UNIVERSITY OF PIRAEUS

School of Information and Communication Technologies

Department of Digital Systems

Postgraduate Program in Digital Systems Security

Master’s Thesis
Process Injection Techniques and

Detection using the Volatility Framework

Sotiria Balaoura
(sbalaoura@sch.gr)
MTE1623

Supervisor: Dr. Christoforos Ntantogian, University of Piraeus

Athens, November 2018

Contents

00 1=) i
List of Figures and Tables.o iii
List Of ADDreviatioNs ..o s iv
AN 13 o = o o PN %
3 I o oY 1 Lot o [0 o 1
1.1 MalWare ANAlY SIS ittt r e e 1
1.2 The Volatility FrameWoOrkKccoiiiiiiii i i ee e e s e e e rane e anneeas 2
1.3 ViIirtU@lization ... 2
1.4 What is process iNJeCHiON ..ot i i e e e 3
o T =T =T 1 1=) of = 3
1.6 Problem definition and thesis’ SCOPE.....ciiiiiiiiiiiiii e 4
1.7 Organization of this document 4

2 Hollow process or process replaCementooeiiriiiiiiiiir e 5
2.1 Introduction and hollow process descriptionccooeiiiiiiiiiiiiiereeeees 5
2.2 Steps tO hOIOW @ PrOCESS ...viieiiiiieiiie e e e e aeaneanenes 5
2.3 Process Hollowing Variationscooiiiiiiiiii i e e e 9
Address of the hollow and address of the allocated memoryc.coviiiiiiiiiinnns 9
Memory protection for the region of pages at memory allocation step................. 9

(\To X g aT=T 0 10T VAN 81 0 1 T=T o 5] [[S 10
Modifying the legitimate COdeoviiiiiii e 10
2.4 Testing ENVIrONMENT ... 10
2.5 Methodology of DeteCtioncuoeiieiii e 12
2.5.1 ProcCess LiSting ...coiiiiiiiiii i s 12
2.5.2 Comparing kernel and process memory structuresccvcevviviiiiinenns 14
2.5.3 Checking memory permiSSiONS .. cuuiiiiiiiieiitesisaeraeraneranernnaaneaaneans 18
2.5.4 Vadinfo — LOOKING DEePeI....uiiiiiiiiiiiii i i e eaaneaas 19
2.5.5 HOHoWFINd plUuGin..c.viiii i e e e e aneaas 21
2.5.6 Extracting executables.......cciiiiiiiiii e 23
2.5.7 Comparing executables SiZeScuiiiiiiiiiiiiiii i i 23
2.5.8 Determining the owner of the hollowed processcoevviiiiiiiiiiiennnns 24
2.5.9 Priority [@Vel ... e 25
2.5.10 Malfofind PlUuGin....coeeee e aens 25

2.5.11 Threadmap PIUGIiN ..o e e e aeaanens 26

B2 S T U 0 1] 0= V2 PP 29
G I I 1 I I 1 o | =Tt o o o PP 30
3.1 HoOW DLL INJECLION WOFKS ...veieiieiiiiiie e re e e e e e e aennens 30
3.2 DLL Injection Detection: A different approach.........cccoiiiiiiiiiiiiiiiiiieies 32
3.2.1 Detection FIOWChArt. ... oo e eaeas 34
3.2.2 Detection Idea Verificationocoiiiniiiiiiii e 36

3.3 Detection Code - FINADLLINI.PY +eviiriiiiiiiiiie it ii e eie e aisessne s sanessaneeanneens 36
3.3.1 Explanations relating the script ..o 37
G Or-Y [aTo I [T 1 111§ oy Y o PP 47

G 7= ol 1o Te | I I 1 o R 1=] o PP 47
3.5.1 Testing ENVirOnNmMeENt. ..ot i s s e e 47
3.5.2 TeStiNG FrESUILS ..veieii e 48

G 0 I V=53 o [o e [oo i Tl [T =] T] o =P 55
3.7 Future ImproVemMENTS. ..ot e s aeas 55
2 (o] o T 1113 [o PP 57
T D= (<1 o= Lol =P 58
LY A 0] o 1= o [G P 64
6.1 Hollow process injection and detection examplesccvoeviiiiiiiiiiiii e 64
6.1.1 Injection Using InjectProc project.....ccvviiiiiiiiiiiiii i e 64
6.1.2 Injection Detection on InjectProc memory imageccoevviiiiiiiniiiinnnnnns 68
6.1.3 Injection Using Process Hollow projectccoviiiiiiiiiiiiiiieeeeeeens 71
6.2 A DLL injection testing eXample ... 72
6.2.1 Gathering useful information from Virtual Machines..............c.ccvvivinenns 72
6.2.2 Executing the SCript....coeo i 74

6.3 FINADLLING SCHPL .uuieiiivrtnieeeieetieeeeeseetieeesesesaesesssstsa e esssestaeeessssaaseeeees 77

List of Figures and Tables

Figure 1 - Process Memory Space during hollowingccoooiiiiiiiiiiiiiiic e 8
Figure 2 - Process Listing in test image......ccooiiiiiiii i 13
Figure 3 — DLL listing in teSt imMageoouieiiniii e aens 15
Figure 4 — VAD information in test iMageccviiiiiiiiiiiiic e 16
Figure 5 - Comparing module linked list and VAD information in Stuxnet.vmem 17
Figure 6 - Comparing module linked list and VAD information in test images........... 17
Figure 7 — Checking memory permissions in test imageccvvivviiiiiiiie i v 19
Figure 8 — Comparing VAD of legitimate and suspicious proCess...........cccevviuvinennnns 20
Figure 9 — Hollowfind plugin in test image......coiiiiiiiiii e 21
Figure 10 — Hollowfind plugin false positives.......cciiiiiiiiiiiii e 22
Figure 11 - Extracting malicious executable in test image.........ccoovviiiiiiiiiiiinennnns 23
Figure 12 - Extracting malicious executable in test image.........ccooeviiiiiiiieiinne, 23
Figure 13 - Comparing malicious and legit executable in test image....................... 24
Figure 14 - Comparing legitimates’ and injected process’ priority........ccocvvviiinnnnnns 25
Figure 15 — Malfofind output for test imagec.coviiiiiiiiiii e 26
Figure 16 — ThreadMap output for Stuxnet memory imageccooeviiiiiiiiiiinnnnnnns 28
Figure 17 — ThreadMap output for test imagecoviiiiiiiiii e 28
Figure 18 — Remote DLL inJeCtioN StEPS ..vivviiiiiiiiiiiii i s snee e 31
Figure 19 - Key points of DLL Injection Detectionccooviiiiiiiiiii s 32
Figure 20 - DLL Injection Detection Flowchart........ccooviiiiiiiiiiiiiie e 34
Figure 21 - Characterize DLL subprocess flowchart..........cooiiiiiiiiiiiiiiicie 35
Figure 22 - _LDR_DATA_TABLE_ENTRY and _LDR_LOAD_REASON sturctures.......... 38
Figure 23 - Diagram showing PE File structure and IAToiiiiiiiiiiiiiiiii e 40
Figure 24 - Diagram showing Processes’ and Threads’ data structures 44
Figure 25 - Processes’ and Threads’ data structuresccoviiiiiiiiiiiiiiiieeeeens 46

Table 1 — Remote DLL Injection Detection Testing Results..........ccovvviiiiiiiiiiiinnnnnnn 54

List of Abbreviations

API Application Programming Interface
DLL Dynamic Link Library

IAT Import Address Table

0S Operating System

PE Portable Executable

PEB Process Environment Block

RVA Relative virtual Address

SID Security Identifier

VAD Virtual Address Descriptor

Abstract

Malware usually incorporate mechanisms to avoid their detection. Process
Injection is a technique that causes malicious code execution by injecting the code
into a remote running process and forcing the process to execute it, in such a way
that is concealed from the user. The program that performs the injection is called
injector.

The purpose of this thesis is to propose methodologies to detect malware in
memory. Regarding the malware type, it focuses on two different process injection
techniques: Hollow process and Classic DLL (Dynamic Link Library) or otherwise
called, Remote DLL. Various injectors are used. The malwares are executed on
Windows 10 VMware virtual machines and their memory is acquired. Dynamic
malware analysis is performed using the Volatility Framework.

The Hollow process injection technique is presented in detail and applied
producing various testing memory images. A complete methodology of detection using
the Volatility Framework is proposed that reveals and detects the anomalies that
hollow process injection causes to the memory. This methodology has incorporated
and organized in distinct steps most of the current literature, relevant articles on the
web and research on the subject. The described steps are performed on the test
images and the results are confirmed.

The Remote DLL injection is analyzed and injections are performed in various
systems resulting various test memory images. A completely new methodology of
detection is proposed, verified, implemented and tested. The whole idea is
implemented in a python script of approximately 200 lines of code that has to be
executed inside Volatility’s volshell plugin environment. The results of the script
executed on 12 distinct memory images, presented in the relative table, indicate that
the script works satisfactory.

1 Introduction
1.1 Malware Analysis

The European Network and Information Security Agency (ENISA), in its annual
Threat Landscape Report of 2017, classifies Malware as the most frequently
encountered cyberthreat among the Top 15 Cyber Threats in 2017, exactly in the
same position as it was in 2016 too. In 2017 some Anti-Virus (AV) vendors detected
more than 4 million samples of threats per day [1][2]. This statistic demonstrates how
critical the malware analysis is for anyone who responds to computer security
incidents.

Malware analysis is the art of dissecting malware to understand how it works,
how to identify it, as well as how to defeat or eliminate it. In [3] and [4], the malware
analysis approaches are categorized as static or dynamic. The purpose of static
analysis is to detect the malware before its execution. It consists of examining the
executable file without viewing the actual instructions or reverse-engineering the
malware’s internals. Dynamic analysis techniques attempt to detect malicious
behavior during or after the malware execution. It involves executing the malicious
code, in an isolated environment, and observing its behavior as well as the anomalies
or inconsistencies it causes. Off course, prerequisite for anomalies’ recognition is the
knowledge of what is normal.

The next issue is where to look for these anomalies, which can also be
considered as evidences (of the way the malware works). The possible locations can
be categorized in the same way as the digital forensics: in volatile and non-volatile
computer storage [5]. Non-volatile electronic evidence is found on hard disks, USB
flash drives, and removable media. They contain files, system and network logs,
corrupted files and maybe even the malicious code which could be analyzed. The disk
drive’s file system can lead to the recovery of deleted files, which may contain further
evidence. The analysis of data captured from hard disk is also called disk forensics.
Volatile media, that is the main memory or RAM (Random Access Memory) contain
information about each running process and thread, open files, deleted files, Windows
registry keys and event logs, established network connections, recently executed
commands, URLs, IP addresses, executing code, including malware. It is important to
notice that while a malicious program is being executed, it cannot be erased from
memory, unlike the hard disk. In other words, every function performed by an
operating system or application, results in specific modifications to the computer’s
memory, which can often persist a long time after the action, essentially preserving
them [6]. The analysis of data captured from memory is also called memory
forensics.

For a malware analyst it is ideal to be able to perform both disk and memory
forensics, but it is obvious that memory analysis has advantages relative to disk
analysis. It seems that memory is the best place to identify malicious software
activity. An analyst can study the system configuration and identify inconsistencies in
it, bypass packers, rootkits and other hiding tools. Recent activity can be tracked and
analyzed. Evidences that cannot be found anywhere else can be collected, such as

memory-only malware [7]. Memory analysis can be done on the live system, but it
can also be done on a dump of the volatile memory. A memory dump (also known as
a core dump or system dump) is a snapshot capture of computer memory data from a
specific instant. For a no longer live system, crash dumps and hibernation files can
provide information about it. A hibernation file (hiberfil.sys) contains a compressed
copy of memory that the system dumps to disk during the hibernation process.

There are commercial memory analysis tools, such as WindowsSCOPE Cyber
Forensics [13], F-Response [14], Windows Memory Forensic Toolkit (WMFT) as well as
open source tools such as the Volatility Framework. For a relatively complete list of
open source memory analysis tools, see [15].

1.2 The Volatility Framework

The Volatility Framework is a completely open collection of tools, implemented
in Python under the GNU General Public License, for the extraction of digital
artifacts from volatile memory (RAM) samples or memory images as they are
otherwise called. The extraction techniques are performed completely independent of
the system being investigated but offer unprecedented visibility into the runtime state
of the system. The framework is intended to introduce people to the techniques and
complexities associated with extracting digital artifacts from volatile memory samples
and provide a platform for further work into this exciting area of research. The
Volatility Framework is maintained and promoted by The Volatility Foundation which is
an independent non-profit organization [17].

Volatility supports memory dumps from all major 32- and 64-bit Windows
versions. Whether the memory dump is in raw format, a Microsoft crash dump,
hibernation file, or virtual machine snapshot, Volatility is able to work with it. It also
supports Linux memory dumps in raw or LIME format and include 35+ plugins for
analyzing Linux kernels. It supports 38 versions of Mac OSX memory dumps. Android
phones with ARM processors are also supported [16].

The amount of Volatility’s tools, the fact that it continuously maintained, so it
supports Windows 10 Virtual Machines, the easiness for plugins’ creations and the rich
documentation, practically make it the most prudent choice as a memory analysis tool
[18][19][20][21].

1.3 Virtualization

For malware analysis, virtualization can be used to create the isolated
environment mentioned above. Virtualization refers to the creation of a virtual
resource such as a server, desktop, operating system, file, storage or network. In this
case, operating system-level virtualization is used, meaning running multiple
operating systems on a single piece of hardware. Virtualization technology involves
separating the physical hardware and software by emulating hardware using software.
When a different operating system is operating on top of the primary one, by means
of virtualization, it is referred to as a virtual machine [8].

Currently the popular virtual products in the market are VMware Workstation
player or pro [9], VirtualBox [10], Hyper-V [11] and Parallels [12]. These products
can give us a snap shot of memory and page file which is an identical to original data
of the virtual machine. For example, when we suspend a VMware virtual machine, the
whole activities on it are stopped and the contents of the physical memory are
contained in a .vmem file which is a raw memory image.

1.4 What is process injection

Researchers classify the many types of malware in several different ways: The
delivery method or attack methodology, the specific type of vulnerability that the
malware exploits, the objective of the malware, the persistence mechanisms, etc. An
interesting classification the one referring to the methods that malware authors use to
avoid detection, called covert launching techniques and mostly refer to the malware
loader. Loader (also known as a launcher) is a program that is responsible for
launching the malware itself in such a way that is concealed from the user [3].

Process Injection is a loader technique that causes malicious code execution
by injecting the code into a remote running process and forcing the process to
execute it, resulting in a different behavior than the expected one. It is a widespread
defense evasion technique employed often within malware. The program that
performs the injection is called injector. Direct injection refers to allocating and
inserting code into the memory space of a remote process. DLL (Dynamic Link
Library) injection is a form of process injection where the injected item is a DLL that is
loaded within the context of the remote process. There are many process injection
techniques, but the most common are:

*» Hollow process injection or process replacement

» Remote DLL injection or otherwise called Classic DLL injection

» Portable Executable injection (PE injection)

» Thread execution hijacking

» Hook injection

» APC (Asynchronous Procedure Calls) injection and Atom Bombing

[22][6].

1.5 Prerequisites

In order to follow the concept of this thesis, some basic knowledge of the Windows
operating system is required on these topics:

» Window memory management: Virtual memory, physical memory, paging,
shared memory, Kernel and User Mode [23][24][26]

= Processes and the corresponding _ EPROCESS data structure, threads, process
memory layout [25], Virtual Address Descriptors (VADs) [6][26]

= Portable Executable (PE) File format [27][28][29][30][31]

= Handles [32]

https://www.virtualbox.org/

It is not among the goals of this work to present the above issues, so the
corresponding useful bibliography is cited, for those who believe that they need to
refresh their knowledge.

1.6 Problem definition and thesis’ scope

The purpose of this thesis is to propose methodologies to detect malware in
memory and regarding the malware type, focuses on two different process injection
techniques: Hollow process injection and Classic DLL Injection. To perform the
injection, various injectors are chosen and used as described in the following
sections. The malwares are executed on Windows 10 VMware virtual machines and
their memory are acquired. Dynamic malware analysis is performed using the
Volatility Framework. Windows 10 is chosen as it is the latest windows versions and
because one of the chosen injectors is tested only on this operating system.

For the detection of Hollow process injection, a complete methodology, based
on current literature is presented and tested. The knowledge gained through this
process, led to the creation of a completely nhew methodology for DLL Injection
detection which is also presented in detail and tested.

1.7 Organization of this document

In the following chapter 2 is described how the hollow process injection
technique works. After that, a complete methodology of detection is presented using
the Volatility Framework, based on current literature. The methodology is explained in
detail and applied producing various test memory images. The configuration of the
testing environment, in which injections are performed, is described in detail.

Chapter 3 analyzes remote DLL injection and a new approach of detection is
proposed, tested and evaluated. This approach is implemented by a python script that
can be executed using the Volatility framework. The testing environment is described
and the results of the conducted test are presented and evaluated.

2 Hollow process or process replacement

This chapter presents the code injection technique called hollow process or
process replacement: the main concept of it as well as some of its main variations. A
methodology is proposed that relevels and detects the anomalies that hollow process
injection causes to the memory. This injection technique is performed in a testing
environment, which is also described in detail, using two different malware-injectors
and producing memory images on which the methodology of detection is applied.
Alternative memory images available are also used. Each step of the methodology is
explained and its results on the memory image are analyzed.

2.1 Introduction and hollow process description

Hollow Process Injection (or Process Hollowing, or Process Replacement, or
Dynamic forking as it is otherwise called) is used when the malware needs to be
disguised as a legitimate process, without the risk of crashing.

Hollow Process Injection is a code injection technique in which the hollowing
process starts a new instance of a legitimate process in suspended state. The
executable section of the legitimate process in the memory is swapped out (hollowed)
and is replaced with malicious code, mostly malicious executable. After that, the (no
longer) legitimate process is resumed and it executes the malicious code for the
remainder of its process lifetime within its legitimate context of the process. The PEB
(Process Environment Block) still points to the legitimate path and the processes’ data
structures remain the same, the malware has the same privileges as the process that
is replacing. So, the user cannot distinguish the hollowed process from a legitimate
one. For example, if the svchost.exe is replaced, the user would see a process named
svchost.exe running from C:\Windows\System32 with normal characteristics.

2.2 Steps to hollow a process

Three components are involved in process hollowing: Let’s assume that the
process that performs the hollowing e.g. the injector is called hollow.exe, the
legitimate process that it creates in order to get hollowed is legitimate.exe (host
process or remote process) and the malicious code (payload) to be injected is
malicious.exe.

Although there are various techniques that can be used for hollow process
injection, in the most common variant the hollowing process typically follows the
following steps:

1. Creates a new instance the |Ilegitimate process (for example

C:\Windows\explorer.exe, C:\windows\system32\lsass.exe,
C:\Windows\system32\svchost.exe), but with its first thread suspended.
Result:

The executable section legitimate.exe is loaded in the memory, but is not yet
executed and its memory space can be modified. Its PEB (Process Environment
Block) members such as ImagePathName and ImageBaseAddress, have the
corresponding values.

How this can be done:
Create the legitimate process using CreateProcess with CREATE_SUSPENDED
option and keep the provided handle for the subsequent function calls that
modify its memory space.

. Acquires the malicious code (mostly executable) to inject. This code can be
originated from anywhere: from a file on the disk/over the network or the
resource section of the hollowing process. The malicious PE (Portable
Executable) file is parsed. Attributes like PE header, PE header size, sections
and corresponding sizes of the malicious executable are extracted.

. Reads the legitimates’ processes entry point and image base address (which
holds the memory address where the executable is loaded), by reading the PEB,
i.e. PEB.ImageBaseAddress.

After that, it frees or unmaps the containing memory section.

Result

The hollow is created. The legitimate process is just an empty container (the
DLLs, heaps, stacks and open handles are still intact, but no process executable
exists).

How this can be done:

Get the base address of the legitimate PEB using NtQueryProcessInformation or
GetThreadContext function and then read PEB.ImageBaseAddress in process
memory using ReadProcessMemory. After that, the NtUnmapViewOfSection
function is utilized to unmap the section. The above functions are kernel
functions, so hollow.exe usually resolves them at runtime using
GetProcAddress.

. Allocates a new memory region within the virtual address space of the
legitimate process. The size of the memory region allocated is determined by
the size of the malicious code. The starting address of this region depends on
the technique variation used. If needed, hollow.exe updates the malicious PE
header and calculates the difference between the two images’ (legitimate and
malicious) base addresses (delta) which is used in rebasing the malicious
image. For further details, see Process Hollowing Variations.

Result:

The memory needed for the replacement is allocated and contains zeros.

How this can be done:

Use VirtualAllocEx with PAGE_EXECUTE_READWRITE permissions (for simplicity
reasons) and allocation type MEM_COMMIT | MEM_RESERVE

. Copies the malicious PE header as well as each PE section (.text, .rdata, .data,
etc) into the hollow created inside the legitimates’ process memory.

Result:

The injection is completed.

How this can be done:

Use WriteProcessMemory to write the malicious image into the allocated space
inside the legitimate process.

6. Updates injected processes’ structures so that the malicious code is going to be
executed.
Result:
The injected processes’ PEB ImageBaseAddress points as the malicious image.
The thread context of the suspended thread is set so that its first instruction
(Entry Point) points at the injected executable.
How this can be done:
Calculate the new entry point. Call GetThreadContext function, update eax
register and then call SetThreadContext

7. Resumes the suspended thread. At this point, the malicious code starts
executing within the container created for the legitimate.exe.
Result
The injected (and no longer) legitimate process is executing looking legitimate
on the outside but being malicious on the inside.
How this can be done:
Hollow.exe simply resumes the suspended process using ResumeThread
function.

[61[22][33][34][35][36][37][43]

The advantage of hollow process injection is that the user cannot distinguish
the injected process from the legit one using conventional tools. The PEB is
unchanged so it still preserves valid looking fields in important structures, like
ImagePathName, ImageBaseAddress, etc. It looks normal and not suspicious. The
only think that has changed is the actual code that is executing.

In the following figure is shown, at a very abstract level, how the legitimates’
Process Address Space changes during the steps described above.

Step 1 & 2 : A new instance Step 3: The legitimate Step 4: Allocation of a new
of the legitimate process is process is hollowed memory segment
created. Malicious code is
acquired
Step 5: The malicious Step 6 : Thread Context & Step 7 - The thread is
image is injected PEB.ImageBaseAddress is resumed

set

Figure 1 - Process Memory Space during hollowing

Malwares that use Process Hollowing exclusively or as a malware loader, are
Stuxnet and Careto [6], DarkComet [38], Dridex [39], Skeeyah [35]. Various malware
examples are also listed in [40].

2.3 Process Hollowing Variations

As mentioned before, there are some variations in the above steps and the

most common ones regard the following:

Address of the hollow and address of the allocated memory

Memory unmapping and then memory allocation is done at the same address
where the legitimate executable was previously loaded
(PEB.ImageBaseAddress) and the malicious’ PE header is updated so that its
ImageBase equals to PEB.ImageBaseAddress of the Ilegitimate image
[41][6][33]. However, before setting it, the difference between the two images’
(legitimate and malicious) base addresses must be calculated (delta) for use in
rebasing the malicious image, if needed.

The memory unmapping is done at PEB.ImageBaseAddress. The allocation is
done at the address of the malicious’ PE ImageBase (found in the optional
header), so no changes are to be done in malicious PE headers. However, after
writing PE header and sections, the PEB.ImageBaseAddress of the legitimate
process must be updated to point to the address that came up from the
memory allocation. This way, PEB points to the injected executable [35].

This is convenient, because is more than likely that absolute addresses are
involved within the code which is entirely dependent on its location in memory.
Since many executables share common base addresses (usually 0x400000), it is
not uncommon that the hollowed process’s own executable image exists at the
same address [37][35].

The memory allocation is not done at a specific address. This is a more general
case and the following steps must be performed:
a. Calculate the difference between the legitimates’ PEB.ImageBaseAddress
and PE.OptionalHeader.ImageBase. This delta value is used for rebasing.
b. Update PE header of the malicious image so that its ImageBase equals to
PEB.ImageBaseAddress of the legitimate image
c. If the delta calculated in the prior step is not zero, rebase the malicious
image. This involves recalculating every absolute address and modifying
the code to use the new values: delta + preferred address.
d. Calculate the new entry point as the sum of PEB.ImageBasesAddress (of

the legitimate process) + Malicious PE Header->
OptionalHeader.AddressOfEntryPoint
[42][34]

Memory protection for the region of pages at memory allocation step

The memory protection for the region of pages allocated could be for the sake of
simplicity PAGE_EXECUTE_READWRITE, but this could be improved upon by
changing each PE section with the appropriate permissions based on the
characteristics specified in the section header, for example using VirtualProtectEx
function. In this case, the hollowing should be harder to be detected [43].

https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://github.com/m0n0ph1/Process-Hollowing
https://www.trustwave.com/Resources/SpiderLabs-Blog/Analyzing-Malware-Hollow-Processes/

No memory umapping

In this case, there is not any hollowing out of the legitimate executable because
the Unmaping step is not performed. A new memory allocation is done and the
malicious code is copied there. Then PEB.ImageBase and Entrypoint is updated as
already described [35].

Modifying the legitimate code

In this case, after creating the legitimate process in suspended mode, the
hollowing process creates a section in its own address space, copies the malicious
code in it and finally maps a view of it in the legitimate process with
PAGE_EXECUTE_READWRITE permissions. So, it injects the malicious code. After
that is creates a second section, copies there the legitimate.exe and changes it so
that it jumps to the address of the previously mapped view. This requires that 7
bytes of address of entry point are modified. Then it unmaps the legitimate.exe
from the legitimate process and maps the section of the changed code at the same
address. The “legitimate” process is resumed, so it executes the malicious code
[35].

2.4 Testing Environment

The code injection is performed only in memory, so it is best detected using
memory forensics. As already mentioned, the open source Volatility Framework is
used [17].

There is a complete reference of the commands and plugins used in [18]. In
https://qgithub.com/volatilityfoundation/volatility/wiki/Memory-Samples, there is a list
of publicly available memory samples for testing purposes. Also, there are samples in
https://www.memoryanalysis.net/amf, hyperlink “All memory images”.

For the investigation, KALI Linux 2017.1 was used (downloaded file name kali-
linux-2017.1-amd64.iso from https://www.kali.org/downloads/) which includes
Volatility’s Foundation Volatility Framework 2.6. KALI and was opened with Oracle
VirtualBox version 5.2.12 r122591 (Qt5.6.2) [10].

The proposed methodology is applied in the memory images:

» Stuxnet.vmem which is a memory sample that came from a virtual machine
infected with Stuxnet and is downloaded from https://volatility-
labs.blogspot.gr/2016/08/automating-detection-of-known-malware.html.

* Three different test memory mages that are created in the context of this
thesis.

These test images came from a windows 10 virtual machine (Enterprise
Evaluation Build 14393.rs1_release.180209-1727, downloaded from
https://az792536.vo.msecnd.net/vms/VMBuild 20160802/VMWare/MSEdge/MSEdge.
Win10 RS1.VMWare.zip, which was opened with VMware® Workstation 12 Pro
software, version 12.5.2 build-4638234 [9].

10

https://www.volatilityfoundation.org/
https://github.com/volatilityfoundation/volatility/wiki/Memory-Samples
https://www.memoryanalysis.net/amf
https://www.kali.org/downloads/
https://volatility-labs.blogspot.gr/2016/08/automating-detection-of-known-malware.html
https://volatility-labs.blogspot.gr/2016/08/automating-detection-of-known-malware.html
https://az792536.vo.msecnd.net/vms/VMBuild_20160802/VMWare/MSEdge/MSEdge.Win10_RS1.VMWare.zip
https://az792536.vo.msecnd.net/vms/VMBuild_20160802/VMWare/MSEdge/MSEdge.Win10_RS1.VMWare.zip

To perform the process replacement, the source code of two different projects
was used: InjectProc [41] and Process-Hollowing [34]. The source code was compiled
using Microsoft Visual Studio Community 2017, version 15.5.6. In both cases, the
“malicious” executable just pops up a window with title “pwnd” displaying “Injected”
or displaying “Hello World” respectively. After the injection, the memory image was
retrieved by suspending the virtual machine and copying the corresponding .vmss and
.vmem files.

