x64\debug\mbox.dll 2018-08-31 14:14:42 26

 408 3908 2018-08-31 14:14:42 UTC+0000  
 5372 

4328 Suspicious process mspaint.exe
 c:\users\ieuser\desktop\injectproc-master\injectproc-

master\x64\debug\mbox.dll 2018-08-31 14:13:48 56
 4328 2144 2018-08-31 14:13:48 UTC+0000  

 5056 

 

 

 

Table 1 – Remote DLL Injection Detection Testing Results 

 

 



   55 

3.6 Testing conclusions 

As shown in the results’ table, the idea for DLL injection detection works 

satisfactory. In case there is an active DLL injection, the message is straightforward: 

“Suspicious process” and the DLL is tracked down, as well as the corresponding 

injected process, the thread that loaded the DLL and the injection process. This also 

applies when there are more than one injected processes, as long as OneProcess 

parameter is set to false.  

The warnings like “No Imported Dll found” or “No Loaded Dlls found”, together 

with the corresponding executable name, may give the analyst a hint worth 

investigating. The “No handle found” warning which also displays the full DLL name, 

may help the analyst to recognize a suspicious DLL from its name or path. In general, 

the warnings can lead to targeted search for information either from the memory 

image or from other sources, such as the disk. 

The proposed solution works only when the injected DLL is currently executing, 

regardless whether the malware that performs the injection has been terminated. The 

reason for that when the DLL has finished executing, the corresponding thread is 

terminated. Information about the terminated thread cannot be retrieved by the 

script, although there is information available for some terminated threads, such as 

exit time. The same problem appears when the corresponding volatility plugins such 

as timeliner, threads and thrdscan have been used in the aforementioned memory 

images. This confirms that this is an issue that concerns the data available in the 

memory rather than the code used. Only currently active processes and threads are 

available in memory. In case of a DLL injection that happened in the past, an analyst 

must gather information from both the memory and the disk of detect it. In the 

context of this thesis, only memory is used, so this is justified problem. 

3.7 Future Improvements 

As already mentioned, FindDLLInj.py is executed inside Volatilitys’ volshell 

plugin. The conversion of it into a new Volatility plugin is a good idea. Alongside, the 

warning messages displayed by volshell environment such as the following could be 

manipulated. 

WARNING : volatility.debug    : NoneObject as string: Invalid Address 0x7FF62B951D18, 

instantiating String 

WARNING : volatility.debug    : NoneObject as string: Invalid offset 18446717726403732832 

for dereferencing Buffer as String 

WARNING : volatility.debug    : NoneObject as string: Invalid Address 0x7FF7C0C92A6E, 

instantiating String 

WARNING : volatility.debug    : NoneObject as string: Invalid Address 0x00000000, 

instantiating _FILE_OBJECT 

The size of the _IMAGE_IMPORT_DESCRIPTOR, described in section Scan 

processes’ memory for IAT entries, is not defined by getting the object size from the 

windows profile, but it is hardcoded. This means that the code may not work correctly 
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in another windows version with an altered object size. This problem could also be 

solved by creating the plugin.  

The script is tested only on Windows 10 system. It could be tested and in other 

windows versions to see its correspondence. For Windows 8.1 the code should be 

working exactly as it is, but for older versions a change should be made: LoadCount 

DLL attribute should be used instead of ObsoleteLoadCount. 

For now, a DLL is correlated with one or more threads associating its load time 

with the thread creation time using a time window. This seems to work all right, but 

maybe there is a more precise way to do the correlation that did not revealed within 

this work. This involves greater deepen on the Windows objects and data structures 

manipulating the threads.  

As already referred, there is the case that the script is not able to reconstruct 

the IAT (Import Address Table). This does not cause any false results because of the 

other safeguards used and the worst scenario is the production of a false positive 

result. The Volatility’s plugin impscan [18] creators claim that “the IAT may not 

properly be reconstructed due to the high likelihood that one or more pages in the PE 

header or IAT are not memory resident (paged). Thus, we created impscan. Impscan 

identifies calls to APIs without parsing a PE's IAT.” It seems that this plugin could be a 

good inspiration for creating a code that recreates ΙΑΤ with certainty. In this case, the 

comparison of the IAT list to the loaded DLL, could give definite results.  

During the tests, it is observed that the script finds out less distinct handles 

than the volatility command python vol.py -f <image file name> --

profile="Win10x64_14393" handles -t THREAD. Although this is not causing any false 

positives or any overlooking DLL detection, it could lead to more warnings of type “No 

handle found”.  

  



   57 

4 Conclusion 

This thesis focuses on the detection of two different process injection 

techniques: Process Hollowing and Remote DLL Injection. For this purpose, these 

techniques have been studied (meaning their concept and the source code of two 

different injectors for each technique) and presented in detail. Injections were 

performed in Windows 10 Virtual Machines, using different injector malware and 

totally 15 memory images are acquired. Dynamic memory analysis was applied on the 

memory images using Volatility’s Core plugins, downloaded plugins and custom-made 

scripts executed inside the environment of volshell plugin. Either way, this document 

could be used as an introduction to the Volatility Framework. 