The memory images that are hollowed using InjectProc project are MSEdge -
Win10_preview-eaaa27c2-onrepl.vmem and MSEdge - Winl1l0_preview-eaaa27c2-
onrepINew.vmem. In both images, the hollowed process is notepad.exe. Using
Process-Hollowing project, which hollows svchost.exe, the memory image created is
MSEdge - Win10_OnHollow-m0O.vmem. For details on how the injection is performed,
see Hollow process injection and detection examples section. In the specific section is
also demonstrated how needed information is retrieved in order to verify a) that the
injection is performed and b) that the results of the proposed methodology are
correct.

In the following sections, the methodology is presented using MSEdge -
Win10_preview-eaaa27c2-onrepl.vmem. The Volatility’s profile parameter used is --
profile="Winl0x64 14393" which corresponds to the windows version of the virtual
machine.

11

https://github.com/secrary/InjectProc
https://github.com/m0n0ph1/Process-Hollowing

2.5 Methodology of Detection

Before analyzing the giveaways of process hollowing, some issues regarding
Windows’ architecture, must be reminded:

The executive process structure EPROCESS exists in system address space
(kernel memory) except the PEB (Process Environment Block) structure which exists
in process address space (process memory) and thus can be modified, as described in
process hollowing steps.

The Virtual Address Descriptors (VADs) are data structures that the memory
manager uses to keep track of the virtual addresses the process is using and is an
excellent forensic resource because when a process allocates memory using
VirtualAlloc, the memory manager creates an entry in the VAD tree. A process’ VAD
tree describes the layout of its memory segments at a slightly higher level than the
page tables and is maintained by the operating system, in kernel memory. The VADs
contain information such as the starting and ending addresses of the allocated
memory block, mapped file name, the initial protection (read, write, execute) and
several other characteristics that are objects of interest for the detection method
[6][26].

In the following sections, the methodology is presented in two ways: first,
presenting the Volatiliy command using a hypothetically memory image called
mem.bin and secondly executing the corresponding command using MSEdge -
Win10_preview-eaaa27c2-onrepl.vmem, which was introduced in the previous
paragraph. After that, the results are analyzed.

The steps to detect Process Hollowing are:

2.5.1 Process Listing

The purpose of this step is to determine suspicious processes, meaning
processes which are not started from the corresponding parent process or parent
process that is terminated, although it should be present. The last case is not a
sufficient proof, rather than a simple indication. But the first case is a strong
indication that something is wrong. For example, there should be only one instance of
Isass.exe running from the system32 directory and its parent should be winlogon.exe
on pre-Vista machines, or wininit.exe on Vista and later systems. Stuxnet for
example, creates two fake copies of Isass.exe, and their parent is not winlogon.exe.
Similarly, services.exe should be the parent for any svchost.exe instances. As already
mentioned, another point to be taken into account is whether the number of instances
of a specific process is the right one [6][35][43]. To list the processes of the system,
volatility’s pslist plugin is used.

python vol.py - f mem.bin pslist ‘

In any step, it is a good practice to compare the data regarding the suspicious process
with the data regarding corresponding legitimate.

12

root@kali: # python vol.py -f /media/sf_Shared/KALI/"MSEdge - Winl®_preview-eaaa27c2-onrepl.vmem" --profile="WinlOx64 14393"
pslist

Volatility Foundation Volatility Framework 2.6

0ffset (V) Name PID PPID Thds Hnds Sess Wow64 Start Exit

Oxffff848b6daacd4@ System 4] 156 0 2018-82-16 11:35:43 UTC+0000

Oxffff848b6e65a800 smss.exe 296 4 4 0 2018-82-16 11: UTC+8000

Oxffff848b6T59f80@ csrss.exe 396 384 11 0 0 2018-82-16 11: UTC+00080

Oxffff848b6e80380O smss.exe 460 296 0 ----e-- 1 0 2018-82-16 11: UTC+0000 2018-02-16 11:35:56 UTC+0000
Oxffff848b6e812080 wininit.exe 468 384 4 0 0 0 2018-82-16 11: UTC+0000

OxTfTf848b6T240800 csrss.exe 476 460 12 0 1 0 2018-02-16 11: UTC+0000

Oxffff848b70759800 winlogon.exe 548 460 5 0 1 0 2018-82-16 11: UTC+8000

Oxffff848b6T1e3800 services.exe 572 468 21 0 0 0 2018-82-16 11: UTC+8000

Oxffff848b70749080 lsass.exe 596 468 9 0 0 0 2018-82-16 11: UTC+0000

Oxffff848b707885c@ svchost.exe 672 572 37 0 0 0 2018-82-16 11: UTC+0000

Oxffff848b6T53658@ svchost.exe 736 572 14 0 0 0 2018-82-16 11: UTC+0000

OxTfTf848b6Tc575cO dwm.exe 860 548 12 0) 0 2018-02-16 11: UTC+0000

Oxffff848b70732800 svchost.exe 892 572 20 0 0 0 2018-82-16 11: UTC+8000

Oxffff848b70728800 svchost.exe 1000 572 24 0 0 0 2018-82-16 11: UTC+8000

Oxffff848b70726800 svchost.exe 1008 572 18 0 0 0 2018-82-16 11: UTC+8000

Oxffff848b6fcd186@ vmacthlp.exe 316 572 2 0 0 0 2018-82-16 11: UTC+0000

Oxffff848b6FcfB5c@ svchost.exe 808 572 36 0 0 0 2018-82-16 11: UTC+0000

Oxffff848b6fcf280@ svchost.exe 1040 572 24 0 0 0 2018-82-16 11: UTC+00080

Oxffff848b6daf580@ svchost.exe 1060 572 100 0 0 0 2018-82-16 11: UTC+8000

Oxffff848b6dafed8@ svchost.exe 1184 572 7 0 0 0 2018-82-16 11: UTC+8000

Oxffff848b6Td0908@ svchost.exe 1264 572 11 0 0 0 2018-82-16 11: UTC+8000

Oxffff848b701125c@ spoolsv.exe 1444 572 15 0 0 0 2018-82-16 11: UTC+0000

Oxffff848b700aa60@ svchost.exe 1760 572 12 0 0 0 2018-82-16 11: UTC+0000

Oxffff848b70121800 VGAuthService. 1816 572 4 0 0 0 2018-82-16 11: UTC+00080

Oxffff848b7005180@ IpOverUsbSvc.e 1832 572 11 0 0 0 2018-82-16 11: UTC+8000

Oxffff848b70047800 vmtoolsd.exe 1908 572 9 0 0 0 2018-82-16 11: UTC+8000

Oxffff848b70045800 svchost.exe 1916 572 12 0 0 0 2018-82-16 11: UTC+8000

Oxffff848b701c1800 wlms.exe 1952 572 4 0 0 0 2018-82-16 11: UTC+0000

Oxffff848b70188048 MemCompression 1996 4 20 0 ------ 0 2018-82-16 11: UTC+0000

Oxffff848b70980300 dllhost.exe 2224 572 15 0 0 0 2018-82-16 11: UTC+0000

Oxffff848b709c6800 msdtc.exe 2344 572 12 0 0 0 2018-02-16 11: UTC+8000

Oxffff848b709bc640@ svchost.exe 2448 572 5 0 0 0 2018-82-16 11: UTC+8000

Oxffff848b70a7c80@ cygrunsrv.exe 2756 572 6 0 0 0 2018-82-16 11: UTC+8000

Oxffff848b70b3d8BE cygrunsrv.exe 2796 2756 0 ----e-- 0 0 2018-82-16 11: UTC+0080 2018-02-16 11:36:05 UTC+B0080
Oxffff848b70b0e30@ conhost.exe 28408 2796 4 0 0 0 2018-82-16 11: UTC+0000

Oxffff848b70b4e380 sshd.exe 2896 2796 5 0 0 0 2018-82-16 11: UTC+0000

Oxffff848b70701800 sihost.exe 2616 1060 15 0 1 0 2018-02-16 11: UTC+0000

Oxffff848b70daf80@ svchost.exe 2972 572 9 0 1 0 2018-82-16 11: UTC+8000

Oxffff848b70dad80@ taskhostw.exe 1744 10860 15 0 1 0 2018-82-16 11: UTC+8000

AvFFFFRARTAARTRAN uearinit ava 2IARA 5A8 [T 1 N_2018 A2 16 11« NTC L Annn 2018 02 1R 1123642 1ITC.LAMARA
|oxfff7848b70da0808 explorer.exe 3280 3260 62 0 1 0 2018-82-16 11: UTC+0000

UXTTTTB48D/0dad8uU RuntimeBroker. 3404 b/Z2 21 [C} 1 U ZUl8-UZ-1b 11: UIL+0000

OxTfTf848b70d9e80@ backgroundTask 3468 672 0 -------- 1 0 2018-02-16 11: UTC+0000 2018-02-16 11:39:52 UTC+0000
pxffTf848b70d77808 ShellExperienc 3752 672 46 0 1 0 2018-82-16 11:36:27 UTC+0000

Oxffff848b71040088 SearchIndexer. 3864 572 33 0 [} 0 2018-02-16 11:36:29 UTC+0000

OxffTf848b710ef808 SearchUI.exe 4072 672 41 0 1 0 2018-02-16 11:36:33 UTC+0000

Oxffff848b711ea808 SearchProtocol 4084 3864 0 -------- 0 0 2018-02-16 11:36:34 UTC+0000 2018-02-16 11:44:34 UTC+0000
Oxffff848b7153a088 smartscreen.ex 5060 672 [1 0 2018-02-16 11:36:55 UTC+0000 2018-02-16 11:41:57 UTC+0060
Oxffff848b70181080 dllhost.exe 3844 672 9 0 1 0 2018-02-16 11:36:55 UTC+0000

OxffTf848b707d4808 MSASCuil.exe 2908 3280 8 0 1 0 2018-02-16 11:36:55 UTC+0000

pxffff848b71606808 vmtoolsd.exe 876 3280 7 0 1 0 2018-02-16 11:36:56 UTC+0000

OxTTT7848b716a1808 OneDrive.exe 956 3280 14 0 1 0 2018-02-16 11:36:57 UTC+0000

OxffTf848b6dac6088 WmiPrvSE.exe 620 672 11 0 [c] 0 2018-02-16 11:37:16 UTC+0000

pxffff848b711cd088 WmiPrvSE.exe 1016 672 12 0 [} 0 2018-02-16 11:37:17 UTC+0000

pxffff848b70dcO680 vs_installersh 5104 3764 35 0 1 0 2018-02-16 11:37:21 UTC+0000

OxffTf848b71610808 WmiApSrv.exe 2192 572 0 -------- [t} 0 2018-02-16 11:37:30 UTC+0000 2018-02-16 11:39:46 UTC+00080
Oxffff848b6e351808 vs installersh 4912 5104 12 0 1 0 2018-02-16 11:37:31 UTC+0000

Oxffff848b6e3c9088 vs installersh 3016 5104 18 0 1 0 2018-02-16 11:37:37 UTC+0000

OxffTf848b6e39b080 cmd.exe 3644 5104 1 0 1 0 2018-02-16 11:37:45 UTC+0000

OxffTf848b6T3c8088 conhost.exe 608 3644 2 0 1 0 2018-02-16 11:37:45 UTC+0000

Oxffff848b6f3c9808 vs installersh 604 3644 8 0 1 0 2018-02-16 11:37:45 UTC+0000

OxTTTT848b67432808 vs_installerse 2212 604 26 0 1 0 2018-02-16 11:37:48 UTC+0000

OxffTf848b6T3d5308 conhost.exe 4388 2212 2 0 1 0 2018-02-16 11:37:53 UTC+0000

Oxffff848b6T460808 svchost.exe 5304 572 I [} 0 2018-02-16 11:38:14 UTC+0000 2018-02-16 11:40:16 UTC+0000
Oxffff848b67282488 svchost.exe 5524 572 11 0 0 0 2018-02-16 11:38:19 UTC+0000

OxffTf848b7154808 MsMpEng.exe 5632 572 29 0 [:] 0 2018-02-16 11:38:20 UTC+0000

OxffTf848b71313088 SearchFilterHo 6120 3864 I [} 0 2018-02-16 11:38:44 UTC+0000 2018-02-16 11:40:58 UTC+00080
Oxffff848b70a25088 NisSrv.exe 5248 572 11 0 [} 0 2018-02-16 11:38:44 UTC+0000

Oxffff848b6T56c088 EnableGraphics 5380 2212 7 0 1 0 2018-02-16 11:38:54 UTC+0000

OxffTf848b71634088 Dism.exe 72 5380 3 0 1 0 2018-02-16 11:38:54 UTC+0000

Oxffff848b6904808 conhost.exe 5368 72 1 0 1 0 2018-02-16 11:38:55 UTC+0000

OxTTTT848b7179e808 DismHost.exe 5516 72 7 0 1 0 2018-02-16 11:38:56 UTC+0000

OxffTf848b6e26c088 wermgr.exe 5444 1060 0 -------- [:] 0 2018-02-16 11:39:00 UTC+0000 2018-02-16 11:39:51 UTC+0080
Ox ffff848b6e99b588 TrustedInstall 5796 572 8 0 [} 0 2018-02-16 11:39:00 UTC+0000

OxTTTT848b6e8ad080 TiWorker.exe 4840 672 7 0 0 0 2018-02-16 11:39:00 UTC+0000

OxffTf848b6e8a7688 sppsvc.exe 4612 572 0 -------- [:] 0 2018-02-16 11:39:00 UTC+0000 2018-02-16 11:39:40 UTC+00080
Oxffff848b6e8b5088 swchost.exe 4636 572 7 0 [} 0 2018-82-16 11:39:00 UTC+0000

Oxffff848b6e414808 DeviceCensus.e 2668 1060 6 0 [} 0 2018-02-16 11:40:04 UTC+0000

OxffTf848b6e412808 WmiApSrv.exe 2196 572 7 0 [:] 0 2018-02-16 11:40:05 UTC+0000

Oxffff848b6e418808 InstallAgent.e 4724 672 8 0 1 0 2018-02-16 11:40:12 UTC+0000

Oxffff848b6e422808 InstallAgentUs 1312 672 8 0 1 0 2018-02-16 11:40:17 UTC+0000

Oxffff848b6e41a808 conhost.exe 4716 2668 3 0 0 0 2018-02-16 11:40:34 UTC+0000

OxffTf848b72a84088 backgroundTask 5364 672 14 0 1 0 2018-02-16 11:43:32 UTC+0000

Oxffff848b6db1008E smartscreen.ex 4176 672 8 0 1 0 2018-02-16 11:43:34 UTC+0000

OxTTTT848b72bb008 cmd.exe 3616 3280 1 0 1 0 2018-02-16 11:43:36 UTC+0000

AxffffRARh71353ARA_conhast exe 5276 3616 5 o} 1 A_2018-A2-16_11:43:43 _[ITCLAAAA

xffff848b70ab8800 notepad.exe 5764 3280 4 0 1 0 2018-02-16 11:44:10 UTC+0000

xffff848b728d8080 notepad.exe 3912 2664 3 0 1 0 2018-02-16 11:45:13 UTC+0000

OATTTTO40LTZIL5000 Spps v ere 3004 372 10) o 0 43TI0UTCF0000

Oxffff848b7018f088 cmd.exe 6068 1908 0 -------- 0 0 2018-02-16 11:45:27 UTC+0000 2018-02-16 11:45:27 UTC+0000
Oxffff848b6e406800 conhost.exe 1700 6068 0 (] 0 0 2018-02-16 11:45:27 UTC+0000 2018-02-16 11:45:27 UTC+0000
Oxffff848b72aa55c0 ipconfig.exe 1104 6068 0 -------- 0 0 2018-02-16 11:45:27 UTC+0000 2018-02-16 11:45:27 UTC+0000

Figure 2 - Process Listing in test image

13

It is observed that services.exe is the parent of all svchost.exe instances, as
they should. Everything looks normal, but it is also observed that there are two
instances of notepad.exe with pids 5764 and 3912. The parent process id (ppid) of
process 5763 is 3280 that corresponds to explorer.exe, but the parent of 3912 (pid
2664) is not found in the process list.

2.5.2 Comparing kernel and process memory structures

The purpose of this step is to discover any discrepancies, indicating that a
process is hollowed out, between the two primary data structures used by processes:
the PEB (Process Environment Block) which exists in process memory and the VADs
(Virtual Address Descriptors) which exist in kernel memory. In a noninfected system
the results from the Volatility’s plugins:

= dllist (which displays a process's loaded DLLs and retrieves the information by
walking the load order list of PEB)

= vadinfo (which displays extended information about a process's VAD nodes and
retrieves the information from the VAD structures)

= Ildrmodules (which retrieves the information from the PEB and also correlates
it with VADs)

should be compatible [6][35][36].
Dynamic Link Library Listing

Since the data in PEB are initialized at process creation, dlllist may not provide
any direct clue, but the columns PATH (full path) and BASE (Image Base) of the
executables found should be used as a reference for the following commands. An
interesting point is that all instances of a process should have the same executable
size as explained in a next step.

Concentrating on the results from the previous step, the commands for this step are:

python vol.py - f mem.bin
dlllist -p <suspicious process id> |grep -i <suspicious process name>

14

root@kali: # python vol.py -f /media/sf_Shared/KALI/"MSEdge - WinlO_preview-eaaa27c2-onrepl.vmem" --profile="Winl@x64 14393"
dlllist -p 3912

Volatility Foundation Volatility Framework 2.6

e ke e ke sk s ok s o ok ook o s o sk o ok o ok ke sk ke s s ok o ok ke s ke s sk ok s ok sk s sk e s s sk ok ok ok ok sk s ke sk ok ok sk ok sk sk sk ok sk ok ok ok kR ok ok ok ok ok

notepad.exe pid: 3912

Command line : "C:\Windows\System32\notepad.exe"

Base Size LoadCount Path

0x00007TT6b1150000 0x1e000 0x0 C:\Windows\System32\notepad.exe

0x00007 fff16bd0BO0 6x1d1006 0x0 C:\Windows\SYSTEM32\ntd1ll.d11

x00007 16570000 0xab8eo 8x0 C:\Windows\System32\KERNEL32.DLL
0x00007fff13d50000 0x21d00o 8x0 C:\Windows\System32\KERNELBASE.d11
0x00007 16730000 0x165000 8x0 C:\Windows\System32\USER32.d1l
0x00007fff13a60000 0x1e000 0x0 C:\Windows\System32\win32u.dll

0x00007 fff168c0000 0x34000 8x0 C:\Windows\System32\GDI32.d11
0x00007fff13F70000 0x182000 0x0 C:\Windows\System32\gdi32full.dll
0x00007 77113160000 0xT5000 0x0 C:\Windows\System32\ucrtbase.dll

x00007 fffO5F60000 0x16000 8x0 C:\Windows\System32\VCRUNTIME140.d11
8x00007 fff15de0000 0x2e000 8x0 C:\Windows\System32\IMM32.DLL
0x00007fff11860000 0x95000 0x0 C:\Windows\system32\uxtheme.dll
0x00007TT16620000 0x9e000 0x0 C:\Windows\System32\msvcrt.dll
0x00007fff16900000 0x2c7000 0x0 C:\Windows\System32\combase.dll

08x00007 fff15aa0000 6x121000 0x0 C:\Windows\System32\RPCRT4.d11
0x00007Tff139f0000 0x6a000 0x0 C:\Windows\System32\bcryptPrimitives.dll
0x00007 fff162b0BOO 8x15b000 8x0 C:\Windows\System32\MSCTF.d1ll
0x00007ff16240000 0x59000 0x0 C:\Windows\System32\sechost.dll

0x00007 fff164b0OO0O 0xbcB0o 8x0 C:\Windows\System32\0LEAUT32.d11
0x00007fff10T40000 0x26000 0x0 C:\Windows\system32\dwmapi.dll

0x00007 11105120000 8x279000 8x0 C:\Windows\WinSxS\amd64 _microsoft.windows.common-controls_6595b64144ccfldf_6.0.14393.0 n
one 2d0f50fcbdbl71b8\comct132.d11

0x00007 fff130d0B0A6 0xfeee 0x0 C:\Windows\System32\kernel.appcore.dll
0x00007fff13a80000 0xa9000 0x0 C:\Windows\System32\SHCORE.d1ll
root@kali: # python vol.py -T /media/sf_Shared/KALI/"MSEdge - WinlO_preview-eaaa2/c2-onrepl.vmem" --profile="WinlOx64_14393"
dlllist -p 3912 | grep notepad.exe

olatility Foundation Volatility Framework 2.6

notepad.exe pid: 3912

Command line : "C:\Windows\System32\notepad.exe"

0x00007ff6b1150000 0x1e000 0x0 C:\Windows\System32\notepad.exe

root@kali: # python vol.py -T /media/sf Shared/KALI/"MSEdge - Winl® preview-eaaal/c2-onrepl.vmem" --profile="Winl®Oxb64 14393"
d11list -p 5764 | grep -i notepad.exe

olatility Foundation Volatility Framework 2.6

notepad.exe pid: 5764

Command line : "C:\Windows\system32\NOTEPAD.EXE" C:\Users\IEUser\Desktop\soter.txt

0x00007f6b1150000 0x41000 0x0 C:\Windows\system32\NOTEPAD.EXE

Figure 3 — DLL listing in test image

As seen above, both notepad processes (pid 3912 and 5764) have the same
executables’ full path and same image base, but not the same size. The last is an
indication that something is wrong, as explained in a next step.

Virtual Address Descriptor information

As mentioned in earlier sections, VAD structure resides in kernel memory and
contains information about contiguous process virtual address space allocation and in
case there is an executable loaded, the VAD node contains information about start
address, end address, permissions and the full path to the executable. Vadinfo is used
to extract this information and a process is considered hollowed in case its VAD
characteristics (for the specific Image Base found with dlllist) are different than its
PEB characteristics.

python vol.py - f mem.bin
vadinfo -p <suspicious process id> --addr=<Image Base>

One possible anomaly of process replacement is that the name field of FileObject,
which contains the memory mapped file name, does not exist. This is the result of
process hollowing because when memory unmap is done, the name entry is removed
from VAD structure and it is no longer associated with the specific memory region,
while the PEB structure is not affected by unmapping [6]. The fact that FileObject

15

pointer is none/NULL, means that the memory isn't backed by a file. It would be
backed by a file if the PE was loaded via LoadLibrary [45].

vadinfo -p 5764 --addr=0x7ff6b1156000

Volatility Foundation Volatility Framework 2.6

EEEEE RS RS RS R R R RS E R SR R R R R R RS E R S S SRR A EEE S E L S

Pid: 5764

VAD node @ Oxffff848b72368980 Start 0x00007ff6b1150000 End 0x00007ff6b1190fff Tag Vad
Flags: Protection: 7, VadType: 2

Protection: PAGE_EXECUTE WRITECOPY

Vad Type: VadImageMap

ControlArea @ffff848b711elde® Segment ffffe5059454e420

NumberQfSectionReferences: 2 NumberOfPfnReferences: 39
NumberOfMappedViews: 1 NumberOfUserReferences: 3

Control Flags: File: 1, Image: 1

FileObject @ffff848b714afc30, Name: \Device\HarddiskVolumel\Windows\System32\notepad.exe
First prototype PTE: ffffe58593ad6ébed Last contiguous PTE: ffffe50593adeded

Flags2: Inherit: 1, NoValidationNeeded: 1

vadinfo -p 3912 --addr=0x7ff6b1150000

Volatility Foundation Volatility Framework 2.6

e ke s ke o s ok sk o ok ok s ke s o ok o ok ke s ke sk s ok o ok ok ok sk sk o sk ok ok o ok ke sk ke sk sk ok o s ok sk ok sk ok sk ok ook ok skok R ok sk kol ok ok ok ok R ok

Pid: 3912

VAD node @ Oxffff848b6e0f3e50 Start OxB0087ff6b1150000 End 0x00007ff6b116dfff Tag VadS
Flags: PrivateMemory: 1, Protection: 6

Protection: PAGE_EXECUTE READWRITE

Vad Type: VadNone

root@kali: # python vol.py -f /media/sf_Shared/KALI/"MSEdge - Winl® preview-eaaa27c2-onrepl.vmem" --profile="WinlOx64 14393"

root@kali: # python vol.py -f /media/sf_Shared/KALI/"MSEdge - Winl® preview-eaaa27c2-onrepl.vmem" --profile="Winl0x64_14393"

Figure 4 — VAD information in test image

The legitimates’ process (pid 5764) VAD information is correct (name field of
FileObject contains the executable’s full path) while the corresponding entry for the
hollowed process (pid 3912) does not exists, meaning it is null. The output of vadinfo
plugin is used for other forensics reasons too, as it will be shown in the following
sections.

Module linked lists and VAD

When the process is loaded, the process executable is added to the load order,
init order and memory order module lists in the PEB. The plugin Idrmodules cross-
references this information with the memory-mapped files in the VAD. Specifically, it
looks for large nodes with PAGE_EXECUTE_WRITECOPY protections, a VadimageMap
type, and the Image control flag set [6].

python vol.py - f mem.bin
ldrmodules -p <suspicious process 1id> | grep <Image Base>

It is suspicious when the MappedPath column (the name field of the memory
mapped file) is blank for the specific Image Base Address or there isn’t any output for
the specific Image base address. These are indications that most likely there is code
injected via VirtualAlloc(Ex) and WriteProcessMemory. If the same full path exists in
both dlllist and Idrmodules but in a different base, is also suspicious. That might
happen for example in case of "No memory unmapping” variation.

It follows the corresponding output using Stuxnet.vmem, which shows that the
MappedPath column is blank for a hollowed process:

16

root@kali:

Pid

Process

python vol.py -f /media/sf Shared/KALI/"stuxnet.vmem" ldrmodules -p 868
olatility Foundation Volatility Framework 2.6

1sass.
1sass.
1sass.
lsass.
lsass.

1sass.
TSassT
1sass.

\WINDOWS\system32\ntdll.d1l
\WINDOWS\system32\rpcrtd.dll
\WINDOWS\system32\kernel32.d1l
\WINDUWS\system32\ ecur32.dll

£22.411

WWLNUUWS\SYS TR Z\guLss uce

Base InLoad InInit InMem MappedPath
0x00080000 False False False
0x7c900000 True True True
0x77e70000 True True True
0x7c800000 True True True
0x77fe@000 True True True
D370 ATAROR. Tt T D T e AT MDONIEY 232
ﬂxﬂlﬂﬂﬂﬂﬂﬂ True False True
GXTTTIO00E True " True " Tiue
0x77dd000O True True True

\WINDOWS\system32\advapi32.d1ll

Figure 5 - Comparing module linked list and VAD information in Stuxnet.vmem

But using the demonstration test image, there is no output for the hollowed process’s
(pid 3912) Image Base, compared to the legitimate one (pid 5764):

root@kali:
ldrmodules -p 3912
Volatility Foundation Volatility Framework 2.6

python vol.py -f /media/sf Shared/KALI/"MSEdge - Winl@ preview-eaaa27c2-onrepl.vmem"

--profile="WinlOx64 14393

drmodules -p 3912 | grep OxB0007ff6b1150000
platility Foundation Volatility Framework 2.6

Pid Process Base InLoad InInit InMem MappedPath

3912 notepad.exe 0x000001e90a2a0000 False False False \Windows\System32\en-US\user32.dll.mui

3912 notepad.exe 0x000077fT13d50000 True True True \Windows\System32\KernelBase.dll

3912 notepad.exe 0x00007fff10T40000 True True True \Windows\System32\dwmapi.dll

3912 notepad.exe 0x00007TfT16730000 True True True \Windows\System32\user32.dll

3912 notepad.exe 0x00007TfTO5760000 True True True \Windows\System32\vcruntimel4®.dll

3912 notepad.exe 0x00007fff16570000 True True True \Windows\System32\kernel32.dll

3912 notepad.exe 0x000077TT1397f0000 True True True \Windows\System32\bcryptprimitives.dll

3912 notepad.exe 0x000077TT13a60000 True True True \Windows\System32\win32u.dll

3912 notepad.exe 0x0000777Tf11860000 True True True \Windows\System32\uxtheme.dll

3912 notepad.exe 0x000077fT162b0060 True True True \Windows\System32\msctf.dll

3912 notepad.exe 0x00007fff168c0000 True True True \Windows\System32\gdi32.d1l

3912 notepad.exe 0x000077TT16900000 True True True \Windows\System32\combase.dll

3912 notepad.ex 0x00007fff05120000 True True True \Windows\WinSxS\amd64 microsoft.windows.common-controls_6595b64144ccfldf 6.