Process Hollowing is commonly used, so it has caused the interest of the 

malware analyst. There is a lot of relevant literature, articles and posts. In the later 

years, there have been created Volatility plugins dedicated for Process Hollowing 

detection, so the creation of another plugin would not contribute to the analyst 

community. In this thesis, the concept of Hollow Process Injection is described, as well 

as the basic variations of it. The anomalies it causes in the memory and the possible 

giveaways are analyzed through the proposed methodology of detection. This 

methodology is performed using various test images and its results are confirmed. 

After thorough research, it is believed by the author of this document, that this 

methodology has incorporated and organized in distinct steps most of the current 

literature, relevant articles on the web and research on the subject. 

Regarding the Classic (or remote) DLL injection, a completely new methodology 

of detection is proposed, verified, implemented and tested. This methodology does not 

rely on standard DLL injection detection techniques, but on the fact that LoadLibrary 

and CreateRemoteThread functions are used as well as on time sequence of events. 

The key points of this detection approach are analyzed and the relative Windows Data 

structures are visualized and explained. This alone could help those who wish to 

deepen on these structures. The whole idea is implemented in a python script of 

approximately 200 lines of code that can be executed inside Volatility’s volshell plugin 

environment. The results of the script executed on 12 distinct memory images, 

presented in the relative table, prove that the script works satisfactory, as reasoned in 

Testing conclusions paragraph. A main improvement for the script could be its 

conversion to a distinct Volatility plugin that can be independently called, not through 

volshell. This issue is analyzed in Future Improvements. 

 

 

 

 

  



   58 

5 References 
 

[1] ENISA, Threat Landscape Report 2017, ENISA, published 15 January 2018, ISBN 

978-92-9204-250-9, ISSN 2363-3050, DOI 10.2824/967192, 

https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017, last 

accessed on 11 September 2018  

 

[2] ENISA, ETL (ENISA Thread Landscape) Web based tool, ENISA, 

https://etl.enisa.europa.eu/#/, last accessed on 11 September 2018  

 

[3] Michael Sikorski and Andrew Honig, PRACTICAL MALWARE ANALYSIS, no starch 

press, 2012, ISBN-10: 1-59327-290-1, ISBN-13: 978-1-59327-290-6 

 

[4] Nwokedi Idika and Aditya P. Mathur, A Survey of Malware Detection Techniques, 

February 2, 2007, downloaded from 

https://www.researchgate.net/publication/229008321_A_survey_of_malware_detecti

on_techniques, last accessed on 11 September 2018 

 

[5] Esan P. Pancha, Extraction of Persistence and Volatile Forensics Evidences from 

Computer System, International Journal of Computer Trends and Technology (IJCTT) - 

volume4 Issue 5, May 2013, downloaded from http://ijcttjournal.org/Volume4/issue-

5/IJCTT-V4I5P1.pdf, last accessed on 11 September 2018 

 

[6] Michael Hale Ligh, Andrew Case, Jamie Levy, AAron Walters, The Art of Memory 

Forensics, Wiley, 2014, ISBN: 978-1-118-82499-3  

 

[7] Hal Pomeranz, Detecting Malware with Memory Forensics, SANS Webcast, Oct 

2012, http://www.deer-run.com/~hal/, last accessed on 11 September 2018  

 

[8] Technopedia.com, Virtualization, 

https://www.techopedia.com/definition/719/virtualization, last accessed on 11 

September 2018  

 

[9] vmwrare®, https://www.vmware.com/, last accessed on 11 September 2018 

 

[10] Oracle, VirtualBox, https://www.virtualbox.org/, last accessed on 11 September 

2018 

 

[11] Microsoft, Hyper-V Technology Overview, https://docs.microsoft.com/en-

us/windows-server/virtualization/hyper-v/hyper-v-technology-overview, last accessed 

on 11 September 2018 

 

[12] Parallels, https://www.parallels.com/, last accessed on 11 September 2018 

 

https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017
https://etl.enisa.europa.eu/#/
https://www.researchgate.net/publication/229008321_A_survey_of_malware_detection_techniques
https://www.researchgate.net/publication/229008321_A_survey_of_malware_detection_techniques
http://ijcttjournal.org/Volume4/issue-5/IJCTT-V4I5P1.pdf
http://ijcttjournal.org/Volume4/issue-5/IJCTT-V4I5P1.pdf
http://www.deer-run.com/~hal/
https://www.techopedia.com/definition/719/virtualization
https://www.vmware.com/
https://www.virtualbox.org/
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://www.parallels.com/


   59 

[13] WindowsSCOPE, Cyber Forensics 3.2, 

http://www.windowsscope.com/windowsscope-cyber-forensics/, last accessed on 11 

September 2018 

 

[14] F-Response, https://www.f-response.com/ , last accessed on 11 September 2018 

 

[15] GitHub, Awesome Incident Response, https://github.com/meirwah/awesome-

incident-response, last committed on 3 October 2018,  last accessed on 10 October 

2018 

 

[16] Kali Tools, Volatility Package Description, 

https://tools.kali.org/forensics/volatility, last accessed on 11 September 2018 

 