.14393.0_none 2d0f50fcbdb171b8\c0mct132 dii

3912 notepad.exe 0x000077ff13160000 True True True \Windows\System32\ucrtbase.dll

3912 notepad.exe 0x00007TfT13770000 True True True \Windows\System32\gdi32full.dll

3912 notepad.exe 0x00007fff16bd0GEO True True True \Windows\System32\ntdll.dll

3912 notepad.exe 0x00007TfT15de@060 True True True \Windows\System32\imm32.d11

3912 notepad.exe 0x00007TTT164b0000 True True True \Windows\System32\oleaut32.dll

3912 notepad.exe 0x000077TT16620000 True True True \Windows\System32\msvcrt.dll

3912 notepad.exe 0x000077T716240000 True True True \Windows\System32\sechost.dll

3912 notepad.exe 0x00007fff13a80000 True True True \Windows\System32\SHCore.dll

3912 notepad.exe 0x00007fff152a0000 True True True \Windows\System32\rpcrt4.dll

3912 notepad.exe 0x00007TTT130d0060 True True True \Windows\System32\kernel.appcore.dll
oot@kali: # python vol.py -f /media/sf Shared/KALI/"MSEdge - Winl®_preview-eaaa27c2-onrepl.vmem" --profile="Winl0Ox64 143

root@kali:
ldrmodules -p 5764 -
Volatility Foundation Volatility Framework 2.6

python vol.py -f /media/sf_Shared/KALI/"MSEdge - WinlO_preview-eaaa27c2-onrepl.vmem"

MappedPath

\Wlndows\System32\notepad exe
ThindowsSystendvanrUS o tepaiTereTiut
\Windows\System32\profapi.dll
\Windows\System32\dwmapi.dll
\Windows\WinSxS\amd64 microsoft.windows.c..

\Windows\System32\winspool.drv
\Windows\System32\shell32.d1l
\Windows\System32\propsys.dll
\Windows\System32\mpr.dll
\Windows\System32\combase.dll
\Windows\System32\kernel32.dll
\Windows\System32\bcryptprimitives.dll
\Windows\System32\user32.d1ll
\Windows\System32\efswrt.dll
\Windows\System32\en-US\propsys.dll.mui
\Windows\System32\win32u.dll
\Windows\System32\feclient.dll
\Windows\System32\iertutil.dll
\Windows\System32\uxtheme.d1l
\Windows\System32\comdlg32.d1l
\Windows\System32\msctf.dll
\Windows\System32\gdi32.d11
\Windows\System32\shlwapi.dll
\Windows\System32\powrprof.dll
\Windows\System32\clbcatg.dll
\Windows\System32\urlmon.d1l
\Windows\System32\twinapi.appcore.dll

\Windows\WinSxS\amd64 microsoft.windows.common-controls 6595b64144ccfldf 6.

\Windows\System32\cfgmgr32.dll
\Windows\System32\ucrtbase.dll
\Windows\System32\gdi32full.dll

Pid Process Base InLoad InInit InMem
5764 notepad.exe 0x00007ff6b1150000 True False True
STGeToepadTeRe OxGO0SOZ IO TUTIO00OTase—Tatse—Tatse
5764 notepad.exe 0x00007fff13130000 True True True
5764 notepad.exe 0x00007fffl0f40000 True True True
5764 notepad.exe 0x00000218ffa30000 False False False

1df 6.0.14393.0 en-us 431a99elea57a3a5\comctl32.d1l.mui
5764 notepad.exe 0x00007ffefal70000 True True True
5764 notepad.exe 0x00007fff14590000 True True True
5764 notepad.exe 0x00007fff10ba0BeO True True True
5764 notepad.exe 0x00007fffObfcOOOO True True True
5764 notepad.exe 0x00007fff16900000 True True True
5764 notepad.exe 0x00007fff16570000 True True True
5764 notepad.exe 0x00007fff139f0000 True True True
5764 notepad.exe 0x00007fff16730000 True True True
5764 notepad.exe 0x00007fffOO000000 True True True
5764 notepad.exe 0x00000218ffaloBeO False False False
5764 notepad.exe 0x00007fff13a60000 True True True
5764 notepad.exe 0x00007fff03820000 True True True
5764 notepad.exe 0x00007fffOc630000 True True True
5764 notepad.exe 0x00007fff11860000 True True True
5764 notepad.exe 0x00007fff14480000 True True True
5764 notepad.exe 0x00007fff162b00OO True True True
5764 notepad.exe 0x00007fff168c0000 True True True
5764 notepad.exe 0x00007fff14370000 True True True
5764 notepad.exe 0x00007fff130e0000 True True True
5764 notepad.exe 0x00007fff16410000 True True True
5764 notepad.exe 0x00007fff09d00EOO True True True
5764 notepad.exe 0x00007fffllc20000 True True True
5764 notepad.exe 0x00007fff05120000 True True True

.14393.0 none_2d@f56fcbdb171b8\comct132.d11
5764 notepad.exe 0x00007fff13b30000 True True True
5764 notepad.exe 0x00007fff13160000 True True True
5764 notepad.exe 0x00007fff13f70000 True True True

--profile="Winl@x64 14393"

-controls.resources 6595b64144ccl

Figure 6 — Comparing module linked list and VAD information in test images

17

The fact that Idrmodules gives not any output for the hollowed process at
Image Base Address made impression and triggered an in-depth analysis of
Idrmodules plugin. It turned out that Idrmodules filters the VADs with
mapped_file_filter, meaning Private memory flag equals to zero and vad.ControlArea
is set. As shown in Figure 4 — VAD information in test image, ControlArea is not set.
Also, Idrmodules looks for large nodes with PAGE_EXECUTE_WRITECOPY protections
[6]. For reasons of more profound research, a python script is written to enumerate
all the Vads’ characteristics of the specific process from the volatility’s volshell
environment and the output of it is (regarding the specific Image Base Address):

root@kali: # python vol.py -f /media/sf_Shared/KALI/"MSEdge - WinlO_preview-eaaal/c2-onrepl.vmem” --profile="Winl@xb4_14393" volshell
olatility Foundation Volatility Framework 2.6

Current context: System @ Oxffff848b6daac040, pid=4, ppid=0 DTB=0x1aad0O

Python 2.7.13 (default, Jan 19 2017, 14:48:08)

[Type "copyright", "credits" or "license" for more information.

IPython 5.1.0 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.
quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object', use 'object??' for extra details.

In [1]: execfile('VadEnumerate.py')

[snip]

Examining VAD 0x7ff6bl150000L
Found signature with no ControlArea in VAD Ox71f6bl150000L PrivateMemory: 1, Protection: 6 VadS 1

[snip]

The above is also confirmed from the vadinfo output in the previous step.

The code of VadEnumerate.py is:

lcc(pid=3912)
process=proc()

process_space = process.get process_address_space()

Ifor vad in process.VadRoot.traverse():
data = process_space.read(vad.Start, 1024)
if data:
print "Examining VAD", hex(vad.Start)
found = data.find("MZ")
if found != -1:
if hasattr(vad.VadFlags,"ControlArea”):
print "Found signature and ControlArea in VAD", hex(vad.Start), vad.VadFlags, vad.Tag, vad.VadFlags.PrivateMemory, vad.ControlArea
else:
print "Found signature with no ControlArea in VAD", hex(vad.Start), vad.VadFlags, vad.Tag, vad.VadFlags.PrivateMemory
if hasattr(vad.VadFlags, "VadType"):
print hex(vad.VadFlags.VadType)

2.5.3 Checking memory permissions

As described in the 4th step of hollowing a process, the hollowing process
allocates a new memory region with PAGE_EXECUTE_READWRITE permissions, while
an executable normally loaded has PAGE_EXECUTE_WRITECOPY permission. This
difference is spotted at Protection field in vadinfo output: Protection equals to 6
(PAGE_EXECUTE_READWRITE) instead of 7 (PAGE_EXECUTE_WRITECOPY).

The malfind plugin is designed to hunt down remote code injections. The
concept is that there will be a readable, writeable, and executable private memory
region (that is, no file mapping) with all pages committed. The region will contain a PE
header and/or valid CPU instructions [6], so it is used:

python vol.py - f mem.bin
malfind -p <suspicious process id>

18

Malfind plugin spotted the suspicious memory permissions in the suspicious
process (pid 3912), while it gives no output for the legitimates one (pid 5764):

root@kali: # python vol.py -f /media/sf_Shared/KALI/"MSEdge - Winl®_preview-eaaa27c2-onrepl.vmem" --profile="Winl®x64 14393"
malfind -p 3912

olatility Foundation Volatility Framework 2.6

Process: notepad.exe Pid: 3912 Address: 8x7fféb1156000

vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE

Flags: PrivateMemory: 1, Protection: &

0x7ff6b1150000 4d 5a 96 60 63 60 00 00 84 00 60 00 ff ff 80 @0 MZ..............
0x7ff6b1150010 b8 00 06 60 60 6O 0O 00 46 A0 GO 00 00 60 60 60 [Jooooooo
0x7ff6b1150020 00 00 06 60 60 6O 0O 0O 66 A0 GO 00 0O 60 80 00
0x7ff6b1150030 60 00 00 60 00 0O 0O 00 B8 00 00 00 08 81 80 00
0xb1150000 4d DEC EBP

0xb1156001 5a POP EDX

0xb1156002 90 NOP

0xb1156003 0003 ADD [EBX], AL

0xb1150005 0000 ADD [EAX], AL

0xb1150007 000400 ADD [EAX+EAX], AL

0xb115000a 0000 ADD [EAX], AL

0xb115608c ff DB @xff

0xb115600d ffOO INC DWORD [EAX]

0xb115000f 00b8OBOBOOOO ADD [EAX+0x0], BH

0xb1158015 0000 ADD [EAX], AL

0xb1150017 004000 ADD [EAX+0x0], AL

0xb115801a 6000 ADD [EAX], AL

0xb115801c 0000 ADD [EAX], AL

0xb115601e 0000 ADD [EAX], AL

0xb1150020 0000 ADD [EAX], AL

0xb1150022 0000 ADD [EAX], AL

0xb1150024 0000 ADD [EAX], AL

0xb1150026 6000 ADD [EAX], AL

0xb1150028 0000 ADD [EAX], AL

0xb115002a 0000 ADD [EAX], AL

0xb115802c 0000 ADD [EAX], AL

0xb115802e 0000 ADD [EAX], AL

0xb1150030 6000 ADD [EAX], AL

0xb1150032 0000 ADD [EAX], AL

0xb1150034 0000 ADD [EAX], AL

0xb1150036 0000 ADD [EAX], AL

0xb1150038 0000 ADD [EAX], AL

0xb115603a 6000 ADD [EAX], AL

0xb115803c 0801 OR [ECX], AL

0xb115803e 0000 ADD [EAX], AL

root@kali: # python vol.py -f /media/sf_Shared/KALI/"MSEdge - Winl@ preview-eaaa27c2-onrepl.vmem" --profile="Winl@x64 14393"
malfind -p 5764

Volatility Foundation Volatility Framework 2.6

root@kali: # 11

Figure 7 — Checking memory permissions in test image

For the legitimate process, there should not be any output *, but we observe
that the suspicious one has Protection: PAGE_EXECUTE_READWRITE at addr=<Image
Base> and the hex dump begins with an MZ signature, indicating that there is an
executable at the specific address.

* Legitimate programs may allocate executable private memory for legitimate
reasons. So, the malfind plugin may produce false positive results. One way to
distinguish the false positive is to look for MZ signature in hex dump.

2.5.4Vadinfo - Looking Deeper

For now, vadinfo volatility plugin is used for comparing kernel and process
memory structures, but there are some extra points that need attention. One can
compare the vadinfo output for the legitimate (pid 5764) and suspicious process (pid
3912), to make these points more comprehensible.

19

root@kali: # python vol.py -f /media/sf Shared/KALI/"MSEdge - Winl® preview-eaaa27c2-onrepl.vmem" --profile="WinlOx64 14393"
vadinfo -p 5764 --addr=8x7ff6b1150000

olatility Foundation Volatility Framework 2.6

4 o ok s e oK e e ok o ok ok o ok ok ok ok kR kR ok ok kR R R ok ok R kR Rk R sk ok kR R Rk kR kR R sk kR ok Rk kR ok kR kR Rk ok kR Rk kR kK ok ok

Pid: 5764

AD node @ Oxffff848b72368980 Start 0x00007ff6b1150000 End 0x00007ff6bl196fff Tag Vad
Flags: Protection: 7, VadType: 2

Protection: PAGE_EXECUTE_WRITECOPY

ad Type: VadImageMap

ControlArea @ffff848b71lelde® Segment ffffe5059454e420

Number0fSectionReferences: 2 NumberOfPfnReferences: 39
Number0fMappedViews: 1 NumberOfUserReferences: 3

Control Flags: File: 1, Image: 1

FileObject @ffff848b714afc30, Name: \Device\HarddiskVolumel\Windows\System32\notepad.exe
First prototype PTE: ffffe50593ad6bbe® Last contiguous PTE: ffffe50593adéded

Flags2: Inherit: 1, NoValidationNeeded: 1

root@kali: # python vol.py -f /media/sf Shared/KALI/"MSEdge - Winl®_preview-eaaa27c2-onrepl.vmem" --profile="WinlOx64 14393"
vadinfo -p 3912 --addr=0x7ff6b1150000

olatility Foundation Volatility Framework 2.6

o s o s o o ke ke o ke ok o ok sk ook e s o ok o ok ok ok ok sk e sl ok ok ok ok e ke ool ok ok ok ok ok sk ke ke ok ok ok ok ok sk ok ko ok ok sk ok ok sk kol ok ok ok ok ok ok

Pid: 3912

AD node @ Oxffff848b6edf3e50 Start 0x00007ff6b1150000 End 0x00007ff6bl16dfff Tag VadS

Flags: PrivateMemory: 1, Protection: 6

Protection: PAGE_EXECUTE_READWRITE

ad Type: VadNone

Figure 8 — Comparing VAD of legitimate and suspicious process

Besides File Object’'s Name and Protection fields that have been already
mentioned, it is observed that the VADs’ flags have the following characteristics
that could be used to reduce the false positive results or confirm the injection:
[6][35][33][36]

= The hollowed process’s VAD is marked as private memory (PrivateMemory :1
in flags output line), meaning it is not shared with or inherited by other
processes. Executables and DLLs can be shared with other processes. A
process’ memory ranges allocated with VirtualAlloc or VirtualAllocEx are usually
marked as private. Thus, if the PrivateMemory bit is set for a memory region is
a factor when looking for injection.

* The hollowed process’s VAD has a VadS tag which means there is no memory
mapped file already occupying the space. Dynamically allocated memory pages
created via VirtualAllocEx /WriteProcessMemory are of type _ MMVAD_SHORT
(VadS). Regular loaded libraries in the address space of a process are of type
_MMVAD (Vad) or _MMVAD_LONG (VadL), meaning it is representing a memory
mapped file.

» Only the legitimate process has a copy of its executable into the region,
meaning that the output fields VadImageMap (in Vad Type output line) and
Image (in Control Flag output line) have value 1.

» The hollow process variation that changes each PE section with the appropriate

permissions, described previous section, is covered by the way vadinfo works:
It displays the original protection specified for all pages in the range when they
were first reserved or committed [18] and because the initial memory allocation
is made with protection PAGE_EXECUTE_READWRITE, this info is revealed by
this plugin.
If the hollowing process used VirtualAlloc to reserve for example ten pages with
PAGE_NOACCESS and later it commits three of the pages as
PAGE_EXECUTE_READWRITE and four others as PAGE_READONLY, the
Protection field still contains PAGE_NOACCESS. Older Zeus samples from 2006
used this technique, so its injected memory regions appeared as
PAGE_NOACCESS [6]

20

» In some cases, there might exist a File Object’s Name and should be
confirmed that is the same as the one stated in ImagePathName of the
PEB (Process Environment Block), displayed by pslist plugin.

2.5.5 Hollowfind plugin

HollowFind is a Volatility plugin created to detect different types of process
hollowing techniques created by Monnappa K.A. [56][35], who won the 2016 Volatility
Plugin [21].

|python vol.py — f mem.bin hollowfind ‘

HollowFind works (in general) as follows:

1. Creates a list of processes using pslist plugin (unless it is used with a -p pid
parameter)

2. For each process, it retrieves information from the process structure, PEB and
the VAD that is pointed by PEB.ImageBaseAddress and checks whether there is
an executable in the processes’ s VADs

3. Detects whether the process is hollowed. The criteria used are:

= VAD’s Protection equals to PAGE_EXECUTE_READWRITE or

= There is no VAD entry corresponding to PEB.ImageBaseAddress

= There is an executable in processes’ VADs that PEB.ImageBaseAddress
does not point to and has PAGE_EXECUTE_WRITECOPY protection

4. For each suspect process, it displays similar processes’ information

Hollowfind detected the hollowed process in test image, as shown below:

root@kali: # python vol.py -f /media/sf_Shared/KALI/"MSEdge - Winl® preview-eaaa27c2-onrepl.vmem" --profile="WinlOx64 14393
hollowfind

[snip]

Hollowed Process Information:
Process: notepad.exe PID: 3912
Parent Process: NA PPID: 2664
Creation Time: 2018-02-16 11:45:13 UTC+0000
Process Base Name(PEB): notepad.exe
Command Line(PEB): "C:\Windows\System32\notepad.exe"
Hollow Type: No VAD Entry For Process Executable

VAD and PEB Comparison:
Base Address(VAD): 0x@
Process Path(VAD): NA
Vad Protection: NA
Vad Tag: NA

Base Address(PEB): 0x7ff6b1150800

Process Path(PEB): C:\Windows\System32\notepad.exe
Memory Protection: PAGE EXECUTE READWRITE

Memory Tag: VadS

Ox7ff6b1150000 4d 5a 90 00 03 00 00 0O 04 00 @O GO ff ff 00 0O
0x7776b1150010 b8 00 0O 00 0O 00 00 0O 40 0O 00 00 00 00 0O 00
Ox77f6b1150020 00 00 00 00 0O 0O 0O OO 00 00 0O 0O 0O 0O 0O 0O
@x77f6b1150030 00 00 00 G0 GO 0O @O0 OO OO 00 GO GO 08 01 00 0O

Similar Processes:
notepad.exe(3912) Parent:NA(2664) Start:2018-02-16 11:45:13 UTC+0000
notepad.exe(5764) Parent:explorer.exe(3280) Start:2018-02-16 11:44:10 UTC+0000

Suspicious Memory Regions:
Ox7ff6b1156080(PE Found) Protection: PAGE EXECUTE READWRITE Tag: VadS

Figure 9 - Hollowfind plugin in test image

But it produced some false positive results also, like the following, regarding process
explorer.exe, with pid 3280:

21

root@kali: # python vol.py -T /media/sf Shared/KALI/"MSEdge - Winl® preview-eaaa27c2-onrepl.vmem" --profile="WinlOx64 14393"
hollowfind

olatility Foundation Volatility Framework 2.6

JARNING : volatility.debug : NoneObject as string: Buffer length 1070 for _UNICODE_ STRING not within bounds

JARNING : volatility.debug : NoneObject as string: Buffer length 2782 for UNICODE STRING not within bounds

el l cuund Dep Infrrmatinn.
[snip]

Hollowed Process Information:
Process: explorer.exe PID: 3280
Parent Process: userinit.exe PPID: 3260
Creation Time: 2018-82-16 11:36:22 UTC+0000
Process Base Name(PEB): Explorer.EXE
Command Line(PEB): C:\Windows\Explorer.EXE
Hollow Type: Process Base Address and Memory Protection Discrepancy

VAD and PEB Comparison:
Base Address(VAD): 8x7ff6al240000
Process Path(VAD): \Windows\System32\ntoskrnl.exe
Vad Protection: PAGE_EXECUTE_WRITECOPY
Vad Tag: Vad

Base Address(PEB): 8x7ff739cdeooe

Process Path(PEB): C:\Windows\Explorer.EXE
Memory Protection: PAGE_EXECUTE_WRITECOPY
Memory Tag: Vad

0x717739cd0EE0 4d 5a 90 00 03 00 00 00 B4 00 00 @0 ff ff 00 @ MZ..
0x717739cd0@10 b8 00 00 GO GO 00 00 0O 40 00 00 00 00 GO 0O 0O
0x717739cd0020 00 00 00 G0 GO 00 00 0O 00 00 0O 00 60 G0 0O 00 5o
0x7f7739cd0030 00 00 00 00 0O 00 0O 00 00 0O 0O 6O e8 0O 00 B0

Similar Processes:
explorer.exe(3280) Parent:userinit.exe(3260) Start:2018-02-16 11:36:22 UTC+0000

Suspicious Memory Regions:

Figure 10 — Hollowfind plugin false positives

Analyzing the corresponding VADs’ information, it is confirmed that it is indeed a false
positive alarm:

root@kali: # python vol.py -f /media/sf_Shared/KALI/"MSEdge - Winl@_preview-eaaa27c2-onrepl.vmem" --profile="Winl@x64_14393"
adinfo -p 3280 --addr 8x7ff739cd0eoo

olatility Foundation Volatility Framework 2.6

[P s s sk ke e ke e ke sk s ok s o ok ke o s ok sk ok ok o ok ke sk ke sk sk ok s ok ok sk ke s ke sk sk ok s ok sk ok s sk sk ok ok ok sk ok ok ke sk sk sk ok ok ok ok ok ok ok ok sk ok R ok

Pid: 3280

AD node @ Oxffff848b70e3f190 Start 0x00007ff739cd0060 End 0x00007ff73ald4lfff Tag Vad
Flags: Protection: 7, VadType: 2

Protection: PAGE EXECUTE WRITECOPY

ad Type: VadImageMap

lControlArea @ffff848b70e41010 Segment ffffe505950cTd70

NumberOfSectionReferences: 1 NumberOfPfnReferences: 590
Number0fMappedViews: 1 NumberOfUserReferences: 2

IControl Flags: File: 1, Image: 1

FileObject @ffff848b70e3f5f0, Name: \Device\HarddiskVolumel\Windows\explorer.exe
First prototype PTE: ffffe505951dfe08 Last contiguous PTE: ffffe585951el1388

Flags2: Inherit: 1, NoValidationNeeded: 1

root@kali: # python vol.py -f /media/sf_Shared/KALI/"MSEdge - Winl@_preview-eaaa27c2-onrepl.vmem" --profile="Winl@x64_14393"
adinfo -p 3280 --addr 8x7ff6al240000

olatility Foundation Volatility Framework 2.6

[P s s sk ke e ke e ke sk s ok s o ok ke o s ok sk ok ok o ok ke sk ke sk sk ok s ok ok sk ke s ke sk sk ok s ok sk ok s sk sk ok ok ok sk ok ok ke sk sk sk ok ok ok ok ok ok ok ok sk ok R ok

Pid: 3280

AD node @ Oxffff848b70197100 Start 0x00007ff6a1240000 End 0x00007ffbala5Sffff Tag Vad
Flags: Protection: 7, VadType: 2

Protection: PAGE EXECUTE WRITECOPY

ad Type: VadImageMap

IControlArea @ffff848b71118018 Segment ffffe565962b2700

NumberOfSectionReferences: 0 NumberOfPfnReferences: 21
Number0fMappedViews: 2 NumberOfUserReferences: 2

IControl Flags: File: 1, Image: 1

FileObject @ffff848b71099360, Name: \Device\HarddiskVolumel\Windows\System32\ntoskrnl.exe
First prototype PTE: ffffe50593d47008 Last contiguous PTE: ffffe58593d4bof8

Flags2: Inherit: 1, NoValidationNeeded: 1

A good strategy could be to run hollowfind plugin and then follow the steps described
in Vadinfo — Looking Deeper.

22

2.5.6 Extracting executables

The volatility plugin procdump [18] is used to dump a process's executable to
disk.

mkdir dump

python vol.py - f mem.bin

procdump -p <suspicious process id> -D dump/
ls -a -1 dump

Similar plugins that could be used are dlldump, vaddump or memdump. The
difference between memdump, procexedump and procmemdump is analyzed in [57].

root@kali: # python vol.py -f /media/sf Shared/KALI/"MSEdge - Winl® preview-eaaa27c2-onrepl.vmem" --profile="Winl0x64 14393"
procdump -p 3912 -D Winl@ repl/

olatility Foundation Volatility Framework 2.6

Process (V) ImageBase Name Result

0xffff848b728d48080 Ox00007ff6b1150000 notepad.exe OK: executable.3912.exe

Figure 11 - Extracting malicious executable in test image

The executables are now available for further static analysis using file or strings
commands, ssdeep [https://ssdeep-project.github.io/ssdeep/], IDA Pro, readpe or a
hex editor, YARA and other tools. YARA detects hidden and injected code and provides
a framework for general-purpose signature-based memory scanning [33][43]. This is
helpful especially in case there are any IOC (Indicators Of Compromise). For example,
in case there is a suspicion that the malicious executable references libraries such as
LoadLibrary and GetProcAddress, someone could look for them. As another example,
using the string command on executable.3912.exe, “MessageBoxW"” string is found
which probably is the command that pops the “malicious” window. The executables
could also be submitted for analysis, for example to virustotal or using the volatility’s
vscan plugin. Static analysis is outside the scope of this document, however here is an
example of using readpe:

root@kali: # readpe WinI0 repl/executable.391Z.exe
DOS Header

Magic number: 0x5ad4d (MZ)
Bytes in last page: 144

Pages in file: 3
Relocations: 0

Size of header in paragraphs: 4

Minimum extra paragraphs: 0

Maximum extra paragraphs: 65535
Initial (relative) SS value: 0

Initial SP value: 0xb8
Initial IP value: (]

Initial (relative) CS value: 0

Address of relocation table: 0x40
Overlay number: 0

OEM identifier: 0

0EM information: 0

PE header offset: 0x108
COFF/File header

Figure 12 - Extracting malicious executable in test image

2.5.7 Comparing executables sizes

Now that there is a strong indication about which process is injected and which
is the legitimate one, it is useful to compare their executable sizes to evaluate
whether the executables are different. Alternatively, diff command could be used.

23

Another way to compare the executables is to retrieve the percentage of
similarity between them using fuzzy hashing. The industry standard tool for fuzzy
hashing is called 'ssdeep' [43].