[17] VOLATILITY FOUNDATION, Home Page, https://www.volatilityfoundation.org/, 

last accessed on 11 September 2018 

 

[18] GitHub, volatilityfoundation/volatility - Command Reference, 

https://github.com/volatilityfoundation/volatility/wiki/Command-Reference, last edited 

on 22 April 2017, last accessed on 1 October 2018 

 

[19] GitHub, volatilityfoundation/volatility, 

https://github.com/volatilityfoundation/volatility, last accessed on 1 October 2018 

 

[20] GitHub, volatilityfoundation/volatility - Volatility Documentation Project, 

https://github.com/volatilityfoundation/volatility/wiki/Volatility-Documentation-

Project, last edited on 8 September 2015, last accessed on 1 October 2018 

 

[21] Volatility Labs, https://volatility-labs.blogspot.com/, last accessed on 1 October 

2018 

 

[22] Ashkan Hosseini, , Ten Process Injection Techniques: A Technical Survey of 

Common and Trending Process Injection Techniques, ENDGAME, 

https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-

technical-survey-common-and-trending-process, last accessed on 1 October 2018 

 

 [23] Microsoft, Memory Management, https://docs.microsoft.com/en-

us/windows/desktop/Memory/memory-management, 31 May 2018, last accessed on 1 

October 2018 

 

[24] Tim Sneath, PDC10: Mysteries of Windows Memory Management Revealed: Part 

One, Microsoft, uploaded on 28 October 2010, 

https://blogs.msdn.microsoft.com/tims/2010/10/28/pdc10-mysteries-of-windows-

memory-management-revealed-part-one, last accessed on 1 October 2018 

 

http://www.windowsscope.com/windowsscope-cyber-forensics/
https://www.f-response.com/
https://github.com/meirwah/awesome-incident-response
https://github.com/meirwah/awesome-incident-response
https://tools.kali.org/forensics/volatility
https://www.volatilityfoundation.org/
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility/wiki/Volatility-Documentation-Project
https://github.com/volatilityfoundation/volatility/wiki/Volatility-Documentation-Project
https://volatility-labs.blogspot.com/
https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-management
https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-management
https://blogs.msdn.microsoft.com/tims/2010/10/28/pdc10-mysteries-of-windows-memory-management-revealed-part-one
https://blogs.msdn.microsoft.com/tims/2010/10/28/pdc10-mysteries-of-windows-memory-management-revealed-part-one


   60 

[25] Mike Czumak, Windows Exploit Development – Part 1: The Basics, Security Sift, 

written on December 6, 2013 , https://www.securitysift.com/windows-exploit-

development-part-1-basics/, last accessed on 1 October 2018 

 

[26] Mark Russinovich - David A. Solomon - Alex Ionescu, Windows® Internals Part 1 

6th edition, Microsoft Press, 2012, ISBN: 978-0-7356-4873-9 

 

[27] Matt Pietrek, Peering Inside the PE: A Tour of the Win32 Portable Executable File 

Format, written on March 1994, https://msdn.microsoft.com/en-

us/library/ms809762.aspx, last accessed on 1 October 2018 

 

[28] Microsoft, PE Format, https://docs.microsoft.com/en-

us/windows/desktop/Debug/pe-format, uploaded on 31 May 2018, last accessed on 1 

October 2018 

 

[29] INFOSEC Institute, The Import Directory: Part 1,   

https://resources.infosecinstitute.com/the-import-directory-part-1/#gref, uploaded on 

24 April  2013, , last accessed on 1 October 2018 

 

[30] Matt Pietrek, , An In-Depth Look into the Win32 Portable Executable File Format, 

msdn magazine, February 2002 issue,  https://msdn.microsoft.com/en-

us/magazine/bb985992.aspx, , last accessed on 1 October 2018 

 

[31] Wikipedia, Portable Executable, 

https://en.wikipedia.org/wiki/Portable_Executable, last accessed on 1 October 2018 

 

[32] Microsoft, Thread Handles and Identifiers, https://docs.microsoft.com/en-

us/windows/desktop/procthread/thread-handles-and-identifiers, uploaded on 31 May 

2018, last accessed on 1 October 2018 

 

[33] Michael Hale Ligh - Steven Adair - Blake Hartstein - Matthew Richard, Malware 

Analyst’s Cookbook and DVD, Wiley Publishing, Inc., 2011, ISBN: 978-0-470-61303-0 

 

[34] GitHub, Process Hollowing, https://github.com/m0n0ph1/Process-Hollowing, last 

accessed on 1 October 2018 

 

[35] Monmappa K.A., DETECTING DECEPTIVE PROCESS HOLLOWING TECHNIQUES 

USING HOLLOWFIND VOLATILITY PLUGIN, 2016,  

https://cysinfo.com/detecting-deceptive-hollowing-techniques/, last accessed on 1 

October 2018 

 

[36] Monnappa K.A., Understanding Evasive Hollow Process Injection techniques , 

CYSINFO 11th Meetup, https://cysinfo.com/11th-meetup-understanding-evasive-

hollow-process-injection-techniques/, last accessed on 1 October 2018 

 

https://www.securitysift.com/windows-exploit-development-part-1-basics/
https://www.securitysift.com/windows-exploit-development-part-1-basics/
https://msdn.microsoft.com/en-us/library/ms809762.aspx
https://msdn.microsoft.com/en-us/library/ms809762.aspx
https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format
https://resources.infosecinstitute.com/the-import-directory-part-1/#gref
https://msdn.microsoft.com/en-us/magazine/bb985992.aspx
https://msdn.microsoft.com/en-us/magazine/bb985992.aspx
https://en.wikipedia.org/wiki/Portable_Executable
https://docs.microsoft.com/en-us/windows/desktop/procthread/thread-handles-and-identifiers
https://docs.microsoft.com/en-us/windows/desktop/procthread/thread-handles-and-identifiers
https://github.com/m0n0ph1/Process-Hollowing
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/11th-meetup-understanding-evasive-hollow-process-injection-techniques/
https://cysinfo.com/11th-meetup-understanding-evasive-hollow-process-injection-techniques/
https://cysinfo.com/11th-meetup-understanding-evasive-hollow-process-injection-techniques/


   61 

[37] 00xsec, Userland API Monitoring and Code Injection Detection, 

https://0x00sec.org/t/userland-api-monitoring-and-code-injection-detection/5565, 

uploaded 21 February 2018,  last accessed on 1 October 2018 

 

[38] Jared Atkinson and Joe Desimone , Taking Hunting to the Next Level - Hunting in 

Memory presentation, Endgame, SANS Institute Threat Hunting and IR Summit (April 

2017), https://www.sans.org/summit-archives/file/summit-archive-1492714038.pdf, 

last accessed on 1 October 2018 

 

[39] Luis Rocha, Malware Analysis – Dridex & Process Hollowing, 

https://countuponsecurity.com/2015/12/07/malware-analysis-dridex-process-

hollowing/, uploaded 07 December 2015, last accessed on 1 October 2018 

 

[40] MITRE’s ATT&CK, Process Hollowing, 

https://attack.mitre.org/wiki/Technique/T1093, last accessed on 1 October 2018 

 

[41] GitHub, secrary/InjectProc, InjectProc - Process Injection Techniques, 

https://github.com/secrary/InjectProc, latest commit on 24 March 2018, last accessed 

on 1 October 2018 

 

[42] John Leitch, Process Hollowing, http://www.autosectools.com/process-

hollowing.pdf, last accessed on 1 October 2018 

 

[43] Eric Monti, Analyzing Malware Hollow Processes, Trustwave SpiderLabs® Blog, 

https://www.trustwave.com/Resources/SpiderLabs-Blog/Analyzing-Malware-Hollow-

Processes/, last accessed on 1 October 2018 

 

[44] Microsoft, Security identifiers, https://docs.microsoft.com/en-

us/windows/security/identity-protection/access-control/security-identifiers, uploaded 

on 19 April 2018, last accessed on 1 October 2018 

 

[45] Michael Hale Ligh, Stuxnet's Footprint in Memory with Volatility 2.0, MNIN 

Security Blog, http://mnin.blogspot.com/2011/06/examining-stuxnets-footprint-in-

memory.html, uploaded on 3 June 2011, last accessed on 1 October 2018 

 

[46] GitHub, community/DimaPshoul/, 

https://github.com/volatilityfoundation/community/tree/master/DimaPshoul, 

committed on 6 February 2017, , last accessed on 1 October 2018 

 

[47] GitHub, threadmap plugin for Volatility Foundation, 

https://github.com/kslgroup/threadmap, committed on 21 September 2017, last 

accessed on 1 October 2018 

 

[48], WIKIPEDIA, DLL injection, https://en.wikipedia.org/wiki/DLL_injection, edited on 

18 September 2018, last accessed on 1 October 2018 

https://0x00sec.org/t/userland-api-monitoring-and-code-injection-detection/5565
https://www.sans.org/summit-archives/file/summit-archive-1492714038.pdf
https://countuponsecurity.com/2015/12/07/malware-analysis-dridex-process-hollowing/
https://countuponsecurity.com/2015/12/07/malware-analysis-dridex-process-hollowing/
https://attack.mitre.org/wiki/Technique/T1093
https://github.com/secrary
https://github.com/secrary/InjectProc
https://github.com/secrary/InjectProc
http://www.autosectools.com/process-hollowing.pdf
http://www.autosectools.com/process-hollowing.pdf
https://www.trustwave.com/Resources/SpiderLabs-Blog/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Analyzing-Malware-Hollow-Processes/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Analyzing-Malware-Hollow-Processes/
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/security-identifiers
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/security-identifiers
http://mnin.blogspot.com/2011/06/examining-stuxnets-footprint-in-memory.html
http://mnin.blogspot.com/2011/06/examining-stuxnets-footprint-in-memory.html
https://github.com/volatilityfoundation/community/tree/master/DimaPshoul
https://github.com/kslgroup/threadmap
https://en.wikipedia.org/wiki/DLL_injection


   62 

 

[49] Dejan Lukan, Using CreateRemoteThread for DLL Injection on Windows, INFOSEC 

INSTITUTE,https://resources.infosecinstitute.com/using-createremotethread-for-dll-

injection-on-windows/, posted on 30 May 2013, last accessed on 1 October 2018 

 