As already mentioned and seen in the next figure, the aforementioned
executables’ sizes are different:

root@kali: # python vol.py -f /media/sf Shared/KALI/"MSEdge - Winl® preview-eaaa27c2-onrepl.vmem" --profile="Winl®x64 14393"
procdump -p 5764 -D Winl@ repl/
olatility Foundation Volatility Framework 2.6

Process (V) ImageBase Name Result

OxTfff848b70ab8800 0x00007TfEb1150000 notepad.exe OK: executable.5764.exe

root@kali: # python vol.py -f /media/sf_Shared/KALI/"MSEdge - WinlO preview-eaaa27c2-onrepl.vmem" --profile="WinlOx64_14393"
procdump -p 3912 -D Winl® repl/

olatility Foundation Volatility Framework 2.6

Process (V) ImageBase Name Result

Oxffff848b728d8080 OxB00B7ffEb1150008 notepad.exe OK: executable.3912.exe

root@kali: # 1s -1 Winl0 repl

total 344

-rw-r--r-- 1 root root 104448 Mar 12 11:20 executable.3912.exe
-rw-r--r-- 1 root root 243200 Mar 12 10:18 executable.5764.exe

Figure 13 — Comparing malicious and legit executable in test image

2.5.8 Determining the owner of the hollowed process

Security Identifiers (SID) identify user, group and computer accounts. Every
account has a unique SID. Each process in Windows has an associated token that
describes which Security Identifier (SID) owns the process and what kind of privileges
have been granted to it [44]. Viewing the SID associated with a process is useful only
when the hollowed process belongs to specific users, like winlogon.exe, so it can be
compared with the legitimates’ process information. Either way, it can help identifying
processes which have maliciously escalated privileges.

python vol.py - f mem.bin getsids -p <suspicious process id>, <legitimate
process id>

In our test image this does not apply, because the process notepad.exe doesn’t
belong to specific user. However, it follows an example taken from [33] that shows
the difference between the SIDs for the legitimate winlogon.exe and a process which
was started by a user from Explorer:

This is a legitimate winlogon.exe

winlogon.exe (632): S-1-5-18 (Local System)

winlogon.exe (632): S-1-5-32-544 (Administrators)

winlogon.exe (632): S-1-1-0 (Everyone)

winlogon.exe (632): S-1-5-11 (Authenticated Users)

This is a process started from Explorer by the user

aelas.exe (1984): S-1-5-21-1614895754-436374069-839522115-500 (Administrator)
aelas.exe (1984): S-1-5-21-1614895754-436374069-839522115-513 (Domain Users)
aelas.exe (1984): S-1-1-0 (Everyone)

aelas.exe (1984): S-1-5-32-544 (Administrators)

aelas.exe (1984): S-1-5-32-545 (Users)

aelas.exe (1984): S-1-5-4 (Interactive)

aelas.exe (1984): S-1-5-11 (Authenticated Users)

aelas.exe (1984): S-1-5-5-0-59917 (Logon Session)

aelas.exe (1984): S-1-2-0 (Users with the ability to log in locally)

Based on the output, one should know that if he/she ever sees a process named
winlogon.exe that has SID owners like the aelas.exe process, then the winlogon.exe is
probably not the real winlogon.exe.

24

http://www.forensicswiki.org/wiki/Context_Triggered_Piecewise_Hashing
http://www.forensicswiki.org/wiki/Context_Triggered_Piecewise_Hashing
http://ssdeep.sourceforge.net/

2.5.9 Priority level

User applications and services start with a normal base priority, so their initial
thread typically executes at priority level 8. However, some Windows system
processes (such as the session manager, service control manager, and local security
authentication process) have a base process priority slightly higher than the default
that ensures that the threads in these processes will all start at a higher priority than
the default value of 8 [26]. In some cases, the hollowed process is a process that is
normally created by Windows system processes, meaning that their threads have
priority level higher than 8. So, priority level check and comparison make sense. The
process base priority is stored in EPROCESS.Pcb.BasePriority. A simple Volatility’s
volshell script is created to retrieve this information.

In the test image, the hollowed process is notepad.exe and it does not belong
to this category. Thus, comparing the priority does not give any evidence. Instead,
the Stuxnet memory image is used as an example. Process 680 is the legitimate one
and processes 868 and 1928 are injected. As shown below, the legitimate one has a
higher priority than the other ones:

root@kali: # python vol.py -f /media/sf_Shared/KALI/"stuxnet.vmem" volshell
Wolatility Foundation Volatility Framework 2.6

Current context: System @ 0x823c8830, pid=4, ppid=0 DTB=0x319000

Python 2.7.13 (default, Jan 19 2017, 14:48:08)

Type "copyright", "credits" or "license" for more information.

IPython 5.1.0 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.
squickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object', use 'object??' for extra details.

In [1]: for p in [680, 868, 1928] :
- cc(pid=p)
process=proc()
process space = process.get process address space()
print process.UniqueProcessId, process.Pcb.BasePriority

Current context: lsass.exe @ 0x81e70020, pid=680, ppid=624 DTB=0xa9400a@

680 9

Current context: lsass.exe @ 0x81c498c8, pid=868, ppid=668 DTB=0xa940360
868 8

Current context: lsass.exe @ 0x81c47cB0, pid=1928, ppid=668 DTB=0xad9403cO
1928 8

Figure 14 - Comparing legitimates’ and injected process’ priority

This isn't a strong artifact, because it is possible to change the priority by using
SetPriorityClass. Also, since the base priority of threads is inherited from the base
priority of the process which owns the thread (unless SetThreadPriority is called), then
the differences should be visible using the threads plugin [45].

2.5.10 Malfofind plugin

At 2016 Volatility Plugin Contest, Dima Pshoul won the 3rd place with
“Advanced Malware Hunter's Kit” [21] which includes Malfofind plugin, created to
detect Process Hollowing.

As the author claims in his submission paper, “This plugin will scan currently
loaded modules (using the VAD) for each process and will check if they are all

25

accordingly mapped in the process’ PEB. So why should this scanning technique work?
If we examine the implementations of this technique we will notice how all the
implementations contain the step of NtUnmapViewOfSection(ProcessHandle,
ProcessImageBase) and then using VirtualAllocEx to map the injected executable into
the same address. This will create an inconsistency between the VAD mapped images
and the PEB linked images.” [46].

python vol.py - f mem.bin malfofind

Malfofind was tested and successfully detected the hollowed process (pid 3912), as
demonstrated in the next figure:

root@kali: # python vol.py -f /media/sf Shared/KALI/"MSEdge - Winl@ preview-eaaa27c2-onrepl.vmem"
--profile="Winl0x64 14393" malfofind

Molatility Foundation Volatility Framework 2.6

Process: notepad.exe Pid: 3912 Ppid: 2664

Address: Ox7ff6b1150000 Protection: PAGE EXECUTE READWRITE

Initially mapped file object: C:\Windows\System32\notepad.exe

Currently mapped file object: None

Px7ffbb1150000 4d 5a 90 @0 03 G0 00 6P 04 00 00 00 ff ff 00 @0 MZ..............
Px7ff6b1150010 b8 00 60 PO 00 6O 0O 0O 40 00 00 00 0O 0O 00 60 (boooooo
Px7Tf6b11560020 66 0O 60 GO 6O PO 0O GO OO 00 A OO 6O OO 00 6O
Px7ff6b1150030 €0 00 00 0O 00 GO 00 G0 00 00 0O 00 @8 P1 00 B0 cvuiiuns
Pxb1150000 4d DEC EBP

Pxb1150001 5a POP EDX

Pxb11560002 96 NOP

Pxb1150003 0003 ADD [EBX], AL

Pxb1150005 0600 ADD [EAX], AL

Pxb11560007 000400 ADD [EAX+EAX], AL

Pxb115000a 0000 ADD [EAX], AL

Pxbll5000c ff DB Oxff

Pxbll5000d ffeo INC DWORD [EAX]

Pxb115000f 00b8AOOOAOAO ADD [EAX+06x0], BH

Pxb11560015 0666 ADD [EAX], AL

Pxb1156017 004000 ADD [EAX+0x0], AL

Pxb1156001a 0600 ADD [EAX], AL

Pxb115601c 0606 ADD [EAX], AL

Pxb1156001e QOO0 ADD [EAX], AL

Pxb1150020 0600 ADD [EAX], AL

Pxb1150022 0000 ADD [EAX], AL

Pxb1150024 0600 ADD [EAX], AL

Pxb11560026 0600 ADD [EAX], AL

Pxb1150028 0000 ADD [EAX], AL

Pxb115002a 0000 ADD [EAX], AL

Pxb1156002c 0600 ADD [EAX], AL

Pxb115002e 0000 ADD [EAX], AL

Pxb1150030 0600 ADD [EAX], AL

Pxb1150032 0000 ADD [EAX], AL

Pxb1150034 0600 ADD [EAX], AL

Pxb11560036 €600 ADD [EAX], AL

Pxb1150038 0000 ADD [EAX], AL

Pxb115003a 0600 ADD [EAX], AL

Pxb1156003c 0801 OR [ECX], AL

Pxb115003e 0000 ADD [EAX], AL

Figure 15 - Malfofind output for test image

2.5.11 Threadmap plugin

Threadmap [47] is a plugin whose authors won the 2nd place in 2017 Volatility
Plugin Contest for it [21]. The working team was based on John Leitch’s Process
Hollowing project [34] and created three different variations of the hollowing process.
The first was not detected by malfind but was detected by hollowfind. The second
variation was detected only by malfofind plugin and the third was detected only by
threadmap plugin. Threadmap uses _ ETHREAD structure information in order to relate
a thread with a VAD. Then it compares the corresponding _ EPROCESS structure to the
VAD using the key points referenced above as well as some extra points needed for
detecting the created variations.

26

This plugin was initially tested with the Memory Dump sample that the author
used, meaning the file KSLSample.vmem, downloaded from
[https://www.mediafire.com/file/jimtbbinanuh6jr/KSLSample.rar] and the results
were as it is expected, based on the Threadmap documentation [47]. In order the
Threadmap to produce results and not any error messages, the parameter --
profile="Win7SP1x64" was used for the specific memory image.

python vol.py - f mem.bin threadmap

For Stuxnet memory image, many profiles were tested. In all cases, the plugin
produced many results and then errors occurred, as shown below:

root@kali: # python vol.py -T /media/sT Shared/KALI/"stuxnet.vmem" imageinfo
Volatility Foundation Volatility Framework 2.6
INFO . volatility.debug : Determining profile based on KDBG search.

Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86 (Instantiated wlth WinXPSP2x86)
AS Layerl : IA32PagedMem0ryPae (Kernel AS)
AS Layer2 : FileAddressSpace (/media/sf Shared/KALI/stuxnet.vmem)
PAE type : PAE
DTB : ©x319606L
KDBG : 0x80545ae0L
Number of Processors : 1
Image Type (Service Pack) : 3
KPCR for CPU @ : OxffdffeeeL
KUSER SHARED DATA : 0xffdfeeoeL
Image date and time : 2011-06-03 04:31:36 UTC+0000
Image local date and time : 2011-06-03 00:31:36 -0400
root@kali: # python vol.py -T /media/sf Shared/KALI/"stuxnet.vmem" --profile="WinXPSP2x86"
threadmap
Volatility Foundation Volatility Framework 2.6

Thread Map Information:
Process: smss.exe PID: 376 PPID: 4

** No thread is pointing to process's image file
** Found suspicious threads in process

Thread ID: 380 (ACTIVE)

Reason:
Thread points to a vad without a file object

Vad Info:
Thread Entry Point: 0x0
Vad Base Address: 0x0
Vad End Address: Oxfffff
Vad Size: Oxfffff
Vad Tag: VadS
Vad Protection: PAGE READWRITE
Vad Mapped File: ''

** Couldn't read memory

27

Thread ID: 1644 (ACTIVE)

Reason:
Thread points to a vad without a file object

Vad Info:
Thread Entry Point: 0x0
Vad Base Address: 0x0
Vad End Address: @x9ffff
Vad Size: @x9ffff
Vad Tag: VadS
Vad Protection: PAGE READWRITE
Vad Mapped File: "'

** Couldn't read memory

[Traceback (most recent call last):
File "wvol.py", line 192, in <module>
main()
File "vol.py", line 183, in main
command.execute()
File "/usr/lib/python2.7/dist-packages/volatility/commands.py”, line 147, in execute
func(outfd, data)
File "/usr/lib/python2.7/dist-packages/volatility/plugins/threadmap.py"”, line 537, in render text
suspicious thread in process in data:
File "/usr/lib/python2.7/dist-packages/volatility/plugins/threadmap.py", line 498, in calculate
if vad.u.VadFlags.VadType.v() '= IMAGE FILE TYPE:
File "/usr/lib/python2.7/dist-packages/volatility/obj.py", line 751, in _ getattr
return self.m(attr)
File "/usr/lib/python2.7/dist-packages/volatility/obj.py", line 733, in m
raise AttributeError("Struct {0} has no member {1}".format(self.obj name, attr))
AttributeError: Struct VadFlags has no member VadType

Figure 16 — ThreadMap output for Stuxnet memory image

Regarding the main testing image, ThreadMap produced nothing but errors:

root@kali: # python vol.py -f /media/sf Shared/KALI/"MSEdge - Winlﬂ_preview—eaaa2?c2—onrep1.vmemm

--profile="Winl10x64 14393" threadmap
Molatility Foundation Volatility Framework 2.6

Thread Map Information:

Traceback (most recent call last):
File "vol.py", line 192, in <module>
main()
File "vol.py”, line 183, in main
command.execute()
File "/usr/lib/python2.7/dist-packages/volatility/commands.py", line 147, in execute
func(outfd, data)
File "/usr/lib/python2.7/dist-packages/volatility/plugins/threadmap.py", line 537, in render text
suspicious_thread in process in data:
File "/usr/lib/python2.7/dist-packages/volatility/plugins/threadmap.py”, line 498, in calculate
if vad.u.VadFlags.VadType.v() '= IMAGE FILE TYPE:
File "/usr/lib/python2.7/dist-packages/volatility/obj.py", line 751, in _ getattr
return self.m(attr)
File "/usr/lib/python2.7/dist-packages/volatility/obj.py", line 733, in m
raise AttributeError("Struct {0} has no member {1}".format(self.obj name, attr))
AttributeError: Struct MMVAD has no member u
root@kali: #

Figure 17 - ThreadMap output for test image

Probably ThreadMap works correctly for memory images of specific Windows versions,
such as Win7SP1x64.

28

2.6 Summary

As seen in the previous paragraphs, the proposed methodology detects the
Hollow Process Injection performed in a system and reveals the possible systems’
memory anomalies. These steps were followed to detect the Injection in various
memory images additionally to the main one demonstrated in the current section, as
already mentioned. The good results of the methodology are verified in three created
memory images as well as in two downloaded images.

The methodology requires that memory analysis is conducted using the
Volatility Framework and more specific core Volatility’s plugins, custom made scripts
and plugins created for the specific purpose of Hollow Process Injection detection were
used.

Since Process Hollowing is a commonly used Process injection technique, it has
caused a great deal of concern to the analyst community. This is also clear from the
number of dedicated plugins created and the number of related articles found on the
World Wide Web.

29

3 DLL Injection

In this section, classic DLL (Dynamic Link Library) injection technique is
presented and injections are performed in various systems resulting various test
memory images. A new detection method is proposed, verified, implemented and
applied on the test images. After that, the conclusions are extracted and presented.

Classic DLL injection, or remote DLL injection, is an injection technique that
loads a malicious DLL inside the context of a running legitimate (target) process. The
remote process is manipulated by functions such as CreateRemoteThread and its
memory content is altered. Once the compromised process loads the malicious DLL,
the OS (Operating System) automatically calls the DLL’s DIIMain function, which is
defined by the author of the DLL. This function contains the malicious code and has as
much access to the system as the process in which it is running [48][3]. The
prerequisite is the existence of the malicious DLL in disk. It is considered as the
easiest and simpler injection technique.

3.1 How DLL Injection works

The steps that the malicious process, or otherwise called the injector performs in
this technique are:

1. Enables debug privilege (SE_DEBUG_PRIVILEGE) that gives it the right to read
and write in other process’ memory as if it were a debugger.

2. Finds the target process’ ID using its name.
This is usually done by creating a snapshot of all processes and searching in it
for the specific process. CreateToolhelp32Snapshot, Process32First and
Process32Next APIs (Application Program Interfaces) are used for this purpose.

3. Opens the target process with the desired access rights and gets a handle to it.
This is done by calling OpenProcess function with at least
PROCESS_CREATE_THREAD, PROCESS_VM_OPERATION and
PROCESS_VM_WRITE access rights.

If the caller has enabled the Debug Privilege, the requested access is granted
regardless of the contents of the security descriptor.

4. Gets the full path and name of the DLL, which already exists on the disk.

5. Allocates a new memory region within the virtual address space of the target
process of size as the length of the malicious DLL full name (including its path)
and gets the address this memory region. VirtualAllocEx with
PAGE_READWRITE protection is used.

6. Writes the DLLs’ full name into the newly allocated memory using
WriteProcessMemory at the address retrieved in the previous step.

30

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

7. Creates a new thread within the context of the legitimate process that executes

the LoadLibrary function using as parameter the written DLL full name. This
practically loads the malicious DLL and the injection is completed.
This step is performed as follows: First, a handle for kernel32.dll is fetched and
the address of LoadLibrary function is retrieved from it. Then the thread is
created by using APIs such as CreateRemoteThread, NtCreateThreadEx, or
RtiCreateUserThread. The important parameters for these APIs are the handle
on the target process (retrieved in step 3), the pointer to the address of
LoadLibrary function and the pointer to the address of the memory region that
holds the DIl name. This means that LoadLibrary loads the malicious DLL. The
thread runs in the virtual address space of the target process immediately after
its creation.

8. Cleans up by freeing the allocated memory and closing the handle on the target
process and created thread, using VirtualFree and CloseHandle functions
respectively.

Note: “"The thread object remains in the system until the thread has terminated
and all handles to it are closed through a call to CloseHandle” [58].

[61[22][23][49]
A malware that uses this technique is for example Poison Ivy.

The following figure presents the described steps.

Classic or Remote DLL Injection Steps

2. Find Process

Legitimate Process

3. Open Process

:J';'IEIDJ (handle with access rights) Memory
E i 5. Allocate memory region
8s >
=i 6. Write DLL path
3o
2 (DI 8. Free Virtual memory R
-] >
2 @ Close handle
258 New Thread
c
W w 7. Create Remote Thread
=0 > LoadLibrary
Load Library (“Malicious.dIl”)
Malicious.dlI
4. Get the full path™s
yd

.\..\Malicious.dll

Figure 18 — Remote DLL injection steps

Most legitimate processes should not need to use APIs such as
CreateRemoteThread, so it is characterized as a very suspicious API and is detected
by many security products which also may detect the malicious DLL on the disk [22].
These are the reasons this technique is considered as simple and is not frequently
used by the attackers who are trying to evade defenses.

31

https://msdn.microsoft.com/9b84891d-62ca-4ddc-97b7-c4c79482abd9

3.2 DLL Injection Detection: A different approach

The DLL Injection described in previous section uses LoadLibrary function to
load the malicious DLL in the process, which is the perfectly normal way, so it cannot
be distinguished from any other legitimately loaded DLL. The malicious DLL appears
through Volatility’s dlllist plugin and can be detected by its unexpected name paths.
Anomalies in memory can be detected using Volatility in case a) the injected DLL is
hidden (by unlinking its _LDR_DATA_TABLE_ENTRY from one or more of the ordered
lists) using Idrmodules and b) the injected DLL is packed, and the unpacking
procedure copies the decompressed code to a new memory region which can be
located by malfind plugin. In any other case, an analyst must use typical analysis such
as context analysis, Yara scan, etc. [6]

This thesis assumes that the DLL is not hidden and does not focus on
standard DLL injection detection techniques (such as memory permissions, priority
changes, analyzing the Process Environment Block), nor it analyzes the DLL itself for
signatures for example. A different approach is used which focuses on the fact that
LoadLibrary and CreateRemoteThread functions are used and on time sequence
of events which is presented in the following timeline, along with the key points
explained below.

Remote DLL Injection Detection

Injectorwrites the
name of the malicious
DLLin process’
memory

Malicious
DLL
loaded

Injector cpensthe
legitimate process and
getsa handle to it

Injector
createsa
new thread

Legitimate process)
runs normally. All Injector
legitimate DLLs loaded| starts

Injectorcalls
LoadLibrary

Y
LY
A
L)
\

L)
\
A
A
1

OneProcess: malicious DLL loaded
Number Of through LoadLibrary:
Mapped No IAT entry,
Views =1 LoadReason:
DynamicLoad,
ObsoleteLoadCount:6,
Key Points Of Detection White List used

Legit DLLs loaded through Injector
IAT (Import Address Table) handles the
Or LoadLibrary thread

Figure 19 - Key points of DLL Injection Detection

The key points in which the idea of detection is based are presented below
together with comments that help to understand the produced code:

1. Since the injected DLL is not commonly used, the process’ corresponding VAD
(Virtual Address Descriptor) node is marked with the wvalue 1 in its
NumberOfMappedViews and NumberOfUserReferences fields. This applies to
the first time the malware is executed. In case the same DLL is injected in
different processes, this does not apply. This is the reason why in the final

32

script, it is chosen a parameter (OneProcess) to be used that determines
whether the above condition should be checked or not.

. The injected DLL is explicitly loaded at run-time using LoadLibrary (or
LoadLibraryEx) API function [50], meaning that:
» there isn't any corresponding entry in the processes’ IAT (Import
Address Table) and
» DLLs’ LoadReason attribute in corresponding windows data structure is
LoadReasonDynamicLoad or its ObsoleteLoadCount is 6.
For further details, see sections Determine whether a DLL file is loaded
via LoadLibrary using its attributes and Scan processes’ memory for IAT
entries.

. The injected DLL has a load time difference in relation with the last DLL
that the remote process loads for legitimate reasons. This is due to the delay of
the malware execution in relation to the legitimate process’s creation time.
Because this time difference cannot be estimated, inside the context of this
work, it is considered that the injected DLL may be loaded just one second after
the last legitimate one.

. The thread that executes the LoadLibrary function is created by the malware
just before the malicious DLL loading. The TimeWindow parameter is used to
express the time interval between malicious thread creation and DLL
loading. Usually this is done in the same second, but the default value for
TimeWindow is 10 sec, so that any possibly suspicious thread is not excluded.
From all the legitimate’s process threads, the interesting ones are those that
are not terminated and are created between 10 seconds before the DLL loading
until the DLL loading. This means that one suspicious DLL may be correlated to
more than one possibly responsible threads that caused its loading.

. This thread is created by the malware using the handle to the legitimate
process. So, from all processes’ handles of type THREAD, we are interested in
the ones that refer to the specific couple of process-thread id and are handled
from the legitimate process. Handles created by csrss.exe, which is involved
in the creation of every process and thread [6] are excluded.

. To reduce the false positive results, there is the option to store in a list
(WhiteList) the full path of DLLs that are considered harmless. If a DLL from the
White List is characterized by the code as suspicious, a corresponding warning
message is displayed.

33

3.2.1 Detection Flowchart

The idea of the detection method, at a high level (without much detail) is
presented in the following flowchart. The key points mentioned above are included in
Characterize DLL subprocess.

X mo
OPMIIAN-rrO OWCO—=N~OTWCW XIMD

numOom o

* traverse the processes’ Vads and look for the ones that have "MZ"signature (meaning exe or
dlls). In case the OneProcess parameter is True, then look for VADs that their Mapped Views is equal
to 1

Figure 20 - DLL Injection Detection Flowchart

34

YES

** refers to thread that are created TimeWindow (default 10) seconds before and up to the DLL loading
time

Figure 21 - Characterize DLL subprocess flowchart

3.2.2 Detection Idea Verification

Initially, the concept described above was confirmed by calling a script inside
volshell Volatilitys’ plugin environment that enumerates the VADs with the specific
characteristics and manually combining its results with the following Volatility’s
plugins: a) timeliner which creates a timeline from various artifacts in memory and b)
handles which displays the open handles in a process [18]. These plugins are time
consuming and produce more information than the needed.

The IAT entries were also manually found, creating the processes’ exe with
procdump plugin and using readpe command. Example of this procedure is presented
in a following section.

After confirmation, all the steps of the detection flowchart were
combined in a single python script, called FindDLLInj.py, which is called from
Volatility’s volshell plugin.

3.3 Detection Code - FindDLLINj.py
The parameters that the script uses are:

OneProcess

Boolean that determines the characteristics of VADs selected while traversing

processes’ memory looking for DLL hames. Consequently, it determines the

characteristics of corresponding DLL. It is used in Characterize DLL step.

Possible values:

True : we are suspicious only of DLLs that their NumberOfMappedViews and
NumberOfUserReferences are equal to 1.

False : we are suspicious of any DLL, regardless their NumberOfMappedViews
and NumberOfUserReferences values.

TimeWindow

Integer that represents the time interval (in sec, before DLL load time) during
which it is being searched for starting threads. This is used to correlate the
DLLs with threads that possibly loaded them. The default value is 10 seconds.

WhitelList
A list of DLLs’ full names that are considered as not suspicious.

The output file is a Tab delimited text file named SuspectedDlls.txt which includes:

* an introduction line that contains information about the memory image and
parameters used, e.g. Time of execution, memory image on which the script is
executing, TimeWindow and OneProcess parameters values,

» a columns header line and

= output lines which consist of the following fields:

36

Field Name Field Explanation

Pid Process ID

Description In case of DLL injection detection: “Suspicious process”
Otherwise, warnings such as:

“No Imported DIl found”,

“No Loaded Dlls found”,

“No handle found”,

“DIll in WhiteList”

ImageFileName Process Name
DIl DLL full name
DllLoadTime Date and Time that the DLL was loaded (UTC+0000)

TimeDifference from | Time Difference from the previously loaded DLL inside
previously loaded DIl | the context of the specific process (in sec)

in sec

ThreadPid ID of the process under which the injection thread is
created (injected process, same as Pid)

ThreadTid ID of the injection thread created by the malicious
process, inside the context of the Pid

ThreadLoadTime Date and Time that the Thread begun executing
(UTC+0000)

ThreadExitTime Thread Exit Date and Time or **

ThreadHandlePid ID of the process that handles the injection Thread

(injector process ID)

The complete script that implements the steps described above is cited in
FindDLLInj Script section and alternatively can also be found in the repository:
https://github.com/Soterball/DLLInjectionDetection, together with some produced
output files.

Note: Warning messages are displayed when no loaded DLLs are found and in case
the IAT table cannot be reconstructed due to the high likelihood that one or more
pages in the PE header or IAT are not memory resident (paged). Also, a warning is
displayed when no handle that correspond to the suspicious DLL/thread pair is found.

3.3.1 Explanations relating the script

Before looking at the entire script, it is necessary to give some explanations, to
make clear how the above-mentioned key points of detection are implemented
through the code.

Determining whether a DLL file is loaded via LoadLibrary using its attributes

In windows operating system, the DLLs are represented though
_LDR_DATA_TABLE_ENTRY data structure which is analyzed below, using Sysinternals
Livekd on the testing environment (Win10 Build 14393) to debug the Windows kernel
[59]. The _LDR_LOAD_REASON structure, representing the LoadReason described

37

https://github.com/Soterball/DLLInjectionDetection

above is also shown. The command dt("_LDR_DATA_TABLE_ENTRY") inside Volatility’'s
volshell environment gives the same output.