[50] WIKIPEDIA, Dynamic-link library, https://en.wikipedia.org/wiki/Dynamic-

link_library, last edited on 28 September 2018, last accessed on 1 October 2018 

 

[51] Microsoft, winnt.h header,  https://docs.microsoft.com/en-

us/windows/desktop/api/winnt/, uploaded on 10 October 2018, last accessed on 10 

October 2018 

 

[52] Joachim Bauch, Loading a DLL from memory, https://www.joachim-

bauch.de/tutorials/loading-a-dll-from-memory/ , posted on 7 April 2010, last accessed 

on 10 October 2018 

 

[53] Mark E. Russinovich and David A. Solomon, Processes, Threads, and Jobs in the 

Windows Operating System, The Microsoft Press Store by Pearson, 

https://www.microsoftpressstore.com/articles/article.aspx?p=2233328&seqNum=4, 

uploaded on 17 June 2009, last accessed on 10 October 2018 

 

[54] CodeMachine, Catalog of key Windows kernel data structures, 

https://www.codemachine.com/article_kernelstruct.html, last accessed on 10 October 

2018 

 

[55] GitHub, fdiskyou/injectAllTheThings, 

https://github.com/fdiskyou/injectAllTheThings, latest commit on 21 Jul 2017, last 

accessed on 10 October 2018  

 

[56] GitHub, monnappa22/HollowFind, https://github.com/monnappa22/HollowFind, 

Latest commit on 24 September 2016, last accessed on 10 October 2018 

 

[57] Each Problem has An End, Difference between memdump, procexedump and 

procmemdump command in volatality, http://akovid.blogspot.com/2014/02/volatality-

procexedump-and-memdump.html, Posted on 17 February 2014, last accessed on 1 

October 2018 

 

[58] Microsoft, https://docs.microsoft.com/en-us/windows/desktop/api/, last accessed 

on 10 October 2018 

 

[59] Mark Russinovich and Ken Johnson, LiveKd v5.62, Microsoft, 

https://docs.microsoft.com/en-us/sysinternals/downloads/livekd, published on 16 May 

2017, last accessed on 1 September 2018 

 

https://resources.infosecinstitute.com/using-createremotethread-for-dll-injection-on-windows/
https://resources.infosecinstitute.com/using-createremotethread-for-dll-injection-on-windows/
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/Dynamic-link_library
https://docs.microsoft.com/en-us/windows/desktop/api/winnt/
https://docs.microsoft.com/en-us/windows/desktop/api/winnt/
https://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/
https://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/
https://www.microsoftpressstore.com/articles/article.aspx?p=2233328
https://www.microsoftpressstore.com/articles/article.aspx?p=2233328
https://www.microsoftpressstore.com/articles/article.aspx?p=2233328&seqNum=4
https://www.codemachine.com/article_kernelstruct.html
https://github.com/fdiskyou/injectAllTheThings
https://github.com/monnappa22/HollowFind
http://akovid.blogspot.com/2014/02/volatality-procexedump-and-memdump.html
http://akovid.blogspot.com/2014/02/volatality-procexedump-and-memdump.html
https://docs.microsoft.com/en-us/windows/desktop/api/
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd


   63 

[60] Geoff Chappel, Win32 NTDLL structures LDR_DATA_TABLE_ENTRY, 

https://www.geoffchappell.com/studies/windows/win32/ntdll/structs/ldr_data_table_e

ntry.htm, Last updated on 2 October 2018, last accessed on 10 October 2018 

 

[61] Microsoft, LoadLibrary and AfxLoadLibrary, https://msdn.microsoft.com/en-

us/library/zzk20sxw.aspx, last accessed on 10 October 2018 

 

  

https://www.geoffchappell.com/studies/windows/win32/ntdll/structs/ldr_data_table_entry.htm
https://www.geoffchappell.com/studies/windows/win32/ntdll/structs/ldr_data_table_entry.htm


   64 

6 Appendix 

6.1 Hollow process injection and detection examples 

6.1.1 Injection Using InjectProc project 

Here it is described how the injection is performed in the Virtual Machine using the 

source code found in InjectProc project [41]. It is also shown how the information 

needed for the verification of the methodology is gained. The acquired memory image 

is called MSEdge - Win10_preview-eaaa27c2-onreplNew.vmem 

At first, notepad.exe is opened, which is used as a reference for the injected instance. 

The command for the injection is shown below, as well the result of the injected 

mbox.exe (the pop up window). 

 

[snip] 

 



   65 

Using Process Hacker, the process id of the legitimate notepad.exe (pid 6400) and the 

injected one (pid 7284) was found out.  

 

 

The general properties for the legitimate process are: 
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and for the malicious one are:  

 

Both processes use 0x7ff6f3070000 as base address. The different memory 

characteristics are demonstrated bellow and are consistent with the ones described in  

Methodology of Detection section. 
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The other characteristics such as priority and environment variables, are similar: 
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6.1.2 Injection Detection on InjectProc memory image 

After acquisition of the memory image MSEdge - Win10_preview-eaaa27c2-

onreplNew.vmem, described in the previous paragraph, it follows the injection 

detection. Following the steps described in Methodology of Detection, the results are: 

Process Listing  

 

[snip] 

 

Dynamic Link Library Listing   
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Virtual Address Descriptor information 

 

Module linked lists and VAD 

 

Checking memory permissions 

 

  



   70 

Hollowfind plugin 

In this step, it seems to be a problem with hollowfind plugin. 

 

Extracting executables, Comparing executables sizes  

 

Malfofind 
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Threadmap plugin 

 

6.1.3 Injection Using Process Hollow project 

The following screenshot shows how Process Hollow projects’ executable is used and 

its effect. 
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6.2 A DLL injection testing example 

6.2.1 Gathering useful information from Virtual Machines 

This paragraph shows how useful information in a running virtual machine was 

retrieved to check that the code works correctly, as described in Testing Environment. 

The corresponding memory image taken is InjectAllThings_before_ok.vmem. 

The following image shows how the malicious process is called (through command 

prompt window) and that the corresponding window (InjectAll The Things) is shown. 

The injected process is notepad.exe and the loaded DLL is dllmain.dll 

 

First, it was confirmed that the “malicious” DLL was loaded in process space 

(ProcessHacker software is used). The following picture shows main.dll properties, 

inside notepad process, process id 6108. 
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Next, the corresponding thread that loaded the DLL was found out. It has Thread Id 

5304, which is the one that executes LoadLibraryW API. 
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The injection process is injectAllthethings.exe with process id 5248 

 

The virtual machine is suspended and the corresponding image is copied and renamed 

as InjectAllThings_before_ok.vmem.  

6.2.2 Executing the script 

First of all, the volshell volatility is called on the memory image and then the script 

FindDLLInj.py is called 

 



   75 

[snip] 

as the script, navigates though the processes, the corresponding messages are 

shown, as well as some warnings  

 

[snip] 

 

When the script is done, the output is shown with the command 

 

these are the first lines of the output file: 

 

and the last lines are: 
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All the above gathered information is confirmed as an entry in output file: 

6108 Suspicious process notepad.exe c:\users\ieuser\desktop\injectallthethings-

master\x64\release\dllmain.dll 2018-06-04 14:23:27 113 6108 5304 2018-

06-04 14:23:27  5248 

Meaning, 

Name Explanation 

Pid 6108 

Description Suspicious process notepad.exe 

ImageFileName notepad.exe 

DLL c:\users\ieuser\desktop\injectallthethings-
master\x64\release\dllmain.dll 

DllLoadTime 2018-06-04 14:23:27 (UTC+0000) 

TimeDifference from 
previously loaded Dll in sec 

113 

ThreadPid 6108 

ThreadTid 5304 

ThreadLoadTime 2018-06-04 14:23:27 UTC+0000 

ThreadExitTime  

ThreadHandlePid 5248 

 

So, the result was confirmed. For a list of all the test results, see Testing results 
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6.3 FindDLLInj Script  

# call from command line, for example: 

# python vol.py -f /media/sf_Shared/KALI/"MSEdge - Win10_preview-eaaa27c2-dll_inj_after.vmem" --profile="Win10x64_14393" volshell 

# inside volshell enviromnent -->  execfile('FindDllInj.py') 

 

#---- Set Parameters (TimeWindow, OneProcess, WhiteList) ---- 

TimeWindow=10 

OneProcess=False 

WhiteList=[] 

#TODO fill whitelist with dll names 

 

# Create output file 

Out_SuspectedDll = open('SuspectedDlls.txt','w') 

import datetime  

# introduction line  

Out_SuspectedDll.write(str(datetime.datetime.now()) + '\t' + "FindDllInj on "+ sys.argv[2]+ " TimeWindow: " +str(TimeWindow ) + " 

OneProcess: " + str(OneProcess)+ '\n') 

# writing headers 

Out_SuspectedDll.write("Pid" + '\t' + "Description" + '\t' + "ImageFileName" + '\t' + "Dll" + '\t' +"DllLoadTime" + '\t' + 

"TimeDifference from previously loaded Dll in sec" + '\t' + "ThreadPid" + '\t' + "ThreadTid" + '\t' + "ThreadLoadTime" + '\t' + 

"ThreadExitTime" + '\t'+ "ThreadHandlePid" +'\n') 

 

from datetime import datetime 

import time 

import calendar 

 

# initialize lists 

AllProcessHandle_List=[] 

AllProcessSuspectedDlls=[] 

CsrssPids=[] 
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#---- Get all Processes from memory Image ---- 

for proc_id in getprocs(): 

 #---- Read Processes space ----  

 p_id= proc_id.UniqueProcessId      

 cc(pid=p_id) 

 process=proc() 

 process_space = process.get_process_address_space() 

 

 if str(process.ImageFileName).lower()=="csrss.exe": 

  CsrssPids.append(p_id) 

 

 # ---- Examine Processes VADs: find VADs with specific characteristics and get the corresponding DLL Names ---- 

 DLLsMappedOnce=[] 

 for vad in process.VadRoot.traverse(): 

      data = process_space.read(vad.Start, 1024) 

      if data: 

   found = data.find("MZ") 

   if found != -1:              

   if hasattr(vad,"ControlArea"):          