Z| Command - Dump C\Windows\livekd.dmp - WinDbg:10.0.17134.12 AMD&4 X

*#%% EFROE: Module load completed but symbols could not be loaded for LiweKdD.SYS
0: kd» dt nt!_IDR DATA TABLE ENTRY

+0=000 InLoadOrderlinks : _LIST EHTREY

+0=x010 InMemoryOrderlink= : _LIST_ENTEY

+0=020 InInltlallzatlonOrderllnks : _LIST_ENTRY

+0x030 D11Base ¢ Ptr6d Void
+0=038 EntryPoint : Ptred Void
+0=040 SizelfInage : UintdB

+0x048 FullDllName : _UNICODE_STRING
+0xz058 BaseDllWame : _UNICODE _STRING
+0x068 FlagGroup R [4] TChar
+0=068 Flags : Uint4E

+0x068 PackagedBinary : Po= 0. 1 Bit
+0x068 MarkedForRemowal : Pos 1, 1 Bit
+0=068 ImageDll Pos 2, 1 Bit

+0=068 LDadNDtlflcatansSent : Pos 3. 1 Bit
+0=068 TelemetryEntryProcesszed Fos 4, 1 EBit
+0=068 ProcessStaticImport : Pos 5. 1 Bit

+0x068 Inlegacylists : Po= 6, 1 Bit
+0x068 InIndexes : Pos 7. 1 Bit
+0=068 ShimDll : Pos 8. 1 Bit
+0=068 InExceptionTable @ Pos 9, 1 Bit
+0=068 ReservedFlag=1l : Pos 10. 2 Bits
+02068 LoadInProgress : Pos 12, 1 Bit
+0x068 LoadConfigProcessed : Pos 13, 1 Bit
+02068 EntryProcessed : Pos 14, 1 Bit
+0x068 ProtectDelayload : Pos 15, 1 Bit
+0=068 ReservedFlag=3 : Pos 16, 2 Bits

+0x068 DontCallForThreads : Pos 18, 1 Bit
+0x=068 ProcessAttachCalled : Pos 19, 1 Bit
+0x068 ProcessittachFailed : Pos 20, 1 Bit
+0=068 CDrDeferredValldate : Pos 21, 1 Bit

+0x068 CorImage : Pos 22. 1 Bit

+0x068 DontRelocate : Pos 23, 1 Bit

+0x068 CorIlOnly : Pos 24, 1 Bit

+0x068 ReservedFlags=t : Pos 25, 3 Bits

+0x068 Redirected : Pos 28, 1 Bit

+0=068 ReservedFlag=h . Pos 29. 2 Bits

+0=0RE ComnatlatabaseProcessed Po=_ 31 1 PB4t
+0x06c ObsoleteloadCount @ Uint2B

+lEUbE TISInde= TUInT

+0x070 HashLinks : _LIST_ENTRY

+0=z080 TimeDateStamo . Tint4E

+0=x088 EntryPointictivationContext : Ptr6d _ACTIVATION_COHNTEXT
+0=090 Lock : Ptred Void

+0x098 DdagHode : Ptrtd4 _LDRE_DDAG HODE
+0=x0al HodeModulelink . _LIST_ENTRY

+0x0b0 LoadContext . Ptrt4 _LDRP_LOAD_COHTEXT
+0x0b8 ParentDllBa=ze : Ptred Void

+0x0c0 SwitchBackContext : Ptr64 Void

+0z0ck BasehlddressIndexNode : _RETL_BALANCED HODE
+0=z0e0 HappinglnfolndexNode : _RTL_BALANCED HODE
+0=0£f8 OriginalBase : Tint8B

+0x100 LoadTime ¢ _LARGE INTEGER
+0=108 BaseHameHazhValue - Tlint 4B

+0x10c LoadReason : _LDE_DLL_LOAD FEASCH
TURLLIU LMpliol Lo LIS L= vinvan

+0x114 ReferenceCount : Uint4B

4Nwl1lf TDemendentToadElags - Tlint AR

0: kd:r dt nt! LDRE DLL LOAD REASON
LoadkeasonstaticlUependency = Unl
LoadREea=onStaticForwarderDependency = Onl
LoadEeasonDynanicForvarderDependency = 0n2
LoadRea=onlelayloadDependency = (In3
LoadRea=onDynanicload = Ond
LoadREea=ondsInageload = Onb
LoadReasonisDataload = Onk
LoadReasonnknown = On-1

Figure 22 - _LDR_DATA_TABLE_ENTRY and _LDR_LOAD_REASON sturctures

In [6] is mentioned that when the LoadCount field of
LDR_DATA_TABLE_ENTRY is Oxffff (or -1 because it is a short integer), it means that
the DLL is loaded because this was specified in the IAT. This statement is tested and
confirmed in a memory image of older windows version called Stuxnet.vmem,
downloaded from [21] (In Blog Archive, 2016, August, post: Automating Detection of
Known Malware through Memory Forensics). In windows 8 and later, the LoadCount is
replaced with ObsoleteLoadCount [60].

To find out how ObsoleteLoadCount is manipulated by Windows, since it is not
sufficiently documented by Microsoft, a list of all loaded modules in the testing
memory images with their corresponding attributes is created. This list is compared

38

https://volatility-labs.blogspot.com/2016/08/automating-detection-of-known-malware.html
https://volatility-labs.blogspot.com/2016/08/automating-detection-of-known-malware.html

with the IAT reproduction output and some paradoxes were found: a) the district
values for ObsoleteLoadCount are O0xffff (or 65535 or -1) and 6, b) there are DLLs that
have corresponding entries in the IAT and their ObsoleteLoadCount is 6 (and not
Oxffff). The situation is a bit confusing, but it becomes clearer when
ObsoleteLoadCount is associated with LoadReason field of _LDR_DATA_TABLE_ENTRY
structure. It is safe to conclude that the DLLs that are loaded using LoadLibrary
have either ObsoleteLoadCount equal to 6 OR LoadReason equal to
LoadReasonDynamicLoad. The OR logical operand is used in a pessimistic way so
that more DLLs are going to be checked. LoadReasonDynamicLoad corresponds to the
value of 4, as shown in the above figure, which is confirmed in file
\volatility\plugins\overlays\windows\ win10_x64_vtypes.py and also stated in [60].

Note: The dlllist Volatility plugin still shows the LoadCount (with the default value of
0) and not the contents of ObsoleteLoadCount, even when the profile is determined as
“"Win10x64_14393".

The code used for this test is (inside Volatility’s volshell plugin) is:

for proc _id in getprocs():
p_id= proc_id.UniqueProcessId
cc(pid=p_id)
process=proc ()

mods = process.get load modules ()

for mod in mods:
print p id, mod.FullDLLName, mod.BaseDLLName, mod.LoadCount,
mod.ReferenceCount, mod.ParentDLLBase, mod.ObsoleteLoadCount,
mod.LoadReason ,mod.ParentDLLBase, mod.DLLBase

Scan processes’ memory for IAT entries

When an executable is first loaded in memory, the Windows loader, amongst
others, is responsible for loading the needed DLLs. This information is stored in the
IAT (Import Address Table), which is part of the PE structure. On the other hand, the
DLLs loaded using LoadLibrary function are explicitly loaded at run-time [61] and
there isn't any corresponding entry in the IAT. So, a useful step to the detection
process is the reproduction of the IAT. Loaded DLLs stored in it are not considered
suspicious, in contrast with the other loaded DLLs.

Although the PE (Portable Executable) file format is outside the scope of this
thesis, it follows a visual representation of PE file structure at an abstract level and
only to assist the understanding the code used for retrieving the names of the
imported DLLs. The cells with black background refer to the structure names and the
gray cells to their fields. The blue dashed lines show how the respective fields are
analyzed and the blue arrows represent pointers. All these data structures are defined
in WINNT.H [51].

39

PE File Structure

_IMAGE_DOS_HEADER Machine
e_magic NumberOfSections
e_lfanew
IMAGE_OPTIONAL_HEADER
: _IMAGE_DATA_DIRECTORY
COFF File Header Magic
VirtualAddress IMAGE_IMPORT

size _DESCRIPTOR
IMAGE_NT_HEADERS DataDirectory[0] ; Characteristics
Signature DataDirectory[1] Tmport Table TimeDateStamp

DataDirectory[2 or .idata section i
e y[2] ¢) ForwarderChain

ImageImportDescriptor[1] Name
IMAGE_OPTIONAL_HEADER ImageImportDescriptor[2]

D ” s FirstThunk

ata Directory :
An array of

IMAGE_DATA_DIRECTORY

structures Name :
A Relative virtual address
to a NULL-terminated
ASCII string containing
the imported DLL's name

Figure 23 - Diagram showing PE File structure and IAT

As shown in the above diagram, the IAT (Import Address Table) is represented
as an array of IMAGE_IMPORT_DESCRIPTORs. The last element of the array is
indicated by an IMAGE_IMPORT_DESCRIPTOR that has fields filled with NULLs. The
import table (or .idata section) of the PE begins with this array. The import table is
the second entry of the DataDirectory table which is an array of
IMAGE_DATA_DIRECTORY structures that resides inside IMAGE_OPTIONAL_HEADER,
field of IMAGE_NT_HEADERS Header [27][28][51].

Going in the opposite direction to that described in the previous paragraph, the
procedure of scanning each process’s memory for IAT entries using the
Volatility’s volshell plugin, has the following steps:

= (Create a _IMAGE_DOS_HEADER object using as offset the process’ base
address

» Get the NT header, using the get_nt_header function (which is the same as
following the e_Ilfanew member to it)

* Find DataDirectory[1] inside OptionalHeader

= Scan the IAT and create _IMAGE_IMPORT_DESCRIPTOR objects until an empty
one is found. The name field is the address of an ASCII string that contains the
name of the DLL and is relative to the image base. Read the DLL Name and
append it in the list of Imported DLLs [6][52]

40

The code that reproduces the IAT table follows. Part of it is taken from file
plugins/overlays/windows/pe_vtypes.py, imports() function of class
_LDR_DATA_TABLE_ENTRY.

"Scan" PE to reconstruct the IAT table - 1st method
DLLsFromImport=[]
dos_header = obj.Object (" IMAGE DOS HEADER",offset = \
process.Peb.ImageBaseAddress,vm = process space)
nt header = dos header.get nt header()
data dir = nt header.OptionalHeader.DataDirectory[1l]

i=20

#desc_size = self.obj vm.profile.get obj size(' IMAGE IMPORT DESCRIPTOR')
desc_size=20

while 1:
desc = obj.Object (' IMAGE IMPORT DESCRIPTOR',
vm = process space,
offset = process.Peb.ImageBaseAddress +
data dir.VirtualAddress
+ (1 * desc_size), parent = self)

Stop i1f the IID is paged or all zeros
if desc == None or desc.is list end():
break

Stop if the IID contains invalid fields
if not desc.valid(nt header):
break

DLLName=0bj.0bject ("String", offset =
desc.Namet+process.Peb.ImageBaseAddress,
vm = process_space, length = 128)

DLLsFromImport.append (str (DLLName) .lower ())

Confirmation of the IAT reproduction

The above code has been tested in various processes of various images. The
results are identical to those of using objdump and readpe commands to the
corresponding .exe files, created by procdump volatility. The following screenshots
show the results for process 6120 (notepad) on one of the testing memory images.

At first, the process 6120 is dumped and the corresponding .exe is created using
procdump plugin.

root@kali: # python vol.py -T /media/sf Shared/KALI/"MSEdge - Winl@ preview-eaaa27c2-dll inj after.vmem"
--profile="Winl@x64 14393" procdump -p 6120 -D dll_inj

olatility Foundation Volatility Framework 2.6

Process (V) ImageBase Name Result

OxTfff8588d9479080 0x0OO07fT7dedfROO0 notepad.exe 0K: executable.6120.exe

Using the readpe command, the PE structure as described above, is presented.

41

root@kali:

|ID0S Header

Maglc numper:

Bytes in last page:

Pages in file:

Relocations:

Size of header in paragraphs:
Minimum extra paragraphs:
Maximum extra paragraphs:
Initial (relative) S5 value:
Initial SP value:

Initial IP value:

Initial (relative) CS value:
Address of relocation table:
Overlay number:

0EM identifier:

0EM information:

PE header offset:

COFF/File header
Machine:

Number of sections:
Date/time stamp:

Symbol Table offset:
Number of symbols:

Size of optional header:
Characteristics:

readpe dll_inj/executable.6120.exe

uxdasa (Mz)
144

0xte

0x8664 x86-64 (64-bits)

6

1468635242 (Sat - 16 Jul 2016 02:14:02 UTC)
0

]

oxfe

Bx22

executable image

can _handle more than 2 GB addresses

lagic number:

inker major version:
LNKET MLNOT VersLion:

ize of .text section:
ize of .data section:
ize of .bss section:
ntrypoint:

ddress of .text section:
mageBase:

lignment of sections:
lignment factor:
ajor version of
inor version of
ajor version of
inor version of
ajor version of
inor version of
ize of image:
ize of headers:
hecksum:
ubsystem required:

LL characteristics:

ize of stack to reserve:

ize of stack to commit:

ize of heap space to reserve:
ize of heap space to commit:

Eptlonal!lmage header

required 0S:
required 0S:
image:
image:
subsystem:
subsystem:

ata directories

mport Table:

esource Table:

xception Table:

ase Relocation Table:
ebug:

oad Config Table:

Emport AOOTESS laOle (LAT):

DVAPI3Z.d11
67:
38:
78
62:
12:

00:
49:

0x20b (PE32+)
14

o
0x186008
0x24e00

]

0x187d@

0x1000
Ox7ff7dedfO000
0x1000

0x200

10

]

18

]

10

2]

0x41000

Ox480

0x47c64

0x2 (Windows GUI)
0xcl60

0x80000
0x11000
ax100000
0x1000

0x17300
0x26008
0x25000
0x40000
0xleld@
0x1a550
X ldoiu

(600 bytes)
(105704 bytes)
(2244 bytes)
(524 bytes)
(56 bytes)
(208 bytes)
14424 Dyles)

A T

GetTokenInformation
DuplicateEncryptionInfoFile
RegSetValueExW
RegQueryValueExW
RegCreateKeyW

RegClosekey

RegOpenKeyExW

[snip]

FeClient.dll
HE

tdll.dll
1615:

ROPSYS.d11
3
150:

HELL32.d11
159:
0:
124:
6:
i
HEE
HLWAPT.d11
e
3:
101:
5:
64:

TINSPOOL . DRV
140:

)3
150 :

rimon.dll
9:

ections
ame :

irtual Address:

hysical Address:

ize:

ointer To Data:

elocations:

haracteristics:

ame :

EfsClientDecryptFile

WinSgmAddToStream

PSGetPropertyDescriptionListFromString
PropVariantToStringVectorAlloc

SHCreateltemFromParsingName
DragQueryFileW
SHAddToRecentDocs
DragFinish

DragAcceptFiles

ShellAboutW

PathIsFileSpecW
PathFileExistsW
PathIsNetworkPathW
PathFindExtensionW
SHStrDupW

GetPrinterDriverW
ClosePrinter
OpenPrinterW

FindMimeFromData

Ltext

0x1000

0x184ae

0x18600 (99840 bytes)
Bx480

]

0x60000020

contains executable code
is executable

is readable

.rdata

As one can see, the IAT is displayed as well as the imported DLL's names. Then the
information of the .text is displayed. The following objdump command is used to

create a text file with the disassembly information.

root@kali:

which confirms the readpe output. Part of this text file is shown below.

objdump -d -x -h dll inj/executable.6120.exe >d11 _inj/objdump notepad.txt

=

The Data Directory

Entry
Entry
Entry
Entry
Entry
Entry
Entry

Export Directory [.edata (or where ever we found it)]

0000000000017300 00000258 Import Directory [parts of .idatal
0000000000026000 00019ce8 Resource Directory [.rsrc]
0000000000025000 000008c4 Exception Directory [.pdatal
0000000000000000 00OBOPOO Security Directory
0000000000040000 000BO20c Base Relocation Directory [.reloc]
000000000001e1d0 00OBOO38 Debug Directory

Entry

Description Directory

Entry

Thread Storage Directory [.tls]

Entry

1a550 Load Configuration Directory

Entry
Entry

Bound Import Directory

00000R0EAA01a620 APEAA978 Import Address Table Directory

Entry

Delay Import Directory
CLR Runtime Header

Entry

1
2
3
4
5
6
7
Entry 8 0000000000000000 00000000 Special Directory
9
a
b
c
d
e
T

Entry

vma:

0001300

Reserved

There is an import table in .rdata at Ox7ff7de50f300

The Import Tables (interpreted .rdata section contents)
Hint
Table

0001558 00000000 00000000 0001ffca 00012620

Time Forward DLL First
Stamp Chain Name Thunk

DLL Name: ADVAPI32.dll
vma: Hint/Ord Member-Name Bound-To
532

1fedd OpenProcessToken
1feed 367 GetTokenInformation
1fefa 238 DuplicateEncryptionInfoFile
1ff18 678 RegSetValueExW
1ff2a 662 RegQueryValueExW
1ff3e 612 RegCreateKeyW

1ffde 600 RegCloseKey

1ff5c 649 RegOpenKeyExW

1ff6c 289 EventSetInformation
1782 288 EventRegister

1192 290 EventUnregister
1ffad 296 EventWriteTransfer
1ffba 407 IsTextUnicode

43

On the other hand, the list of imported DLLs resulting from the code, has the
same entries:

['advapi32.dll’,
'kernel32.d11’,
'gdi32.d1l’,
'user32.dll’,
'msvert.dil’,
'api-ms-win-core-com-11-1-1.d11',
'oleaut32.dll’,
'api-ms-win-core-synch-11-2-0.d11"',
'api-ms-win-core-rtlsupport-11-2-0.d11',
'api-ms-win-core-errorhandling-11-1-1.d11',
'api-ms-win-core-processthreads-11-1-2.d11",
'api-ms-win-core-libraryloader-11-2-0.d11"',
'api-ms-win-core-profile-11-1-0.d11"',
'api-ms-win-core-sysinfo-11-2-1.d11",
'api-ms-win-core-heap-11-2-0.d11"',
'api-ms-win-core-winrt-string-11-1-0.d11',
'api-ms-win-core-winrt-error-11-1-1.d11"',
'api-ms-win-core-string-11-1-0.d11"',
'api-ms-win-core-winrt-11-1-0.d11',
'api-ms-win-core-debug-11-1-1.d11",
'comctl32.d11’,
'comdlg32.d1l’,
'feclient.dll’,
'ntdll.dll’,
'propsys.dll’,
'shell32.dll’,
'shlwapi.dll’,
'winspool.drv',
"urlmon.dll']

So, this part of the code is sufficiently tested. The only problem seems to be
what will happen in case one or more pages in the PE header or IAT are not memory
resident. For now, in case the IAT cannot be reproduced, a warning is displayed.

Process’s Threads

The following figure is created to help understanding the code for getting the
process’s threads with just one look. Once again, the blue dashed lines show how the
respective fields are analyzed and the blue arrows represent pointers.

_EPROCESS

Pcb
UniqueProcessId
Ll _ " Flink

— ThreadListHead ’ Blink

ActiveThreads

Bl _CLIENT_ID
_ETHREAD _ETHREAD _ETHREAD / g
y UniqueProcess

Createlime CreateTime Createlime UniqueThread
ExitTime ExitTime ExitTime /
B L 1ST_ENTRY
Cid Cid Cid S0 THInR
' Blink
—* ThreadListEntry { ThreadListEntry { ThreadListEntry {
....... » Flink —_— Flink — Flink e
®rneanns Blink } — Blink } «—— Blink } e

Figure 24 - Diagram showing Processes’ and Threads’ data structures

44

All that must be done is following the processes’ ThreadListHead which is a
doubly linked list that chains together all the process’ threads (each list element is an
_ETHREAD) [6]. The ThreadListEntry of each _ETHREAD points to the next _ETHREAD
[26][53][54]. This is implemented by a for loop (taken from
\volatility\plugins\malware\threads.py):

As seen above, the items of interest regarding the threads are creation and exit
time as well as process and thread id. The last are stored in Cid structure. This
information is needed so that one thread can be correlated to a loaded DLL using
TimeWindow parameter, as explained before.

#-—-- Get Threads in the context of the process (in Thread List) ----
Thread List=[]
for thread in process.ThreadListHead.list of type (" ETHREAD", "ThreadListEntry"):
timestamp utc = calendar.timegm(time.strptime(str(thread.CreateTime),
"$Y-%m-%d $H:%M:%S UTC+0000"))
Thread List.append([int (thread.Cid.UniqueProcess),int (thread.Cid.UniqueThread,
str (thread.CreateTime), timestamp utc,
str(thread.ExitTime or ' '), hex(thread.StartAddress)])

All the involved Windows data structures are presented below, inside Volatility’s
volshell plugin environment (alternatively to the Windows kernel debugger used
before).

In [22]: dt(' EPROCESS')
' EPROCESS' (1968 bytes)
Ox0 : Pcb [' KPROCESS']
0x2d8 : ProcesslLock [' _EX PUSH LOCK']
0x2ed® : RundownProtect ['_EX RUNDOWN_REF']
0x2e8 : UniqueProcessId ['unsigned int']
Ox2f0 : ActiveProcesslLinks [' _LIST ENTRY']
0x300 : AccountingFolded ['BitField', {'end bit': 2, 'start bit': 1, 'native type': 'unsigned long'}]
0x300 : AffinityPermanent ['BitField', {'end bit': 19, 'start bit': 18, 'native type': 'unsigned long'}]
[snip]
Ex480 : HighestUserAddress ['pointer6d’, ['void']]
A¥488 - Threadl istHead [' I TST FNTRY'1
Dx498 : ActiveThreads ['unsigned long']
PX4¥C © Lmageratnnasn | ‘unsignea tLong]
[snip]

45

In [27]:
' ETHREAD' (2016 bytes)

dt(' ETHREAD')

AvA « Trh [' KTHRFAN'1
Ox5e0 : CreateTime ['WinTimeStamp', {'is utc': True}
Ox5e8 : ExitTime ['WinTimeStamp', {'is utc': True}
UxX5es : Keyeawaltlhaln L" LIST ENIRY"]
Ex578 : ChargeOnlySession ['pointer6d', ['void']]
@x600 : ForwardLinkShadow ['pointeréd’, ['void']]
Ox600 : PostBlockList [' LIST ENTRY']
Ox608 : StartAddress ['pointeréd’, ['void']]
0x610 : KeyedWaitValue ['pointeréd’, ['void']]
0x610 : ReaperLink ['pointer64', [' ETHREAD']]
Ox610 : TerminationPort ['pointer64', [' TERMINATION PORT']]
0x618 : ActiveTimerlListLock ['unsigned long long']
AvR?A + ArtiveTimerl ictHeaad ' I TST FNTRY'1
lox630 : Cid ['" CLIENT ID']
UXb4l : ALpCWalTsemapnore | KSEMAFHURE " |
0x640 : KeyedWaitSemaphore [' KSEMAPHORE']
0x660 : ClientSecurity [' PS CLIENT SECURITY CONTEXT']
0x668 : IrplList [' LIST ENTRY']
0x678 : ToplLevellrp ['unsigned long long']
0x680 : DeviceToVerify ['pointer64', [' DEVICE OBJECT']]
Ox688 : Win32StartAddress ['pointer64', ['void']]
AvROA « | enarvPowarfhiact I'naintarRA' INunid'1ll
[0x698 : ThreadListEntry [' LIST ENTRY']
WUxbad : HundownProtect | " EX RUNDUWN REF "]
Ox6b0 : ThreadlLock [' EX PUSH LOCK']
Ox6b8 : ReadClusterSize ['unsigned long']
In [33]: dt(' CLIENT ID')
' CLIENT ID' (16 bytes)
Ox0 : UniqueProcess ['unsigned int']
0x8 : UniqueThread ['unsigned int']
In [34]: dt(' LIST ENTRY')
' LIST ENTRY' (16 bytes)
0x0 : Flink ['pointer6d', [' LIST ENTRY']]
0x8 : Blink ['pointer64', [' LIST ENTRY']]

Handles on the Threads

Figure 25 - Processes’ and Threads’ data structures

As already mentioned, one key point for DLL injection detection is the fact that
the thread that executes the LoadLibrary function inside the context of the legitimate
process is created by the malicious process. Consequently, in case a thread is
handled by the same process under which it is executed, the thread is not
suspicious. To derive this conclusion a list of the process handles (Handle_List) is

created (code taken from \volatility\plugins\handles.py):

-

Get Process’ Handles (in Handle List) and wupdate ALL Processes'

(AllProcessHandle List) ----

Handle List=[]
process.ObjectTable.HandleTablelList

pid=int (p_id)

for handle in process.ObjectTable.handles () :

if not handle.is valid():

continue
object type = handle.get object type()
if object type == "Thread":

thrd obj = handle.dereference as (" ETHREAD")
Details handle PID, TID, process id that owns the handle
Handle List.append([int (thrd obj.Cid.UniqueProcess),

int (thrd obj.Cid.UniqueThread),p_id])

AllProcessHandle List ([int (thrd obj.Cid.UniqueProcess),

int (thrd obj.Cid.UniqueThread),p_ id])

handles

46

For each possibly suspicious thread and DLL combination (per process), the
processes’ handle list is checked and in case a corresponding entry is found, the
thread is considered as not suspicious. AllProcessHandle_List is also updated so at the
end it contains information about all handles from the memory image.

As presented in the detection flowchart, after “scanning” all processes,
each pair of suspicious DLL/thread is checked to ascertain whether there is a
handle on the thread. If the handle exists, the process that created this handle is
the one that also created the thread and consequently is the malicious process. The
malicious’ process id is also updated in the suspicious DLL/thread list. On the other
hand, if no handle is found, a warning is displayed because although this is an
anomaly, it is not indicating a DLL injection with certainty. Maybe the region of
memory that holds the handles is mapped.

3.4 Calling FindDIIInj.py

At first, FindDIllInj.py must be copied in Volatility’s directory, e.q.
/usr/share/volatility/ and then the script is called inside Volatility’s volshell plugin, for
example:

root@kali: # python vol.py -T /media/sT Shared/KALI/InjectATTThings before ok.vmem --profile=Winl0x64 14393 volshell
olatility Foundation Volatility Framework 2.6

Current context: System @ Oxffffed408470b3500, pid=4, ppid=0 DTB=0x1aab0o

Python 2.7.13 (default, Jan 19 2017, 14:48:08)

IType "copyright", "credits" or "license" for more information.

IPython 5.1.0 -- An enhanced Interactive Python.
?

-> Introduction and overview of IPython's features.
quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

while the script is executing, it displays the various processes’ context

In [2]: execfile('FindD1lInj.py')

Current context: System @ @xffffe408470b3500, pid=4, ppid=0 DTB=0x1aa@00

Current context: smss.exe @ Oxffffe408489d3800, pid=292, ppid=4 DTB=0x136T08000
Current context: csrss.exe @ Oxffffed40848Teec@80, pid=384, ppid=376 DTB=0x11760d0GE
Current context: wininit.exe @ Oxffffed0849275080, pid=468, ppid=376 DTB=0x115d12000
Current context: services.exe @ Oxffffe408494b9600, pid=584, ppid=460 DTB=0x114801000

and the output file can be manipulated as a text file or imported in spreadsheet

In [4]: cat SuspectedDlls.txt

2018-08-25 11:58:20.448099 FindD11lInj on /media/sf Shared/KALI/InjectAllThings_before ok.vmem TimeWindow: 1@ OneProcess: False
Pid Description ImageFileName D11 DllLoadTime TimeDifference from previously loaded D1l in sec ThreadPid ThreadTid ThreadLoadTime ThreadExitTime ThreadHandlePid
4 Warning: No Imported D11 found System

4 Warning: No Loaded D1ls found System

1988 Warning: No Imported D11 found IpOverUsbSvc.e
2080 Warning: No Imported D11 found MemCompression
2680 Warning: No Loaded D1ls found MemCompression

3416 Warning: No handle found SearchUI.exe c:\windows\system32\certenroll.dlLl 2018-06-04 14:21:54 2 3416 5436 2018-06-64 14:21:50 UTC+8000]
3416 Warning: No handle found SearchUI.exe c:\windows\system32\mswb7.d11 2018-86-84 14:22:21 27 3416 5452 2018-06-64 14:22:21 UTC+8000
6108 Suspicious process notepad.exe c:\users\ieuser\desktop\injectallthethings-master\x64\releasetdlinain.dll 2018-06-84 14:23:27 113 6108 5304 2018-96-04 14:23:27 UTC+0000

5248
2018-68-25 12:14:04.786924

3.5 FindDLLINnj Testing

3.5.1Testing Environment

In websites https://gist.github.com/zmwangx/e728c56f428bc703c6f6 and
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/ there are many

47

https://gist.github.com/zmwangx/e728c56f428bc703c6f6
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

windows virtual machines available for and for testing was downloaded Windows 10
Enterprise Evaluation, Build 14393.rs1_release.180209-1727
(https://az792536.vo.msecnd.net/vms/VMBuild 20160802/VMWare/MSEdge/MSEdge.
Winl0 RS1.VMWare.zip) which was processed with VMware® Workstation 12 Pro
software, version 12.5.2 build-4638234 [9].

To perform the DLL injection, the source code of two different malware Projects
was used: injectAllTheThings [55] and InjectProc [41]. The source code was compiled
using Microsoft Visual Studio Community 2017, version 15.5.6. In both cases, the
“malicious” DLL (dllmain.dll and mbox.dll respectively) just pops up a window
displaying “Process attach” or “Injected”.

On the investigating hand, KALI Linux 2017.1 was used (downloaded file name
kali-linux-2017.1-amd64.iso from https://www.kali.org/downloads/) which includes
Volatility’s Foundation Volatility Framework 2.6. KALI and was opened with Oracle
VirtualBox version 5.2.12 r122591 (Qt5.6.2) [10].

Memory images are taken at various moments, as described in the following
table: Before Injection, on DLL execution, after terminating the DLL, after terminating
the injected process, after terminating the injection process, on DLL injection in more
than one process, e.t.c.

In each case, just before the memory image was created, the running Windows
Virtual Machine environment was checked to validate that the DLL injection was
achieved. For this purpose, ProcessHacker software was used (downloaded from
https://processhacker.sourceforge.io/downloads.php). To be more precise, it was
checked that the “malicious” DLL was loaded within the specific process address space
and was recorded any information needed to verify that FindDIlInj.py works correctly:
the malicious full path and name, the injected process ID, the thread ID that loaded
the DLL and the injection process ID. In appendix, section A DLL injection testing
example, is shown exactly how this information was retrieved, using image
InjectAllThings_before_ok.vmem as an example. It is also shown how the script was
tested and its output confirmed.

3.5.2Testing results

The following table presents the results of the created script execution
(FindDLLINnj.py) using several memory images files. The second column contains
details about the system when the memory image is taken, the corresponding image
file name and the output file name created by the script. The third column contains
one or more lines of the output file regarding the suspicious process found. In case
there is not any suspicious process, no output line is included. Not all the warnings are
presented, only a few as an example. The output line of the first test is explained in
detail and analyzed according to the output file layout. The output lines of the
remaining tests have the same structure. All the results were confirmed as described
in A DLL injection testing example.

48

https://az792536.vo.msecnd.net/vms/VMBuild_20160802/VMWare/MSEdge/MSEdge.Win10_RS1.VMWare.zip
https://az792536.vo.msecnd.net/vms/VMBuild_20160802/VMWare/MSEdge/MSEdge.Win10_RS1.VMWare.zip
https://github.com/secrary/InjectProc
https://www.kali.org/downloads/

The testing results on the memory images injected using the code presented in injectAllITheThings project [55] are:

Test | Test Memory Image Characteristics Output line of interest
No.
1 DLL injection in process notepad.exe 6108 Suspicious process notepad.exe
(pid=6108) c:\users\ieuser\desktop\injectallthethings-
During DLL execution (respective window master\x64\release\dlimain.dll 2018-06-04 14:23:27 113
popped up) 6108 5304 2018-06-04 14:23:27 UTC+0000
Injecting process still active 5248
(injectAllTheThings.exe , pid 5248)
Image File name: This output line is analyzed as:
InjectAllThings_before_ok.vmem
Output file name: SuspectedDlls - Pid 6108
InjectAllIThings_before_ok.txt Description Suspicious process
ImageFileName | notepad.exe
DIl c:\users\ieuser\des
ktop\injectallthethin
gs-
master\x64\release
\dllimain.dll
DllLoadTime 2018-06-04
14:23:27
TimeDifference 113
ThreadPid 6108
ThreadTid 5304
ThreadlLoadTime | 2018-06-04
14:23:27
ThreadExitTime
ThreadHandlePid | 5248

49

Injection in process notepad.exe

(pid 6108) achieved

During DLL execution (respective window
popped up)

Injecting Process terminated

Image File name:
InjectAllThings_closeExe.vmem

Output file name: SuspectedDlls -
InjectAllIThings_closeExe.txt

Note: process 1140 is ProcessHacker

6108 Suspicious process notepad.exe
c:\users\ieuser\desktop\injectallthethings-
master\x64\release\dlimain.dll 2018-06-04 14:23:27
6108 5304 2018-06-04 14:23:27 UTC+0000

1140

113

Injection in process notepad.exe (pid 6108)
achieved

DLL terminated (respective window closed)
Injecting Process terminated

Image File name:
InjectAllThings_after_ok.vmem

Output file name: SuspectedDlls -
dll_inj_after_ok.txt

No suspicious processes, just warnings.

Since the corresponding thread is terminated, the script gives no

output.

Virtual machine restarted

Injection in two different processes
explorer.exe (pid 5000) and notepad.exe
(pid 2560)

During DLL execution (respective window
popped up)

Injecting Processes still active

Image File name: InjectAllThings_2proc.vmem
Output file name: SuspectedDlls -
InjectAllThings_2proc.txt

Note: Process 6060 is ProcessHacker, the
OneProcess parameter is set to False

5000 Suspicious process explorer.exe
c:\users\ieuser\desktop\injectallthethings-
master\x64\release\dlimain.dll 2018-06-04 15:05:16
5000 68 2018-06-04 15:05:16 UTC+0000

244

2560 Suspicious process notepad.exe
c:\users\ieuser\desktop\injectallthethings-
master\x64\release\dllmain.dll 2018-06-04 15:02:09
2560 2540 2018-06-04 15:02:08 UTC+0000

6060

2560 Suspicious process notepad.exe
c:\users\ieuser\desktop\injectallthethings-
master\x64\release\dllmain.dll 2018-06-04 15:02:09
2560 2540 2018-06-04 15:02:08 UTC+0000

3492

195

125

125

50

Injection in two different Processes
DLL terminated (respective window closed)
Injecting Process active

Image File name:
InjectAllThings_2proc_afterOK.vmem

Output file name: SuspectedDlls -
InjectAllIThings_2proc_afterOK.txt

Note: The OneProcess parameter is set to False

No suspicious processes,
Just warnings

The testing results on the memory images injected using the code technique presented in InjectProc project [41] are:

Note: Inject proc author in its website states that it is only tested on Windows 10 build 1703, 64bit.

Test | Test Memory Image Characteristics Output line of interest
No.
6 Clean system, notepad.exe which is going to No suspicious process found.

be injected (pid 6120) is running but not
injected.

Image File name: MSEdge - Winl10_preview-
eaaa27c2-dll_inj_before.vmem

Output file name: SuspectedDlIs - MSEdge -
Win10_preview-eaaa27c2-dll_inj_before.txt

Warnings such as:
4 Warning: No Imported DIl found System
4 Warning: No Loaded DlIs found System

664 Warning: No handle found svchost.exe
c:\windows\system32\licensemanagersvc.dll 2018-03-31

10:38:03 5 664 912 2018-03-31 10:37:57

UTC+0000 0

1136 Warning: No handle found svchost.exe
c:\windows\system32\cryptsvc.dll 2018-03-31

10:35:49 3 1136 1684 2018-03-31 10:35:46

UTC+0000 0

51

DLL Injection in process Notepad.exe (pid
6120).

During DLL execution (respective window
popped up).

Injecting Process (pid 1080) still active.

Image File name: MSEdge - Win10_preview-
eaaa27c2-dll_inj_after.vmem

Output file name: SuspectedDlIs-MSEdge -
Win10_preview-eaaa27c2-dll_inj_after.txt

Output (other than warnings)

6120 Suspicious process notepad.exe
c:\users\ieuser\desktop\injectproc-master\injectproc-

master\x64\debug\mbox.dll 2018-03-31 12:52:14 8026
6120 3140 2018-03-31 12:52:14 UTC+0000
1080

Virtual Machine restarted

DLL Injection in process notepad.exe (pid 6756)
achieved.

DLL terminated (respective window closed)
Injecting Process just terminated

Image File name: MSEdge - Win10_preview-
eaaa27c2-dll_inj_after_term-new.vmem
Output file name: SuspectedDlls -MSEdge -
Win10_preview-eaaa27c2-dll_inj_after_term-
new (-oneproc=False).txt

No suspicious process found

Virtual Machine restarted

Injection in process explorer.exe (pid
2760)

During DLL execution (respective window
popped up)

injecting Process still active (pid 5336)
Image File name: MSEdge -
Win10_dll_inj_before_ok.vmem

Output file name: SuspectedDlIs-MSEdge -
Win10_dll_inj_before_ok.txt

2760 Suspicious process explorer.exe
c:\users\ieuser\desktop\injectproc-master\injectproc-
master\x64\debug\mbox.dll 2018-05-29 14:50:54 61
2760 5620 2018-05-29 14:50:54 UTC+0000
5336

52

10

Virtual Machine not restarted

Injection in process explorer.exe (pid 2760)
completed

DLL terminated (respective window closed)
Injecting Process terminated

Image File name: MSEdge -
Win10_dll_inj_after_ok.vmem

Output file name: SuspectedDlIs - MSEdge -
Win10_dll_inj_after_ok.txt

No suspicious process found, just warnings.

Since the corresponding thread is terminated, the script gives no
output.

11

Virtual Machine restarted

Injection in three different Processes
During DLL execution (respective windows
popped up).

Image File name: MSEdge - Winl10_preview-
eaaa27c2-3_DifferentProcs.vmem

Output file name: SuspectedDIIsWin10_preview-
eaaal7c2-3_DifferentProcs.txt

Note: The OneProcess parameter is set to False

408 Suspicious process explorer.exe
c:\users\ieuser\desktop\injectproc-master\injectproc-
master\x64\debug\mbox.dll 2018-08-31 14:14:42 26
408 3908 2018-08-31 14:14:42 UTC+0000
5372

6052 Suspicious process notepad.exe
c:\users\ieuser\desktop\injectproc-master\injectproc-
master\x64\debug\mbox.dll 2018-08-31 14:12:21 43
6052 3632 2018-08-31 14:12:20 UTC+0000
5436

4328 Suspicious process mspaint.exe
c:\users\ieuser\desktop\injectproc-master\injectproc-
master\x64\debug\mbox.dll 2018-08-31 14:13:48 56
4328 2144 2018-08-31 14:13:48 UTC+0000
5056

53

12

Injection in three different Processes
One of them terminated (pid 6052)
injecting Processes still active

Image File name: MSEdge - Win10_preview-
eaaa27c2-3_DifferentProcs-1_Term.vmem

Output file name:

SuspectedDlls- Win10_preview-eaaa27c2-
3_DifferentProcs-1_Term.txt

Note: The OneProcess parameter is set to False

408 Suspicious process explorer.exe
c:\users\ieuser\desktop\injectproc-master\injectproc-
master\x64\debug\mbox.dll 2018-08-31 14:14:42 26
408 3908 2018-08-31 14:14:42 UTC+0000
5372

4328 Suspicious process mspaint.exe
c:\users\ieuser\desktop\injectproc-master\injectproc-
master\x64\debug\mbox.dll 2018-08-31 14:13:48 56
4328 2144 2018-08-31 14:13:48 UTC+0000
5056

Table 1 - Remote DLL Injection Detection Testing Results

54

3.6 Testing conclusions

As shown in the results’ table, the idea for DLL injection detection works
satisfactory. In case there is an active DLL injection, the message is straightforward:
“Suspicious process” and the DLL is tracked down, as well as the corresponding
injected process, the thread that loaded the DLL and the injection process. This also
applies when there are more than one injected processes, as long as OneProcess
parameter is set to false.

The warnings like “"No Imported DIl found” or *No Loaded DlIs found”, together
with the corresponding executable name, may give the analyst a hint worth
investigating. The “No handle found” warning which also displays the full DLL name,
may help the analyst to recognize a suspicious DLL from its name or path. In general,
the warnings can lead to targeted search for information either from the memory
image or from other sources, such as the disk.

The proposed solution works only when the injected DLL is currently executing,
regardless whether the malware that performs the injection has been terminated. The
reason for that when the DLL has finished executing, the corresponding thread is
terminated. Information about the terminated thread cannot be retrieved by the
script, although there is information available for some terminated threads, such as
exit time. The same problem appears when the corresponding volatility plugins such
as timeliner, threads and thrdscan have been used in the aforementioned memory
images. This confirms that this is an issue that concerns the data available in the
memory rather than the code used. Only currently active processes and threads are
available in memory. In case of a DLL injection that happened in the past, an analyst
must gather information from both the memory and the disk of detect it. In the
context of this thesis, only memory is used, so this is justified problem.

3.7 Future Improvements

As already mentioned, FindDLLInj.py is executed inside Volatilitys’ volshell
plugin. The conversion of it into a new Volatility plugin is a good idea. Alongside, the
warning messages displayed by volshell environment such as the following could be
manipulated.

WARNING : volatility.debug : NoneObject as string: Invalid Address O0x7FF62B951D18,
instantiating String

WARNING : volatility.debug : NoneObject as string: Invalid offset 18446717726403732832
for dereferencing Buffer as String

WARNING : volatility.debug : NoneObject as string: Invalid Address Ox7FF7COC92A6E,
instantiating String

WARNING : volatility.debug : NoneObject as string: Invalid Address 0x00000000,
instantiating FILE OBJECT

The size of the _IMAGE_IMPORT_DESCRIPTOR, described in section Scan
processes” memory for IAT entries, is not defined by getting the object size from the
windows profile, but it is hardcoded. This means that the code may not work correctly

55

in another windows version with an altered object size. This problem could also be
solved by creating the plugin.

The script is tested only on Windows 10 system. It could be tested and in other
windows versions to see its correspondence. For Windows 8.1 the code should be
working exactly as it is, but for older versions a change should be made: LoadCount
DLL attribute should be used instead of ObsoleteLoadCount.

For now, a DLL is correlated with one or more threads associating its load time
with the thread creation time using a time window. This seems to work all right, but
maybe there is a more precise way to do the correlation that did not revealed within
this work. This involves greater deepen on the Windows objects and data structures
manipulating the threads.

As already referred, there is the case that the script is not able to reconstruct
the IAT (Import Address Table). This does not cause any false results because of the
other safeguards used and the worst scenario is the production of a false positive
result. The Volatility’s plugin impscan [18] creators claim that “the IAT may not
properly be reconstructed due to the high likelihood that one or more pages in the PE
header or IAT are not memory resident (paged). Thus, we created impscan. Impscan
identifies calls to APIs without parsing a PE's IAT.” It seems that this plugin could be a
good inspiration for creating a code that recreates IAT with certainty. In this case, the
comparison of the IAT list to the loaded DLL, could give definite results.

During the tests, it is observed that the script finds out less distinct handles
than the volatility command python vol.py -f <image file name> --
profile="Win10x64_14393" handles -t THREAD. Although this is not causing any false
positives or any overlooking DLL detection, it could lead to more warnings of type “No
handle found”.

56

4 Conclusion

This thesis focuses on the detection of two different process injection
techniques: Process Hollowing and Remote DLL Injection. For this purpose, these
techniques have been studied (meaning their concept and the source code of two
different injectors for each technique) and presented in detail. Injections were
performed in Windows 10 Virtual Machines, using different injector malware and
totally 15 memory images are acquired. Dynamic memory analysis was applied on the
memory images using Volatility’s Core plugins, downloaded plugins and custom-made
scripts executed inside the environment of volshell plugin. Either way, this document
could be used as an introduction to the Volatility Framework.

Process Hollowing is commonly used, so it has caused the interest of the
malware analyst. There is a lot of relevant literature, articles and posts. In the later
years, there have been created Volatility plugins dedicated for Process Hollowing
detection, so the creation of another plugin would not contribute to the analyst
community. In this thesis, the concept of Hollow Process Injection is described, as well
as the basic variations of it. The anomalies it causes in the memory and the possible
giveaways are analyzed through the proposed methodology of detection. This
methodology is performed using various test images and its results are confirmed.
After thorough research, it is believed by the author of this document, that this
methodology has incorporated and organized in distinct steps most of the current
literature, relevant articles on the web and research on the subject.

Regarding the Classic (or remote) DLL injection, a completely new methodology
of detection is proposed, verified, implemented and tested. This methodology does not
rely on standard DLL injection detection techniques, but on the fact that LoadLibrary
and CreateRemoteThread functions are used as well as on time sequence of events.
The key points of this detection approach are analyzed and the relative Windows Data
structures are visualized and explained. This alone could help those who wish to
deepen on these structures. The whole idea is implemented in a python script of
approximately 200 lines of code that can be executed inside Volatility’s volshell plugin
environment. The results of the script executed on 12 distinct memory images,
presented in the relative table, prove that the script works satisfactory, as reasoned in
Testing conclusions paragraph. A main improvement for the script could be its
conversion to a distinct Volatility plugin that can be independently called, not through
volshell. This issue is analyzed in Future Improvements.

57

5 References

[1] ENISA, Threat Landscape Report 2017, ENISA, published 15 January 2018, ISBN
978-92-9204-250-9, ISSN 2363-3050, DOI 10.2824/967192,
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017, last
accessed on 11 September 2018

[2] ENISA, ETL (ENISA Thread Landscape) Web based tool, ENISA,
https://etl.enisa.europa.eu/#/, last accessed on 11 September 2018

[3] Michael Sikorski and Andrew Honig, PRACTICAL MALWARE ANALYSIS, no starch
press, 2012, ISBN-10: 1-59327-290-1, ISBN-13: 978-1-59327-290-6

[4] Nwokedi Idika and Aditya P. Mathur, A Survey of Malware Detection Techniques,
February 2, 2007, downloaded from
https://www.researchgate.net/publication/229008321 A survey of malware detecti
on_techniques, last accessed on 11 September 2018

[5] Esan P. Pancha, Extraction of Persistence and Volatile Forensics Evidences from
Computer System, International Journal of Computer Trends and Technology (I1JCTT) -
volume4 Issue 5, May 2013, downloaded from http://ijcttjournal.org/Volume4/issue-
5/1JCTT-V4I5P1.pdf, last accessed on 11 September 2018

[6] Michael Hale Ligh, Andrew Case, Jamie Levy, AAron Walters, The Art of Memory
Forensics, Wiley, 2014, ISBN: 978-1-118-82499-3

[7] Hal Pomeranz, Detecting Malware with Memory Forensics, SANS Webcast, Oct
2012, http://www.deer-run.com/~hal/, last accessed on 11 September 2018

[8] Technopedia.com, Virtualization,
https://www.techopedia.com/definition/719/virtualization, last accessed on 11
September 2018

[9] vmwrare®, https://www.vmware.com/, last accessed on 11 September 2018

[10] Oracle, VirtualBox, https://www.virtualbox.org/, last accessed on 11 September
2018

[11] Microsoft, Hyper-V Technology Overview, https://docs.microsoft.com/en-
us/windows-server/virtualization/hyper-v/hyper-v-technology-overview, last accessed
on 11 September 2018

[12] Parallels, https://www.parallels.com/, last accessed on 11 September 2018

58

https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017
https://etl.enisa.europa.eu/#/
https://www.researchgate.net/publication/229008321_A_survey_of_malware_detection_techniques
https://www.researchgate.net/publication/229008321_A_survey_of_malware_detection_techniques
http://ijcttjournal.org/Volume4/issue-5/IJCTT-V4I5P1.pdf
http://ijcttjournal.org/Volume4/issue-5/IJCTT-V4I5P1.pdf
http://www.deer-run.com/~hal/
https://www.techopedia.com/definition/719/virtualization
https://www.vmware.com/
https://www.virtualbox.org/
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://www.parallels.com/

[13] WindowsSCOPE, Cyber Forensics 3.2,
http://www.windowsscope.com/windowsscope-cyber-forensics/, last accessed on 11
September 2018

[14] F-Response, https://www.f-response.com/ , last accessed on 11 September 2018

[15] GitHub, Awesome Incident Response, https://github.com/meirwah/awesome-
incident-response, last committed on 3 October 2018, last accessed on 10 October
2018

[16] Kali Tools, Volatility Package Description,
https://tools.kali.org/forensics/volatility, last accessed on 11 September 2018

[17] VOLATILITY FOUNDATION, Home Page, https://www.volatilityfoundation.org/,
last accessed on 11 September 2018

[18] GitHub, volatilityfoundation/volatility - Command Reference,
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference, last edited
on 22 April 2017, last accessed on 1 October 2018

[19] GitHub, volatilityfoundation/volatility,
https://aithub.com/volatilityfoundation/volatility, last accessed on 1 October 2018

[20] GitHub, volatilityfoundation/volatility - Volatility Documentation Project,
https://github.com/volatilityfoundation/volatility/wiki/Volatility-Documentation-
Project, last edited on 8 September 2015, last accessed on 1 October 2018

[21] Volatility Labs, https://volatility-labs.blogspot.com/, last accessed on 1 October
2018

[22] Ashkan Hosseini, , Ten Process Injection Techniques: A Technical Survey of
Common and Trending Process Injection Techniques, ENDGAME,
https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-
technical-survey-common-and-trending-process, last accessed on 1 October 2018

[23] Microsoft, Memory Management, https://docs.microsoft.com/en-
us/windows/desktop/Memory/memory-management, 31 May 2018, last accessed on 1
October 2018

[24] Tim Sneath, PDC10: Mysteries of Windows Memory Management Revealed: Part
One, Microsoft, uploaded on 28 October 2010,
https://blogs.msdn.microsoft.com/tims/2010/10/28/pdc10-mysteries-of-windows-
memory-management-revealed-part-one, last accessed on 1 October 2018

59

http://www.windowsscope.com/windowsscope-cyber-forensics/
https://www.f-response.com/
https://github.com/meirwah/awesome-incident-response
https://github.com/meirwah/awesome-incident-response
https://tools.kali.org/forensics/volatility
https://www.volatilityfoundation.org/
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility/wiki/Volatility-Documentation-Project
https://github.com/volatilityfoundation/volatility/wiki/Volatility-Documentation-Project
https://volatility-labs.blogspot.com/
https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-management
https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-management
https://blogs.msdn.microsoft.com/tims/2010/10/28/pdc10-mysteries-of-windows-memory-management-revealed-part-one
https://blogs.msdn.microsoft.com/tims/2010/10/28/pdc10-mysteries-of-windows-memory-management-revealed-part-one

[25] Mike Czumak, Windows Exploit Development - Part 1: The Basics, Security Sift,
written on December 6, 2013, https://www.securitysift.com/windows-exploit-
development-part-1-basics/, last accessed on 1 October 2018

[26] Mark Russinovich - David A. Solomon - Alex Ionescu, Windows® Internals Part 1
6t edition, Microsoft Press, 2012, ISBN: 978-0-7356-4873-9

[27] Matt Pietrek, Peering Inside the PE: A Tour of the Win32 Portable Executable File
Format, written on March 1994, https://msdn.microsoft.com/en-
us/library/ms809762.aspx, last accessed on 1 October 2018

[28] Microsoft, PE Format, https://docs.microsoft.com/en-
us/windows/desktop/Debug/pe-format, uploaded on 31 May 2018, last accessed on 1
October 2018

[29] INFOSEC Institute, The Import Directory: Part 1,
https://resources.infosecinstitute.com/the-import-directory-part-1/#gref, uploaded on
24 April 2013, , last accessed on 1 October 2018

[30] Matt Pietrek, , An In-Depth Look into the Win32 Portable Executable File Format,
msdn magazine, February 2002 issue, https://msdn.microsoft.com/en-
us/magazine/bb985992.aspx, , last accessed on 1 October 2018

[31] Wikipedia, Portable Executable,
https://en.wikipedia.org/wiki/Portable Executable, last accessed on 1 October 2018

[32] Microsoft, Thread Handles and Identifiers, https://docs.microsoft.com/en-
us/windows/desktop/procthread/thread-handles-and-identifiers, uploaded on 31 May
2018, last accessed on 1 October 2018

[33] Michael Hale Ligh - Steven Adair - Blake Hartstein - Matthew Richard, Malware
Analyst’s Cookbook and DVD, Wiley Publishing, Inc., 2011, ISBN: 978-0-470-61303-0

[34] GitHub, Process Hollowing, https://github.com/m0nOph1/Process-Hollowing, last
accessed on 1 October 2018

[35]_ Monmappa K.A., DETECTING DECEPTIVE PROCESS HOLLOWING TECHNIQUES
USING HOLLOWFIND VOLATILITY PLUGIN, 2016,
https://cysinfo.com/detecting-deceptive-hollowing-techniques/, last accessed on 1
October 2018

[36] Monnappa K.A., Understanding Evasive Hollow Process Injection techniques,
CYSINFO 11th Meetup, https://cysinfo.com/11th-meetup-understanding-evasive-
hollow-process-injection-techniques/, last accessed on 1 October 2018

60

https://www.securitysift.com/windows-exploit-development-part-1-basics/
https://www.securitysift.com/windows-exploit-development-part-1-basics/
https://msdn.microsoft.com/en-us/library/ms809762.aspx
https://msdn.microsoft.com/en-us/library/ms809762.aspx
https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format
https://resources.infosecinstitute.com/the-import-directory-part-1/#gref
https://msdn.microsoft.com/en-us/magazine/bb985992.aspx
https://msdn.microsoft.com/en-us/magazine/bb985992.aspx
https://en.wikipedia.org/wiki/Portable_Executable
https://docs.microsoft.com/en-us/windows/desktop/procthread/thread-handles-and-identifiers
https://docs.microsoft.com/en-us/windows/desktop/procthread/thread-handles-and-identifiers
https://github.com/m0n0ph1/Process-Hollowing
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/11th-meetup-understanding-evasive-hollow-process-injection-techniques/
https://cysinfo.com/11th-meetup-understanding-evasive-hollow-process-injection-techniques/
https://cysinfo.com/11th-meetup-understanding-evasive-hollow-process-injection-techniques/

[37] 00xsec, Userland API Monitoring and Code Injection Detection,
https://0x00sec.org/t/userland-api-monitoring-and-code-injection-detection/5565,
uploaded 21 February 2018, last accessed on 1 October 2018

[38] Jared Atkinson and Joe Desimone , Taking Hunting to the Next Level - Hunting in
Memory presentation, Endgame, SANS Institute Threat Hunting and IR Summit (April

2017), https://www.sans.org/summit-archives/file/summit-archive-1492714038.pdf,

last accessed on 1 October 2018

[39] Luis Rocha, Malware Analysis — Dridex & Process Hollowing,
https://countuponsecurity.com/2015/12/07/malware-analysis-dridex-process-
hollowing/, uploaded 07 December 2015, last accessed on 1 October 2018

[40] MITRE’s ATT&CK, Process Hollowing,
https://attack.mitre.org/wiki/Technique/T1093, last accessed on 1 October 2018

[41] GitHub, secrary/InjectProc, InjectProc - Process Injection Techniques,
https://github.com/secrary/InjectProc, latest commit on 24 March 2018, last accessed
on 1 October 2018

[42] John Leitch, Process Hollowing, http://www.autosectools.com/process-
hollowing.pdf, last accessed on 1 October 2018

[43] Eric Monti, Analyzing Malware Hollow Processes, Trustwave SpiderLabs® Blog,
https://www.trustwave.com/Resources/SpiderLabs-Blog/Analyzing-Malware-Hollow-
Processes/, last accessed on 1 October 2018

[44] Microsoft, Security identifiers, https://docs.microsoft.com/en-
us/windows/security/identity-protection/access-control/security-identifiers, uploaded
on 19 April 2018, last accessed on 1 October 2018

[45] Michael Hale Ligh, Stuxnet's Footprint in Memory with Volatility 2.0, MNIN
Security Blog, http://mnin.blogspot.com/2011/06/examining-stuxnets-footprint-in-
memory.html, uploaded on 3 June 2011, last accessed on 1 October 2018

[46] GitHub, community/DimaPshoul/,
https://github.com/volatilityfoundation/community/tree/master/DimaPshoul,
committed on 6 February 2017, , last accessed on 1 October 2018

[47] GitHub, threadmap plugin for Volatility Foundation,
https://github.com/kslgroup/threadmap, committed on 21 September 2017, last
accessed on 1 October 2018

[48], WIKIPEDIA, DLL injection, https://en.wikipedia.org/wiki/DLL injection, edited on
18 September 2018, last accessed on 1 October 2018

61

https://0x00sec.org/t/userland-api-monitoring-and-code-injection-detection/5565
https://www.sans.org/summit-archives/file/summit-archive-1492714038.pdf
https://countuponsecurity.com/2015/12/07/malware-analysis-dridex-process-hollowing/
https://countuponsecurity.com/2015/12/07/malware-analysis-dridex-process-hollowing/
https://attack.mitre.org/wiki/Technique/T1093
https://github.com/secrary
https://github.com/secrary/InjectProc
https://github.com/secrary/InjectProc
http://www.autosectools.com/process-hollowing.pdf
http://www.autosectools.com/process-hollowing.pdf
https://www.trustwave.com/Resources/SpiderLabs-Blog/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Analyzing-Malware-Hollow-Processes/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Analyzing-Malware-Hollow-Processes/
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/security-identifiers
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/security-identifiers
http://mnin.blogspot.com/2011/06/examining-stuxnets-footprint-in-memory.html
http://mnin.blogspot.com/2011/06/examining-stuxnets-footprint-in-memory.html
https://github.com/volatilityfoundation/community/tree/master/DimaPshoul
https://github.com/kslgroup/threadmap
https://en.wikipedia.org/wiki/DLL_injection