  

    if OneProcess == True: 

     if int(vad.ControlArea.NumberOfMappedViews) == 1 and \ 

        int(vad.ControlArea.NumberOfUserReferences)==1 : 

      DLLsMappedOnce.append(str(vad.FileObject.FileName)) 

    else: 

     DLLsMappedOnce.append(str(vad.FileObject.FileName)) 

 

  

 #---- Scan Process PE for IAT entries ----  

 

 #"Scan" PE to reproduce the IAT table - 1st method  
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 DLLsFromImport=[] 

 dos_header = obj.Object("_IMAGE_DOS_HEADER",offset = process.Peb.ImageBaseAddress,vm = process_space) 

 nt_header = dos_header.get_nt_header() 

 data_dir = nt_header.OptionalHeader.DataDirectory[1] 

 

 i = 0 

 

 # The following is taken from plugins/overlays/windows/pe_vtypes.py, imports() function of class _LDR_DATA_TABLE_ENTRY 

 # TODO --> desc_size = self.obj_vm.profile.get_obj_size('_IMAGE_IMPORT_DESCRIPTOR') 

 desc_size=20 

 while 1: 

      desc = obj.Object('_IMAGE_IMPORT_DESCRIPTOR', 

         vm = process_space, 

         offset = process.Peb.ImageBaseAddress + data_dir.VirtualAddress + (i * desc_size), 

         parent = self) 

 

      # Stop if the IID is paged or all zeros 

      if desc == None or desc.is_list_end(): 

   break 

 

      # Stop if the IID contains invalid fields  

      if not desc.valid(nt_header): 

   break 

 

      DllName=obj.Object("String",offset = desc.Name+process.Peb.ImageBaseAddress,vm = process_space, length = 128) 

      DLLsFromImport.append(str(DllName).lower())    

 

      i += 1 
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 if len(DLLsFromImport) == 0: 

  Out_SuspectedDll.write(str(p_id) + '\t' + "Warning: No Imported Dll found" + '\t' + process.ImageFileName +'\n') 

 

 

 #---- Get Process Loaded Dlls ---- 

 DllsLoaded=[] 

 mods = list(process.get_load_modules()) 

 if len(mods)>0: 

  # mods[0] represents the exe module 

  previous_load=mods[0].LoadTime 

  #---- Get Loaded Dlls Information ---- 

  for mod in mods: 

   # DllsLoaded layout  

   # mod.LoadTime-previous_load : time difference between current and previous loaded module (in seconds) 

   DllsLoaded.append([str(mod.FullDllName).lower(),process.ImageFileName, p_id, mod.LoadCount, 

mod.ObsoleteLoadCount, mod.ReferenceCount, hex(mod.DllBase), hex(mod.ParentDllBase), mod.ImageDll,  mod.LoadTime, 

mod.LoadReason,mod.BaseDllName, mod.LoadTime-previous_load]) 

   previous_load=mod.LoadTime 

 

 if len(DllsLoaded) == 0: 

 

  Out_SuspectedDll.write(str(p_id) + '\t' + "Warning: No Loaded Dlls found" + '\t' + process.ImageFileName +'\n') 

 

 SuspectedDlls=[] 

 

 #---- Characterize DLL : Find suspicious loaded DLLs in process ---- 

 for dll in DllsLoaded: 

   

  #  DllName-->  dll name 

  t1=dll[0].rfind(".dll") 

  t2=dll[0].rfind("\\") 

  DllName =dll[0][t2+1:t1+4] 
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  found1=False 

  for item in DLLsFromImport: 

   if item.lower().find(DllName)!=-1: 

    found1=True 

    break 

  found2=False 

  for item in DLLsMappedOnce: 

   if item.lower().find(DllName)!=-1: 

    found2=True 

    break 

 

  #---- The DLL does not exist in process IAT AND the corresponding VAD fulfill OneProcess criteria ---- 

  if found1==False and found2==True: 

   # ---- DLL loaded at least 1 sec after from previously loaded DLL AND ----  

   # ---- LoadReason==LoadReasonDynamicLoad OR ObsoleteLoadCount is 6 (DLL explicitly loaded using LoadLibrary 

function) ---- 

   if dll[12] > 1 and  (dll[10]==4 or dll[4]==6):  

    #---- Is the DLL in the White List? ---- 

    if dll[0] not in WhiteList: 

     # append ImageFileName, p_id, mod.FullDllName, mod.LoadTime, mod.LoadTime-previous_load , 

mod.DllBase, mod.LoadTime in UTC 

     SuspectedDlls.append([str(process.ImageFileName),int(dll[2]),dll[0], 

int(dll[9]),int(dll[12]),dll[6], datetime.utcfromtimestamp(dll[9])]) 

    else: 

     Out_SuspectedDll.write(str(p_id) + '\t' + "Warning: Dll in WhiteList" + '\t' + dll[0] +'\n')  

   

 

 if len(SuspectedDlls) >0: 

  