[49] Dejan Lukan, Using CreateRemoteThread for DLL Injection on Windows, INFOSEC
INSTITUTE,https://resources.infosecinstitute.com/using-createremotethread-for-dll-
injection-on-windows/, posted on 30 May 2013, last accessed on 1 October 2018

[50] WIKIPEDIA, Dynamic-link library, https://en.wikipedia.org/wiki/Dynamic-
link library, last edited on 28 September 2018, last accessed on 1 October 2018

[51] Microsoft, winnt.h header, https://docs.microsoft.com/en-
us/windows/desktop/api/winnt/, uploaded on 10 October 2018, last accessed on 10
October 2018

[52] Joachim Bauch, Loading a DLL from memory, https://www.joachim-
bauch.de/tutorials/loading-a-dll-from-memory/ , posted on 7 April 2010, last accessed
on 10 October 2018

[53] Mark E. Russinovich and David A. Solomon, Processes, Threads, and Jobs in the
Windows Operating System, The Microsoft Press Store by Pearson,
https://www.microsoftpressstore.com/articles/article.aspx?p=2233328&segNum=4,
uploaded on 17 June 2009, last accessed on 10 October 2018

[54] CodeMachine, Catalog of key Windows kernel data structures,
https://www.codemachine.com/article kernelstruct.html, last accessed on 10 October
2018

[55] GitHub, fdiskyou/injectAllTheThings,
https://github.com/fdiskyou/injectAllTheThings, latest commit on 21 Jul 2017, last
accessed on 10 October 2018

[56] GitHub, monnappa22/HollowFind, https://github.com/monnappa22/HollowFind,
Latest commit on 24 September 2016, last accessed on 10 October 2018

[57] Each Problem has An End, Difference between memdump, procexedump and
procmemdump command in volatality, http://akovid.blogspot.com/2014/02/volatality-
procexedump-and-memdump.html, Posted on 17 February 2014, last accessed on 1
October 2018

[58] Microsoft, https://docs.microsoft.com/en-us/windows/desktop/api/, last accessed
on 10 October 2018

[59] Mark Russinovich and Ken Johnson, LiveKd v5.62, Microsoft,
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd, published on 16 May
2017, last accessed on 1 September 2018

62

https://resources.infosecinstitute.com/using-createremotethread-for-dll-injection-on-windows/
https://resources.infosecinstitute.com/using-createremotethread-for-dll-injection-on-windows/
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/Dynamic-link_library
https://docs.microsoft.com/en-us/windows/desktop/api/winnt/
https://docs.microsoft.com/en-us/windows/desktop/api/winnt/
https://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/
https://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/
https://www.microsoftpressstore.com/articles/article.aspx?p=2233328
https://www.microsoftpressstore.com/articles/article.aspx?p=2233328
https://www.microsoftpressstore.com/articles/article.aspx?p=2233328&seqNum=4
https://www.codemachine.com/article_kernelstruct.html
https://github.com/fdiskyou/injectAllTheThings
https://github.com/monnappa22/HollowFind
http://akovid.blogspot.com/2014/02/volatality-procexedump-and-memdump.html
http://akovid.blogspot.com/2014/02/volatality-procexedump-and-memdump.html
https://docs.microsoft.com/en-us/windows/desktop/api/
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd

[60] Geoff Chappel, Win32 NTDLL structures LDR_DATA_TABLE_ENTRY,
https://www.geoffchappell.com/studies/windows/win32/ntdll/structs/Idr data table e
ntry.htm, Last updated on 2 October 2018, last accessed on 10 October 2018

[61] Microsoft, LoadLibrary and AfxLoadLibrary, https://msdn.microsoft.com/en-
us/library/zzk20sxw.aspx, last accessed on 10 October 2018

63

https://www.geoffchappell.com/studies/windows/win32/ntdll/structs/ldr_data_table_entry.htm
https://www.geoffchappell.com/studies/windows/win32/ntdll/structs/ldr_data_table_entry.htm

6 Appendix
6.1 Hollow process injection and detection examples

6.1.1Injection Using InjectProc project

Here it is described how the injection is performed in the Virtual Machine using the
source code found in InjectProc project [41]. It is also shown how the information
needed for the verification of the methodology is gained. The acquired memory image
is called MSEdge - Win10_preview-eaaa27c2-onreplNew.vmem

At first, notepad.exe is opened, which is used as a reference for the injected instance.
The command for the injection is shown below, as well the result of the injected
mbox.exe (the pop up window).

luation

) 930 AM
9 = o0ms

64

Using Process Hacker, the process id of the legitimate notepad.exe (pid 6400) and the
injected one (pid 7284) was found out.

1% Process Hacker [MSEDGEWIMN10M EUser]

Hacker View Tools Users Help

Processes Services Metwork Disk

% Refresh {7} Options | #8 Find handles or DLLs &% System information | O& X

- O X

Search Processes (Ctrl+K) 0

Description

NT Kernel 8 System
Windows Session Manager

Interrupts and DPCs

Client Server Runtime Process
Windows Start-Up Application
Client Server Runtime Process
Windows Logon Application
Desktop Window Manager
Windows Explorer

Windows Defender notificatio...
Vhiware Tools Core Service

Process Hacker

Motepad

Windows Command Processor
Console Window Host
Console Window Host

E notepad.exe 7284

Mame PID CPU I/Ototal.. Privateb.. Username
~ [15] System Idle Process 0 6588 0 NT AUTHORITY\SYSTEN
~ [15] Systern 4 521 128 kB NT AUTHORITY\SYSTEM
[2=] smss.exe 296 364 kB
[#E] Memory Cornpression 1368 396 kB
[Interrupts 5.59 0
[25] csrss.exe 392 002 1.36 MB
» [B] wininit.exe 464 440 kB
(5] csrss.exe 472 003 1.32MB
v [15 winlogen.exe 340 1.68 MB
(] dwm.exe 832 012 43.08 MB
¥ 'm explorer.exe 3544 0.67 3691 MEB MSEDGEWIN1ONEUser
Ha MSASCuil.exe 5364 294 MEB MSEDGEWINTMNEUser
@ vmtoolsd.exe 5404 033 836B/s 17.59MB MSEDGEWINT0\EUser
| “E
%8| ProcessHacker.exe 7504 1.51 151 MB MSEDGEWIN10NEUser
E notepad.exe 5400 2.33MB MSEDGEWINTONEUser
~ BN cmd.exe 6224 1.56 MB MSEDGEWINTONEUser
B conhost.exe 6660 567 MB MSEDGEWINT0YEUser
BN conhost.exe 3806 019 4,85 MB
[85] sshd.exe 3943 5 MEBE
[9% MpCrdRun.exe 2.00 MB

1.239MB MSEDGEWINTO\EUser

Microsoft Malware Protecticn...

Motepad

CPU Usage: 34.12% Physical memony: 2.15 GB (53.64%) Processes: 81

The general properties for the legitimate process are:

j notepad.exe (8400) Properties

General Statistics Performance Threads Token Modules Memory Enwironment Handles GPU
File
j Motepad
"./ Microsoft Corporation

Version: 10.0.14393.0

Image file name:

Comment

‘ C:\windows\System32\notepad. exe

Process

Command line: | "Ci\windows\system32\NOTEPAD.EXE" C:\Jsers\IEUser\Desktop\soter. et

Current directory: | C:\Users\[EUser\Desktop),

Started: [33 seconds ago (10:26:15 AM 3/27/2018) |
PEB address: | 0x9e485cf000 | Image type: 54-bit
Parent: | explorer,exe (3544) ‘ b
Mitigation policies: | DEP (permanent); ASLR (high entropy); CF Guard | Details

Protection: Nene

Permissions Terminate

65

and for the malicious one are:

File

j notepad.exe (6400) Properties

'“] MNotepad
- Microsoft Corporation
Version: 10.0.14333.0

Image file name:

General Statistics Performance Threads Token Modules Memory Environment Handles GPU

Comment

| C:\Windows\System32\notepad.exe

Process

Started:

Parent:

Command line:

PEB address:

Mitigation policies

‘ “C:\Windows \system32\NOTEPAD.EXE” C: \Users\IEUser\Desktop\soter. txt

Current directory: ‘ C:\Users\IEUser\Desktopl

‘ 38 seconds ago (10:26:15 AM 3/27/2018)

[oxe485cfonn

| Image type: &4-bit

‘ explorer.exe (3544)

| 3

i ‘ DEF (permanent); ASLR (high entropy); CF Guard

| | petails

Protection: None

Permissions Terminate

Both processes use 0x7ff6f3070000 as base address.

The different memory

characteristics are demonstrated bellow and are consistent with the ones described in
Methodology of Detection section.

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment
Hide free regions Strings... Refresh
Base address Type Size Protect... Use
Ox7Fffef2es0000 Mapped 1,024kB R
OxFffaf2fan0on Mapped 140kE R
~ Ox7fef3070000 Image 260kE WCX C:\Windows\System32\notepad. exe
OxFHEf3070000 Image: Commit 4kB R C\Windows\System32\notepad. exe
OxFHGEF3071000 Image: Commit 100kE RX Cr\Windows\System32\notepad. exe
Ox7ffaf308a000 Image: Commit 32kB R C\Windows'\System32\notepad. exe
Ox7ffaf3092000 Image: Commit 12kB RW Co\Windows'\System32\notepad. exe
Ox7ffaf3095000 Image: Commit 112kB R CoWindows\System 32 \notepad. exe
Ox7ffdd7d90000 Image o6 kB WWCK C\Windows\System32\efawrt. dll
| notepad.exe (7284) Properties - O *
General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment
Hide free regions Strings. .. Refresh
Base address Type Size Protect... Use 2
Ox7dfsffib00oo Mapped 2,147,483,... MNA
0w 7ffaf2e20000 Mapped 1,024k R
OxFffaf2f20000 Mapped 140kE R
~ Ox7ffef3070000 Private 120kB RWX
Ox 753070000 Private: Commit 4kB RWX
Ox7ffef3071000 Private: Commit 4kB RX
Ox7af3072000 Private: Commit 4k R
Ox7ffaf3073000 Private: Commit 4kB RWX
Ox7ffaf3074000 Private: Commit 104kE R
0% 7ffde 2750000 Image aagke WX CAWindows\System 32\weruntime 14, ..
Ox7ffde4f20000 Image 2,536 kB WCX C\Windows\WinSxS'amde4_microso...
Ox7ffdead00000 Image 152k WCX Cr\Windows\System32\dwmapi. dil
Ox7ffdeb 1foo0o Image 596 kB WCX C:\Windows\System 32\uxtheme. dil

66

The other characteristics such as priority and environment variables, are similar:

CommonProgramFiles
CommonProgramFiles{x86)

C:'Program Files\Common Files
C:'Program Files (x86)\Common Files

CommonProgramFiles
CommonProgramFiles(x86)

_| notepad.exe (6400) Properties | notepad.exe (7284) Properties
General Statistics performance Threads Token Modules Memary Environmel General Statistics Performance Threads Token Modules Memery Environment|
CPu 1j0 CPU Ijo
Priority 8 Reads 1 Priority 8 Reads 1
Cydles 3,210,468,590 Read bytes B0B Cydes 266,163,330 Read bytes 608
Kernel ime 00:00:01.281 Writes 1] Kernel time 00:00:00.062 Writes 1]
User time 00:00:00.062 Write bytes 0 User time 00:00:00.000 Write bytes 0
Total ime 00:00:01.343 Other 127 Total time 00:00:00.062 Other 42
Other bytes 5186 Other bytes 438
Memory 1/ priority Mormal Memary 1/0 priority Normal
Private bytes 2.32MB Private bytes 1.29 MB
Peak private bytes 267Mp | Other Peak private bytes 1.35Mg Other
Virtual size a1p Handes 185 Virtual size 21g Handes 58
Peak virtual size 2T Peak handles 185 Peak virtual size 278 Peak handles 68
Page faults 4,000 GDI handles 24 Page faults 1,979 GDI handles 16
Werking set 14.84mp USER handles = Working set 7.26M USER handies 12
Private WS 1.57MB Private W5 976 ke
Shareable W5 13.27MB shareable WS 6.31MB
Shared W5 12,58 MB Shared W5 6.25MB
Peak working set 14,91 MB Peak working set 7.29MB
Page priority Mormal Page priority Normal
Nj notepad.exe (6400) Properties Mj notepad.exe (7284) Properties
General Statistics Performance Threads Token Modules Memory Environment General Statistics Performance Threads Token Modules Memory Environment
=
Name Value Name Value
ALLUSERSPROFILE C:'\ProgramData ALLUSERSPROFILE C:\ProgramData
APPDATA C:\Users\IEUser \AppData'Roaming APPDATA C:\Users\IEUser \AppData'Roaming

C:\Program Files\Commeon Files
C:\Program Files (x86)Common Files

CommonProgramWg432 C:YProgram Files\Common Files CommonProgramW6432 C:\Program Files\Commeon Files

COMPUTERNAME MSEDGEWIN10 COMPUTERNAME MSEDGEWIN 10

ComSpec C:\Windows\system32\cmd.exe ComSpec Ci'\Windows\system32\cmd.exe

CYGWIN mintty CYGWIN mintty

FPS_BROWSER_APP_PR Internet Explorer FPS_BROWSER_APP_PR... Internet Explorer

FPS_BROWSER _USER_P... Default FPS_BROWSER_USER_P... Default

HOMEDRIVE [oH HOMEDRIVE C:

HOMEPATH \Users\IEUser HOMEPATH Wsers\[EUser

LOCALAPPDATA C:\Users\IEUser \AppDataiLocal LOCALAPPDATA C:\Jsers\[EUser \AppData'Local

LOGONSERVER VWMSEDGEWIN10 LOGONSERVER WMSEDGEWIN10

NUMBER._OF_PROCESS... 2 NUMBER_OF_PROCESS... 2

OneDrive C:\Users\IEUser \OneDrive OneDrive C:\Jsers\IEUser \CneDrive

05 Windows_NT 05 Windows_NT

Path C:\Windows\system32;C: \Windows; C: \Windows\System 32| Path Ci\Windows\system32;C: \Windows; C: Windows\System 32|
PATHEXT .COM; .EXE; BAT;.CMD;.VBS; . VBE;.15; JSE; . WSF;. WSH; M5 PATHEXT .COM; EXE; .BAT;.CMD; VBS; VBE; . J5;. J5E; . WSF;. WSH; M3

PROCESSOR_ARCHITEC...

PROCESSOR _IDENTIFIER
PROCESSOR_LEVEL
PROCESSOR_REVISION
ProgramData
ProgramFiles
ProgramFiles(x86)

AMD&4

Intel&4 Family & Model 73 Stepping 3, Genuinelntel
[

4203

C:'\ProgramData

C:YProgram Files

C:YProgram Files (x86)

PROCESSOR_ARCHITEC...
PROCESSOR _IDENTIFIER
PROCESSOR_LEVEL
PROCESSOR _REVISION
ProgramData

ProgramFiles
ProgramFiles{x88)

AMDE4

Intel64 Family & Model 78 Stepping 3, Genuinelntel
6

4e03

C:\ProgramData

C:\Program Files

C:\Program Files (x88)

Program\W/6432 C:\Program Files Program\W6432 C:\Program Files

PSModulePath C:'\Program Files\WindowsPowerShelWodules; C: \Windows' FROMPT SPSG

PUBLIC C:UsersiPublic PSModulePath C:\Program Files\WindowsPower Shell\Modules; C: \Windows
SESSIONNAME Console PUBLIC C:\Users\Public

SystemDrive C: SESSIONNAME Console

SystemRoot C:\Wwindows SystemDrive Ci

TEMD 1M learelTEl lear} AnnMatall arsliTamn ZuctemD nnt £ Wlindnue

67

6.1.21Injection Detection on InjectProc memory image

After acquisition of the memory

onrepINew.vmem, described
detection. Following the steps described in Methodology of Detection, the results are:

Process Listing

in the previous paragraph,

image MSEdge - Winl0_preview-eaaa27c2-

it follows the injection

root@kali: # python vol.py -f /media/sf Shared/KALI/"MSEdge - Winl® preview-eaaa27c2-onreplNew.vmem" --profile="Winl@x64 14393"
pslist
Volatility Foundation Volatility Framework 2.6
Offset (V) Name PID PPID Thds Hnds Sess Wow64 Start Exit
Oxffffac87906b3500 System 4 0 124 8 2018-83-27 17:04:52 UTC+0000
Oxffffac8791dbcbcd smss.exe 296 4 2 8 2018-83-27 17:04:52 UTC+0000
OxTfffac8792844088 csrss.exe 392 384 12 (%] 0 2018-83-27 17:05:20 UTC+0000
Oxffffac879294f080 smss.exe 456 296 [1 6 2018-03-27 17:05:20 UTC+0000
0xffffac879289e080 wininit.exe 464 384 1] (] 6 2018-03-27 17:05:20 UTC+0000
0xffffac879296e080 csrss.exe 472 456 11] 1 6 2018-03-27 17:05:20 UTC+0000
oxffffac8792a6a440 winlogon.exe 540 456 2] 1 0 2018-03-27 17:05:20 UTC+0000
Oxffffac8792a935c0 services.exe 592 464 6]] 8 2018-83-27 17:05:20 UTC+0000
Oxffffac8792a89080 lsass.exe 600 464 7]] 8 2018-83-27 17:05:21 UTC+0000
Oxffffac8792b39800 svchost.exe 684 592 23]] 8 2018-83-27 17:05:21 UTC+0000
OxTfffac8792b35880 svchost.exe 736 592 9 (%] (%] 0 2018-83-27 17:05:22 UTC+0000
Oxffffac8792b73080 dwm.exe 852 540 13] 1 6 2018-03-27 17:05:22 UTC+0000
0xffffac8792b9c400 svchost.exe 880 592 16]] 6 2018-03-27 17:05:22 UTC+0000
Oxffffac8792b8f3cO svchost.exe 904 592 76]] 6 2018-03-27 17:05:22 UTC+0000
Oxffffac8792b2b800 svchost.exe 924 592 19]] 8 2018-83-27 17:05:22 UTC+0000
Oxffffac8792b27800 svchost.exe 460 592 24]] 8 2018-83-27 17:05:23 UTC+0000
Oxffffac8792b25800 vmacthlp.exe 828 592 1]] 8 2018-83-27 17:05:23 UTC+0000
Oxffffac8792b23800 svchost.exe 936 592 33 0 0 0 2018-03-27 17:05:23 UTC+0000
[snip]
Oxffffac879574c800 MpSigStub.exe 7112 6124 2]] 8 2018-03-27 17:17:53 UTC+00080
N FFFF2r0TN11T~A20 +aclhnactie Ava TR0 nnAa (3 n 1 N_INIe N2 27 17.20.27 _1ITC A0A0
Oxffffac879425e080 notepad.exe 6400 3544 2] 1 8 2018-03-27 17:26:15 UTC+0000
Oxffffac87971ecB800 cmd.exe 6224 3544 1] 1 8 2018-03-27 17:44:40 UTC+0000
Oxffffac87910a3080 conhost.exe 6660 6224 5 %] 1 0 2018-03-27 17:44:41 UTC+0000
Oxffffac87914d6080 notepad.exe 7284 5352 1] 1 6 2018-03-27 17:46:25 UTC+0000
0xffffac8793980640 WniPrvSE.exe 6288 684 11]] 6 2018-03-27 17:53:09 UTC+0000
Oxffffac8799340800 cmd.exe 3160 1928 [(] 6 2018-03-27 17:58:18 UTC+0000
Oxffffac87977bf200 conhost.exe 6248 3160 3 (] (] 6 2018-03-27 17:58:12 UTC+0000
Oxffffac87977a1080 ipconfig.exe 5760 3160 0 --------] 6 2018-03-27 17:58:13 UTC+0000

Dynamic Link Library Listing

python vol.py -T /media/sf Shared/KALI/"MSEdge - Winl@ preview-eaaa27c2-onreplNew.vmem" --profile="WinlOx64 14393"

LoadCo

unt

s o ks e e e e s o e s s ok ok e o s o ok s sk ok s o s ok o ok s ok sk o s ok o s o ok sk sk sk ok s ok ks sk ok sk ok ok ok

P

root@kali:

dlllist -p 7284

olatility Foundation Volatility Framework 2.6
notepad.exe pid: 7284

Command line : "C:\Windows\System32\notepad.exe"
Base Size
0x00007Ff6T3070000 0x1e000
0x00007ffdf04c0000 8x1d2000
0x00007ffdef620000 0xac000
0x00007ffdecb70000 8x21d000
0x00007ffdedb60000 8x165000
0x00007ffdecd90000 0x1e000
0x00007ffdefab0000 0x34000
0x00007ffded700000 8x180000
0x00007ffded5a0000 0xf5000
0x00007ffde2750000 0x16000
0x00007ffdefaddoe00 0x2e000
0x00007ffdebl 0000 0x95000
0x00007ffdef730000 0x9e000
0x00007ffdef350000 6x2c8000
0x00007ffdefcbfOOO 6x121000
0x00007ffdecdbfOOO 0x6a000
0x00007ffdedcde0O 8x15a000
0x00007ffdefaedOOO 0x59000
0x00007ffdefbefOOO 0xbf0e0
0x00007ffded500000 0x9c0080
0x00007ffdead0o000 0x26000
0x00007ffded 20000 8x27a000
one_42151e83c686086b\comctl32.d1l
0x00007ffdec990000 0xfoe0
0x00007ffdec9cBOOO 0xa%000

ath

:\Windows\System32\notepad.exe
:\Windows\SYSTEM32\ntd1ll.d1l1l
:\Windows\System32\KERNEL32.DLL
:\Windows\System32\KERNELBASE.d11
:\Windows\System32\USER32.d11
:\Windows\System32\win32u.d1l
:\Windows\System32\GDI32.d1l1
:\Windows\System32\gdi32full.dll
:\Windows\System32\ucrtbase.dll
:\Windows\System32\VCRUNTIME146.d11
:\Windows\System32\IMM32.DLL
:\Windows\system32\uxtheme.d1l
:\Windows\System32\msvcrt.dll
:\Windows\System32\combase.dll
:\Windows\System32\RPCRT4.d11
:\Windows\System32\bcryptPrimitives.dll
:\Windows\System32\MSCTF.d11
:\Windows\System32\sechost.dll
:\Windows\System32\0LEAUT32.d11
:\Windows\System32\msvcp win.dll
:\Windows\system32\dwmapi.dll
:\Windows\Win5x5\amd64_microsoft.windows.common-controls_6595b64144ccfldf_6.0.14393.953_n

:\Windows\System32\kernel.appcore.dll
:\Windows\System32\SHCORE.d1l

68

Virtual Address Descriptor information

root@kali:
pid: 7284

ad Type: VadNone

python vol.py -T /media/sf Shared/KALI/"MSEdge - Winl® preview-eaaal/c2-onreplNew.vmem" --profile="Winl@xb4 14393"
vadinfo -p 7284 --addr=0x00007ff673071600
olatility Foundation Volatility Framework 2.6

P sk s o sk s ok o o ok s o ok s ok o o oK o o ok o o ok S ok o S oK o o oK o o ok S oK K oK o o oK o o ok ok R K oK R o Kk o

AD node @ Oxffffac879182d1a0 Start 0x00007ff6T3070000 End 0x00007Tf6f308dfff Tag VadS
Flags: PrivateMemory: 1, Protection: 6
Protection: PAGE EXECUTE READWRITE

Module linked lists and VAD

root@kali: # python vol.py -f /media/sf Shared/KALI/"MSEdge - Winl® preview-eaaa27c2-onreplNew.vmem" --profile="Winl0x64 14393"
ldrmodules -p 7284
Volatility Foundation Volatility Framework 2.6
Pid Process Base InLoad InInit InMem MappedPath
7284 notepad.exe 0x00007ffdef620000 True True True \Windows\System32\kernel32.dll
7284 notepad.exe 0x00007ffdecd90000 True True True \Windows\System32\win32u.dll
7284 notepad.exe 0x00007fTded500000 True True True \Windows\System32\msvcp_win.dll
7284 notepad.exe 0x00007ffdedb60000 True True True \Windows\System32\user32.dll
7284 notepad.exe 0x000077fdec990000 True True True \Windows\System32\kernel.appcore.dll
7284 notepad.exe 0x00007ffdecdb@0@O True True True \Windows\System32\bcryptprimitives.dll
7284 notepad.exe 0x00007ffdefbe@@BO True True True \Windows\System32\oleaut32.dll
7284 notepad.exe 0x00007ffdeb1f0000 True True True \Windows\System32\uxtheme.dll
7284 notepad.exe 0x00007ffdefad0000 True True True \Windows\System32\imm32.dll
7284 notepad.exe 0x00007ffdf04c0000 True True True \Windows\System32\ntdll.dll
7284 notepad.exe 0x00007fTdead00000 True True True \Windows\System32\dwmapi.dll
7284 notepad.exe 0x00007T7def730000 True True True \Windows\System32\msvcrt.dll
7284 notepad.exe 0x00007ffdef350000 True True True \Windows\System32\combase.dll
7284 notepad.exe 0x00007ffdecb70000 True True True \Windows\System32\KernelBase.dll
7284 notepad.exe 0x00007TTded4f20000 True True True \Windows\WinSxS\amd64 microsoft.windows.common-controls 6595b64144ccfldf 6.0.1
4393.953_none_42151e83c686086b\comct132.d11
7284 notepad.exe 0x00007ffdec9cO000 True True True \Windows\System32\SHCore.dll
7284 notepad.exe 0x00007ffdefadfOO® True True True \Windows\System32\gdi32.dll
7284 notepad.exe 0x00007f7de2750000 True True True \Windows\System32\vcruntimel40.dll
7284 notepad.exe 0x00007ffded5a@000 True True True \Windows\System32\ucrtbase.dll
7284 notepad.exe 0x00007ffdefcb@@OO True True True \Windows\System32\rpcrt4.dll
7284 notepad.exe 0x00007ffdedcd@@@O True True True \Windows\System32\msctf.dll
7284 notepad.exe 0x00007ffdefacB000 True True True \Windows\System32\sechost.dll
7284 notepad.exe 0x00007ffded700000 True True True \Windows\System32\gdi32full.dll

Checking memory permissions

root@kali:
malfind -p 7284

python vol.py -f /media/sf Shared/KALI/"MSEdge - Winl® preview-eaaa27c2-onreplNew.vmem" --profile="WinlGx64 14393"

olatility Foundation Volatility Framework 2.6
Process: notepad.exe Pid: 7284 Address: 0x7ff6f3070000
ad Tag: VadS Protection: PAGE EXECUTE READWRITE
Flags: PrivateMemory: 1, Protection: 6

Ox7TT6T3070000
Ox7TT6T3070010
0x7ff63070020
Ox7TF6T3070030

4d 5a 90 00 03 00 00 00 04 00 GO 00 ff ff 00 0 MZ..
b8 00 00 60 0O 00 0O 00 40 00 0O 00 GO 00 0O 0O
00 00 00 00 0O 0P 0O 0P GO OO GO0 00 GO0 0O 0O 0O
00 00 00 00 0O OO 0O 0P GO OO GO0 00 08 O1 GO 0O

0xf3070000 4d
0xT3070001 S5a
0xT3070002 90
0xf3076003 0003
0xT3070005 0000
0xT3070007 000400
0xf307608a 0000
Oxf307000c T
@xf307000d TTOO