  #---- Get Threads in the context of the process (in Thread List) ---- 

  Thread_List=[] 

  for thread in process.ThreadListHead.list_of_type("_ETHREAD", "ThreadListEntry"): 

   timestamp_utc = calendar.timegm(time.strptime(str(thread.CreateTime), "%Y-%m-%d %H:%M:%S UTC+0000")) 
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   Thread_List.append([int(thread.Cid.UniqueProcess), int(thread.Cid.UniqueThread), str(thread.CreateTime), 

timestamp_utc, str(thread.ExitTime or ' '), hex(thread.StartAddress)]) 

  

 #---- Get Process Handles (in Handle_List) and update ALL Processes' handles (AllProcessHandle_List) ---- 

 Handle_List=[] 

 process.ObjectTable.HandleTableList 

  

 pid=int(p_id) 

 for handle in process.ObjectTable.handles(): 

  if not handle.is_valid(): 

   continue 

   

  object_type = handle.get_object_type() 

 

  if object_type == "Thread": 

   thrd_obj = handle.dereference_as("_ETHREAD") 

   # Details handle PID, TID, process id that owns the handle 

   Handle_List.append([int(thrd_obj.Cid.UniqueProcess),int(thrd_obj.Cid.UniqueThread),p_id]) 

   AllProcessHandle_List.append([int(thrd_obj.Cid.UniqueProcess),int(thrd_obj.Cid.UniqueThread),p_id]) 

 

 handle_pid=0 # to be filled later 

 len_SuspectedDlls=len(SuspectedDlls)  

 for i in range(0,len_SuspectedDlls): 

  

  for thread_item in Thread_List: 

   #---- Is there a thread created in DLLs TimeWindow? AND still executing? ---- 

   # ( if thread creation time between SupsectedDllLoadTime and SupsectedDllLoadTime + TimeWindow  

   #   and thread not terminated )  

   if (SuspectedDlls[i][3] >= thread_item[3] and SuspectedDlls[i][3] <= thread_item[3] + TimeWindow) \ 

    and thread_item[4] ==" ":  

       

    FoundInHandleList=False 
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    for hanle_item in Handle_List: 

     # TID of thread same as TID of specific process handle (meaning the thread is created by the 

specific process)  --> not suspicious 

     if thread_item[1] == hanle_item[1]  :  

      FoundInHandleList =True       

      

    #---- If this thread  is not handled/created by the specific process --> suspicious ---- 

    if FoundInHandleList == False:       

     AllProcessSuspectedDlls.append([SuspectedDlls[i], thread_item, handle_pid]) 

  

# Minimize False Positives 

len_AllProcessSuspectedDlls=len(AllProcessSuspectedDlls)  

for i in range(0,len_AllProcessSuspectedDlls): 

  

 FoundInHandleList=False 

 FoundInCrss=False 

  

 for handle_item in AllProcessHandle_List: 

  # TID found in another processes' handle --> suscicious 

  if AllProcessSuspectedDlls[i][1][1] == handle_item[1] : 

   FoundInHandleList=True 

    

   #---- The thread is not handled by csrss.exe --> suspicious 

   # Handle on the Thread Id not created by csrss.exe  --> suscicious 

   if handle_item[2] not in CsrssPids:  

    AllProcessSuspectedDlls[i][2]=int(handle_item[2]) #--> update with the malware Pid  

 

    Out_SuspectedDll.write(str(AllProcessSuspectedDlls[i][0][1]) + '\t' + "Suspicious process" + '\t' + 

str(AllProcessSuspectedDlls[i][0][0]) + '\t' + str(AllProcessSuspectedDlls[i][0][2]) + '\t' + 

str(AllProcessSuspectedDlls[i][0][6]) + '\t' + str(AllProcessSuspectedDlls[i][0][4]) + '\t' + 

str(AllProcessSuspectedDlls[i][1][0]) + '\t' + str(AllProcessSuspectedDlls[i][1][1]) + '\t' + 

str(AllProcessSuspectedDlls[i][1][2]) + '\t' + str(AllProcessSuspectedDlls[i][1][4]) + '\t'+ str(AllProcessSuspectedDlls[i][2]) 

+'\n') 

   else: 
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    FoundInCrss=True 

 

 if FoundInHandleList==False: 

  Out_SuspectedDll.write(str(AllProcessSuspectedDlls[i][0][1]) + '\t' + "Warning: No handle found" + '\t' + 

str(AllProcessSuspectedDlls[i][0][0]) + '\t' + str(AllProcessSuspectedDlls[i][0][2]) +  

'\t' + str(AllProcessSuspectedDlls[i][0][6]) + '\t' + str(AllProcessSuspectedDlls[i][0][4]) + '\t' + 

str(AllProcessSuspectedDlls[i][1][0]) + '\t' + str(AllProcessSuspectedDlls[i][1][1]) + '\t' + 

str(AllProcessSuspectedDlls[i][1][2]) + '\t' +  str(AllProcessSuspectedDlls[i][1][4]) + '\t' +str(AllProcessSuspectedDlls[i][2]) 

+'\n') 

 

# footer line  

import datetime  

Out_SuspectedDll.write(str(datetime.datetime.now()) + '\n') 

Out_SuspectedDll.close() 
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