0xT3070015 0000
0xT3070017 004000
0xf307601a 0000
0xT307001c 0000
0xT307001e 0000
0xT3070020 0000
0xT3070022 0000
0xT3070024 0000
0xT3070026 0000
0xT3070028 0000
0xT307002a 0000
@xT307002c 0000
0xT307002e 0000
0xT3070030 0000
0xT3070032 0000
0xT3070034 0000
0xT3070036 0000
0xT3070038 0000
0xT307003a 0000
0xT307003c 0801
0xT307003e 0000

OxT3076000F 80bBROOEOOAO

DEC EBP

POP EDX

NOP

ADD [EBX], AL
ADD [EAX], AL
ADD [EAX+EAX], AL
ADD [EAX], AL
DB Oxff

INC DWORD [EAX]
ADD [EAX+0x8], BH
ADD [EAX], AL
ADD [EAX+0x8], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
ADD [EAX], AL
OR [ECX], AL
ADD [EAX], AL

69

Hollowfind plugin

In this step, it seems to be a problem with hollowfind plugin.

root@kali: # python vol.py -f "/media/sf Shared/KALI/MSEdge - Winl® preview-eaaa27c2-onreplNew.vmem" --profile=Winl0Ox64 14393
hollowfind
Volatility Foundation Volatility Framework 2.6
Traceback (most recent call last):
File "vol.py", line 192, in <module>
main()
File "vol.py", line 183, in main
command.execute()
File "/usr/lib/python2.7/dist-packages/volatility/commands.py", line 147, in execute
func(outfd, data)
File "/usr/lib/python2.7/dist-packages/volatility/plugins/hollowfind.py"”, line 206, in render_text
for (hol_proc_peb_info, hol_proc_vad info, hol_pid, hol_type, similar_procs, parent_proc_info) in data:
File "/usr/lib/python2.7/dist-packages/volatility/plugins/hollowfind.py", line 179, in calculate
self.update proc peb info(psdata)
File "/usr/lib/python2.7/dist-packages/volatility/plugins/hollowfind.py"”, line 50, in update proc peb info
self.proc peb info[pid].extend([str{proc_cmd line),
UnboundLocalError: local variable 'proc cmd line' referenced before assignment

Extracting executables, Comparing executables sizes

root@kali: # mkdir Winl@_ repl_new

root@kali: # python vol.py -f /media/sf Shared/KALI/"MSEdge - Winl® preview-eaaa27c2-onreplNew.vmem" --profile="Winl@x64 14393"
procdump -p 7284 -D Winl® repl new

olatility Foundation Volatility Framework 2.6

Process (V) ImageBase Name Result
0xffffac87914d6080 0x00007ff6f3070000 notepad.exe 0K: executable.7284.exe
root@kali: # python vol.py -f /media/sf Shared/KALI/"MSEdge - Winl® preview-eaaa27c2-onreplNew.vmem" --profile="Winl@x64 14393"

procdump -p 6400 -D Winl® repl new
olatility Foundation Volatility Framework 2.6

Process(V) ImageBase Name Result
OxffffacB879425e080 OxPPOO7Tf6f3070000 notepad.exe 0K: executable.6400.exe
root@kali: # 1s -a -1 Winl@_repl_new

total 360

drwxr-xr-x 2 root root 4096 Oct 1 13:13

drwxr-xr-x 14 root root 12288 Oct 1 13:04

-rw-r--r-- 1 root root 243200 Oct 1 13:13 executable.6400.exe
-rw-r--r-- 1 root root 104448 Oct 1 13:08 executable.7284.exe I
Malfofind

root@kali: # python vol.py -T /media/sf_Shared/KALI/"MSEdge - Winl@_preview-eaaa27c2-onreplNew.vmem" --profile="Winl0Ox64 14393"
malfofind

olatility Foundation Volatility Framework 2.6

Process: notepad.exe Pid: 7284 Ppid: 5352

IAdddress: @x7ff6f3070000 Protection: PAGE_EXECUTE_READWRITE
Initially mapped file object: C:\Windows\System32\notepad.exe
Currently mapped file object: None

Ox7ff6f3070000 4d 5a 90 00 03 00 00 00 04 00 60 B0 ff ff 00 0O
Ox7ff6T3070010 b8 60 60 OO 00 66 A0 00 40 00 00 60 00 06 06 0O
Ox7ff6T3070020 00 60 60 00 00 66 A0 00 06 0O 00 B0 00 06 06 00
0x7ff6T3070030 00 00 6O OO 0O 60 00 OO OO 00 00 80 08 O1 0O 0O
0xf3870800 4d DEC EBP

0xf3070001 S5a POP EDX

0xf3070002 90 NOP

0xf3070003 0003 ADD [EBX], AL

0xf3070005 0000 ADD [EAX], AL

0xf3070007 000400 ADD [EAX+EAX], AL

6xf307000a 0000 ADD [EAX], AL

0xf307000c ff DB Oxff

xf307000d 0O INC DWORD [EAX]

0xf307000f 00b8OOBOROOA ADD [EAX+0x8], BH

0xf3070015 0000 ADD [EAX], AL

OxT3070017 004000 ADD [EAX+0x8], AL

0xf307001a 0000 ADD [EAX], AL

6xf387001c 0000 ADD [EAX], AL

0xf307001e 0000 ADD [EAX], AL

0xf3070020 0000 ADD [EAX], AL

0xf3070022 0000 ADD [EAX], AL

0xf3070024 0000 ADD [EAX], AL

0xf3070026 0000 ADD [EAX], AL

0xf3070028 0000 ADD [EAX], AL

0xf307002a 0000 ADD [EAX], AL

0xf307002c 0000 ADD [EAX], AL

OxT387082e 0000 ADD [EAX], AL

0xf3070030 0000 ADD [EAX], AL

6xf3870032 0000 ADD [EAX], AL

0xf3070034 0000 ADD [EAX], AL

0xf3070036 0000 ADD [EAX], AL

0xf3870838 0000 ADD [EAX], AL

6xf307003a 0000 ADD [EAX], AL

©xf387003c 0801 OR [ECX], AL

0xf307003e 0000 ADD [EAX], AL

70

Threadmap plugin

root@kali: # python vol.py -f /media/sf Shared/KALI/"MSEdge - Winl® preview-eaaa27c2-onreplNew.vmem" --profile="Winl®x64 14393"
threadmap
olatility Foundation Volatility Framework 2.6

Thread Map Information:

fraceback (most recent call last):
File "vol.py", line 192, in <module>
main()
File "vol.py", line 183, in main
command . execute()
File "/usr/lib/python2.7/dist-packages/volatility/commands.py", line 147, in execute
func(outfd, data)
File "/usr/lib/python2.7/dist-packages/volatility/plugins/threadmap.py”, line 537, in render_text
suspicious_thread_in_process in data:
File "/usr/lib/python2.7/dist-packages/volatility/plugins/threadmap.py”, line 498, in calculate
if vad.u.VadFlags.VadType.v() '= IMAGE_FILE_TYPE:
File "/usr/lib/python2.7/dist-packages/volatility/obj.py", line 751, in _ getattr_ _
return self.m(attr)
File "/usr/lib/python2.7/dist-packages/volatility/obj.py", line 733, in m
raise AttributeError("Struct {@} has no member {1}".format(self.obj name, attr))
RttributeError: Struct MMVAD has no member u

6.1.3 Injection Using Process Hollow project

The following screenshot shows how Process Hollow projects’ executable is used and
its effect.

Activation: Hello World

For Windows 7, 8, 8.1 and 10 virtual mac ect to the Internet i
the trial. In most cases, activatio ally after a few min

Hello World L

also enter "slmgr fato" from an d prompt. This will
For Windows Vista, you have 30 days aft
For Windows XP, you have 30 days after

3 toast notification |

InjectProc-... i F
IS minutes after boot stating the d 3y).

71

6.2 A DLL injection testing example

6.2.1 Gathering useful information from Virtual Machines

This paragraph shows how useful information in a running virtual machine was
retrieved to check that the code works correctly, as described in Testing Environment.
The corresponding memory image taken is InjectAllThings_before_ok.vmem.

The following image shows how the malicious process is called (through command
prompt window) and that the corresponding window (InjectAll The Things) is shown.
The injected process is notepad.exe and the loaded DLL is dlimain.dll

Hacker View Tools Users Help
%Refresh .4 Options | E8 Find handles or DLLs MSystem information ‘ = ,_d b 4 Search Processes (Ctrl+K)

Processes Services Metwork Disk

MName CPU I/Qtotal.. Privateb.. Username Description
~ [55] wininit.exe 113 MB Windows Start-Up Application
~ [55] services.exe . 3.49 MB Services and Controller app

Inject &1l The Things! X

Process attach!

[5] dilhost.exe 1.95MB MSEDGEWINTONEUser
[#] svchost.exe 4.6 MB
v [¥] svchost.exe 14.86 460.09 kB.. 25559 MB
[&] sihost.exe 4.22MB MSEDGEWIN1ONEUser
[=] taskhostw.exe 5.82MB MSEDGEWINTONEUser Host Process for Windows Tas...
[¥] svchost.exe 980 E 51.36 MB Host Process for Windows Ser...
[¥] svchost.exe 983 17.23 MB Host Process for Windows Ser...
[5] svchost.exe 996 13.22 MB Host Process for Windows Ser...
[svchost.exe 824 10.27 MB Host Process for Windows Ser...
[#] vmacthlp.exe 1108 1.34 MB WMware Activation Helper
[&] svchost.exe 1152 6.43 MB Host Process for Windows Ser...
[] svchost.exe 1416 1.79 MB Host Process for Windows Ser...

=

CPU Usage: 30.36% Physical memory: 1.41 GB (35.16%¢) Processes: 66

Siterns 1itemn selected 225KB

. debbug.bt

O Tpeh

First, it was confirmed that the "“malicious” DLL was loaded in process space
(ProcessHacker software is used). The following picture shows main.dll properties,
inside notepad process, process id 6108.

72

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment 1 '
le Bin -
Name Base address Size Description &~
{ advapi32.dil ':\Users\IEUser\DeslctDp\injecb’-\\ITheTh\ngs-master\xM\Release\dllmain.dIIPro..‘ >) Pl
l berypt.d
= beryptprimitives. dil General Imports Load config
- cfgmgr32.dll .
ware dbeata.d Fie
2 ‘ combase.dll 1 MrA
ol comct32.dll (UNVERIFIED) I
comctd32.dll mui Version: N/A
I comdig32.d
De cversions. 2.db Target machine: AMDE4
5 e 2 Time stamp: 6:59:47 AM 5/4/2018 F
imaln‘dll I Image base: 0x180000000 P
il Checksum: 0x0 {real 0x5b3c)
efswrt.dl Subsystem: Windows GUI
fedient.dll Subsystem version: 6.0 is
gdi32.dl Characteristics: Executsble, DLL, Large address aware, High entropy VA, Dynamic b
- L gdi32full.di
|| e Sections: |
imm32.dll MName VA Size B box.d11
kernel.appcore. di text 0x1000 0x1000
. kernel32.dl rdata 0x2000 0xc00 | >
KernelBase.dl data 0x3000 0x200
it P locale. nls pdata 0x%4000 0x200
mpr.di rsrc 0x5000 0x200
msctf.di reloc %6000 %200 hd
I Close ior
RO st vz
e L [&] injectAllTheThings.exe
CPU Usage: 67.79% Physical memory| Cancel
= = g
E Sitems 1 item selected 225 KB E =

debbug.bt

Next, the corresponding thread that loaded the DLL was found out. It has Thread Id
5304, which is the one that executes LoadLibraryW API.

| notepad.exe (6108) Properties

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment

o'z L xﬂ;ﬁ ﬁ; == = iﬂiﬁﬁiﬁ Priority
kernel32.dl!LoadLibrary\' Nurm_al
notepad.exe+0x187d0 Normal
nidll. dll!RtiReleaseSRWLockExdusive+0x 1370 Normal
nitdll. dll!RtR eleaseSRWLockExdusive +0x 1370 Normal
combase. dll!Ordinals 7+0x 1a50 Normal

Start module: |

Started:

State: N/A Priority:

Kernel time: Base priority:
User time: I/O priority:
Context switches: Page priority:
Cydes: NjfA Ideal processor:

Command Prompt - injectAllT...

73

The injection process is injectAllthethings.exe with process id 5248

1™ Process Hacker [MSEDGEWIN1O\EUser]
Hacker View Tools Users Help
5 Refresh {73 Options | #8 Find handles or DLLs 3&% System information ‘ OF X Search Processes (Ctrl+K)

Processes Services Network Disk

Name PID CPU I/Qtotal.. Privateb.. Username Description
~ (] System Idle Process 0 687 0 NTAUTHORITY\SYSTEM
~ [System 4 383 124kB NT AUTHORITYASYSTEM NT Kernel 8 System
[smss.exe 292 432 kB Windows Session Manager
[%] Memory Compression 104 kB
[Interrupts 0 Interrupts and DPCs
[csrss.exe 5 1.31MB Client Server Runtime Process
(] wininit.exe 113 MB ‘Windows Start-Up Application
BH conhost.exe i 4,92 MB Conscle Window Host
[%] sshd.exe 5.07 MB
[csrss.exe 5 1.33MB Client Server Runtime Process
~ [winlogon.exe 1.6 MB ‘Windows Logon Application
jeitrisrs] dwm.exe : 29.75 MB Desktop Window Manager
v explorer.exe i 33.81MB MSEDGEWINTO\EUser Windows Explorer
Ea MSASCuil.exe 3IMB MSEDGEWINI0WEUser Windows Defender notificatio..
\d vmtoolsd.exe .27 . I 1629 MB MSEDGEWINTO\EUser VMware Tools Core Service
@ OneDrive.exe 915MB MSEDGEWINT0\EUser Microsoft OneDrive
t# T j notepad.exe 6108 243 MB MSEDGEWINTOVEUser Notepad
v & ProcessHackerPortable.... 2200 36.97MB MSEDGEWINT0\EUser Process Hacker Portable (Pert...
1% ProcessHacker.exe 1140 ! 6.38 MB MSEDGEWIN10\EUser Process Hacker
v ﬁ cmd.exe 4860 1.55MB MSEDGEWINT0\IEUser Windows Command Processor
4068 547TMB MSEDGEWINTO\EUser Console Window Host

|I| mJectAIITheThmgs exe 5248 728 kB MSEDGEWINTOVEUser

4296 2.22MB Microsoft Malware Protection...

CPU Usage: 93.13% Physical memory: 1.5 GB (37.44%) Processes: 66

ﬂ Sitems 1item selected 225KB

InjectProc-...

The virtual machine is suspended and the corresponding image is copied and renamed
as InjectAllThings_before_ok.vmem.

6.2.2 Executing the script

First of all, the volshell volatility is called on the memory image and then the script
FindDLLInj.py is called

root@kali: # python vol.py - /media/sf Shared/KALI/"InjectAllThings before ok.vmem" --profile=
"Winl6x64 14393" volshell

Molatility Foundation Volatility Framework 2.6

Current context: System @ @xffffed408470b3500, pid=4, ppid=0 DTB=0x1aab@o

Python 2.7.13 (default, Jan 19 2017, 14:48:08)

Type "copyright", "credits" or "license" for more information.

IPythun 5.1.0 -- An enhanced Interactive Python.
-> Introduction and overview of IPython's features.
%qu1ckref -> Quick reference.
help -> Python's own help system.
bbject? -> Details about 'object', use 'object??' for extra details.

In [1]: execfile('FindD11Inj.py')

urrent context: System @ @xffffed408470b3500, pid=4, ppid=0 DTB=0x1aab0@

Current context: smss.exe @ OxTfffed408489d3800, pid=292, ppid=4 DTB=0x136T00000
Current context: csrss.exe @ Oxffffe40848fee080, pid=384, ppid=376 DTB=0x11760d6OO
Current context: wininit.exe @ Oxffffed0849275080, pid=460, ppid=376 DTB=0x115d12000
Current context: services.exe @ Oxffffe408494b09600, pid=584, ppid=460 DTB=0x114801000
Current context: lsass.exe @ Oxffffed4084957a440, pid=592, ppid=460 DTB=0x114c20000
Current context: svchost.exe @ Oxffffed0849541800, pid=672, ppid=584 DTB=0x112Tb5000
Current context: svchost.exe @ Oxffffed40849547800, pid=736, ppid=584 DTB=0x1124216000
Current context: svchost.exe @ Oxffffe40849534800, pid=964, ppid=584 DTB=0x131ae0000
Current context: svchost.exe @ Oxffffe40849538800, pid=980, ppid=584 DTB=0x131ff4000
Current context: svchost.exe @ OxTfffedd849725780, pid=988, ppid=584 DTB=0x132291000

74

[snip]

as the script, navigates though the processes, the corresponding messages are
shown, as well as some warnings

context: msdtc.exe @ OxTffTed0847285800, pid=3268, ppid=584 DTB=0xbl880000
context: NisSrv.exe @ Oxffffe40847074080, pid=3656, ppid=584 DTB=0x131f00000
context: SearchIndexer. @ Oxffffed4084a4c8580, pid=3676, ppid=584 DTB=0x133300000

. volatility.debug : NoneObject as string: Invalid Address 0x7FF62B951D18, instantiating String
. volatility.debug : NoneObject as string: Invalid Address 0x7FF62B952960, instantiating String
: volatility.debug : NoneObject as string: Invalid Address Ox7FF62B95298A, instantiating String

: volatlllty debug : Moneﬂb]ect as string: Invalid Address ﬂx?FFﬁZBQSZQAA instantiating String

[snip]

Current context: ShellExperienc @ OxT117ed084aT06080, pid=1176, ppid=06/2 DIB=0x126C/4000

WARNING : wvolatility.debug : NoneObject as string: Invalid Address 0x00000000, instantiating FILE OBJECT
Current context: SearchUI.exe @ Oxffffed084772a080, pid=3416, ppid=672 DTB=0x119236000

Current context: TrustedInstall @ Oxffffed4084ae5e080, pid=872, ppid=584 DTB=0x1700000

Current context: GenValObj.exe @ Oxffffed08472a8080, pid=4468, ppid=872 DTB=0xabe40000

Current context: MSASCuil.exe @ Oxffffed40848577800, pid=5344, ppid=4496 DTB=0x12ec50000

Current context: vmtoolsd.exe @ OxTTTfed@847911800, pid=5488, ppid=4496 DTB=0x127d00000

Current context: OneDrive.exe @ Oxffffed08478a8080, pid=5540, ppid=4496 DTB=0x1349c0000

Current context:; TiWorker.exe @ Oxff{fed4084872d800, pid=5720, ppid=672 DTB=0x31774000

Current contextl notepad.exe @ Oxffffedd848bOb340, pid=6108, ppid=4496 DTB=0x1302cB000 |

Current context: dllhost.exe @ OUxTTTTed4084/2a9080, pid=27/16, ppid=b/. DIB=0x2

Current context: ProcessHackerP @ @xffffe40847976080, pid= 2200 ppid=4496 DTB=0x37611000

Current context: ProcessHacker. @ Oxffffe40847928080, pid=1140, ppid=2200 DTB=0x1d6ab000

Current context: cmd.exe @ Oxffffed08495ac740, pid=4860, ppid=4496 DTB=0x17ec6000

Current context: conhost.exe @ 0xffffe4084?893080 pid=4068, ppid= 4860 DTB= 0x1?b3a000

Current

Current Mp pld PP

Current context MpCdeun exe @ 0xffffe4084?cfc300 pid= 6040 ppid=1600 DTB=0x4d080000

Current context: conhost.exe @ @xffffe408493e1800, pid=5496, ppid=6040 DTB=0x4cbcfBOb

Current context: svchost.exe @ Oxffffe4084b207500, pid=4172, ppid=584 DTB=0x108a00000

Current context: cmd.exe @ Oxffffed084b5a8080, pid=5148, ppid=1432 DTB=0x3ebcOBOO

Current context: conhost.exe @ @xffffe4084b4d5800, pid=5176, ppid=5148 DTB=0x22240000

Current context: ipconfig.exe @ OxTfffed4084b4d3800, pid=5440, ppid=5148 DTB=0x107040000

When the script is done, the output is shown with the command

|In [Z]: cat SuspectedDlls.txt H
these are the first lines of the output file:

018-09-04 10:41:51.757434 FindD1lInj on /media/sf Shared/KALI/InjectAllThings_before_ok.vmem TimeWindow: 1@ OneProcess: False -
;geadHagsig;igtlnn ImageFileName D11 DllLoadTime TimeDifference from previously loaded D11 in sec ThreadPid ThreadTid ThreadlLoadTime ThreadExitTime

Warning: No Imported D1l found System
Warning: No Loaded D1ls found System
1988 Warning: No Imported D11 found IpOverUsbSvc.e
080 Warning: No Imported D11 found MemCompression
080 Warning: No Loaded D11s found MemCompression
212 Warning: Ne Imported D11 found explorer.exe
212 Warning: No Loaded Dlls found explorer.exe
748 Warning: Ne Imported D11 found cygrunsrv.exe
748 Warning: No Loaded D1ls found cygrunsrv.exe
1044 Warning: No Imported D1l found smss.exe
1044 Warning: No Loaded D1ls found smss.exe
84 Warning: No Imported D1l found wuserinit.exe
84 Warning: No Loaded D1ls found userinit.exe
540 Warning: No Imported D11 found OneDrive.exe
200 Warning: No Imported D11 found ProcessHackerP
148 Warning: Ne Imported D11 found cmd.exe
148 Warning: Ne Loaded Dlls found cmd.exe
440 Warning: Ne Imported D11 found ipconfig.exe
440 Warning: No Loaded D1ls found ipconfig.exe

84 Warning: Ne handle found services.exe c:\windows\system32\spinf.dll 2018-06-04 14:16:39 4 584 716 2018-06-04 14:16:34 UTC+0000 [}
84 Warning: No handle found services.exe c:\windows\system32\userenv.dll 2018-06-04 14:16:42 3 584 716 2018-06-04 14:16:34 UTC+0000 [}
84 Warning: No handle found services.exe c:\windows\system32\userenv.dll 2018-06-04 14:16:42 3 584 1276 2018-06-04 14:16:42 UTC+0000 [}
84 Warning: No handle found services.exe c:\windows\system32\ws2 32.d11 2018-06-04 14:16:46 4 584 1276 2018-06-04 14:16:42 UTC+0000 0

and the last lines are:

3416 Warning: No handle found SearchUI.exe c:\windows\system32\certenroll.dll 2018-06-04 14:21:542 3416 5436 2018-06-04 14:21:50 UTC+0000

€l

3416 Warning: No handle found SearchUI.exe c:\windows\system32\mswb7.d1l 2018-06-04 14:22:21 273416 5452 2018-06-04 14:22: 21 UTC+0000 [c]
6168 Suspicious process notepad.exe c:\users\ieuser\desktop\injectallthethings-master\x64\release\dllmain.d11 2018-06-64 14:23:27 6108 5304 2018-06-
04 14:23:27 UTC+0000 5248

2018-09-04 10:58:44.588246

75

All the above gathered information is confirmed as an entry in output file:

6108 Suspicious process notepad.exe c:\users\ieuser\desktop\injectallthethings-

master\x64\release\dlimain.dll

2018-06-04 14:23:27

113 6108 5304 2018-

06-04 14:23:27 5248
Meaning,
Name Explanation
Pid 6108
Description Suspicious process notepad.exe
ImageFileName notepad.exe
DLL c:\users\ieuser\desktop\injectallthethings-
master\x64\release\dlimain.dll
DllLoadTime 2018-06-04 14:23:27 (UTC+0000)
TimeDifference from 113
previously loaded DIl in sec
ThreadPid 6108
ThreadTid 5304

ThreadLoadTime

2018-06-04 14:23:27 UTC+0000

ThreadExitTime

ThreadHandlePid

5248

So, the result was confirmed. For a list of all the test results, see Testing results

76

6.3 FindDLLINnj Script

call from command line, for example:

python vol.py -f /media/sf Shared/KALI/"MSEdge - WinlO preview-eaaa27c2-dll inj after.vmem" --profile="WinlOx64 14393" volshell

inside volshell enviromnent --> execfile('FindDl11Inj.py")

#--—— Set Parameters (TimeWindow, OneProcess, WhiteList) ----
TimeWindow=10

OneProcess=False

WhiteList=[]

#TODO fill whitelist with dl1l names

Create output file
Out SuspectedDll = open('SuspectedDlls.txt','w'")
import datetime

introduction line

Out_SuspectedDll.write (str(datetime.datetime.now()) + '\t' + "FindDl1l1lInj on "+ sys.argv([2]+ " TimeWindow:

OneProcess: " + str(OneProcess)+ '\n')

writing headers

Out_ SuspectedDll.write ("Pid" + '\t' + "Description" + '\t' + "ImageFileName"
"TimeDifference from previously loaded D11 in sec" + '\t' + "ThreadPid" + '\t'

"ThreadExitTime" + '\t'+ "ThreadHandlePid" +'\n')

from datetime import datetime
import time

import calendar

initialize lists
AllProcessHandle List=[]
AllProcessSuspectedDlls=[]

CsrssPids=[]

+str (TimeWindow)

+"Dl11LoadTime"

"ThreadTid" "ThreadLoadTime"

+
+

77

#---— Get all Processes from memory Image —--—--
for proc id in getprocs():
#---— Read Processes space ----
p_id= proc id.UniqueProcessId
cc(pid=p_ id)
process=proc ()

process space = process.get process address space()

if str(process.ImageFileName) .lower ()=="csrss.exe":

CsrssPids.append(p id)

—---- Examine Processes VADs: find VADs with specific characteristics and get the corresponding DLL Names ----
DLLsMappedOnce=[]

for vad in process.VadRoot.traverse() :
data = process_space.read(vad.Start, 1024)
if data:
found = data.find("Mz")
if found != -1:

if hasattr (vad, "ControlArea") :

if OneProcess == True:
if int(vad.ControlArea.NumberOfMappedViews) == 1 and \
int (vad.ControlArea.NumberOfUserReferences)==
DLLsMappedOnce.append (str(vad.FileObject.FileName))

else:

DLLsMappedOnce.append (str (vad.FileObject.FileName))

#---- Scan Process PE for IAT entries —----

#"Scan" PE to reproduce the IAT table - 1lst method

78

DLLsFromImport=[]
dos _header = obj.Object (" IMAGE DOS HEADER",offset = process.Peb.ImageBaseAddress,vm = process space)
nt header = dos header.get nt header()

data dir = nt header.OptionalHeader.DataDirectory([1]

The following is taken from plugins/overlays/windows/pe vtypes.py, imports() function of class LDR DATA TABLE ENTRY
TODO --> desc size = self.obj vm.profile.get obj size(' IMAGE IMPORT DESCRIPTOR')
desc_size=20
while 1:
desc = obj.Object (' IMAGE IMPORT DESCRIPTOR',
vm = process space,

offset = process.Peb.ImageBaseAddress + data dir.VirtualAddress + (i * desc_size),

parent = self)

Stop if the IID is paged or all zeros
if desc == None or desc.is list end():

break
Stop if the IID contains invalid fields
if not desc.valid(nt header):

break

Dl1Name=obj.0Object ("String",offset = desc.Name+process.Peb.ImageBaseAddress,vm = process space, length = 128)

DLLsFromImport.append(str (D11Name) . lower ())

79

if len(DLLsFromImport) == 0:
Out_SuspectedDll.write(str(p_id) + '\t' + "Warning: No Imported D1l found" + '\t' + process.ImageFileName +'\n')

#---- Get Process Loaded Dlls ----
DllsLoaded=1[]
mods = list (process.get load modules())

if len (mods)>0:
mods[0] represents the exe module
previous load=mods[0].LoadTime
#---- Get Loaded Dlls Information ----
for mod in mods:
DllsLoaded layout
mod.LoadTime-previous load : time difference between current and previous loaded module (in seconds)

DllsLoaded.append([str (mod.FullDl1Name) .lower (),process.ImageFileName, p_id, mod.LoadCount,
mod.ObsoleteLoadCount, mod.ReferenceCount, hex (mod.Dl1Base), hex (mod.ParentDl1Base), mod. ImageDll, mod.LoadTime,
mod.LoadReason, mod.BaseDl1Name, mod.LoadTime-previous load])

previous load=mod.LoadTime
if len(DllsLoaded) == 0:
Out_SuspectedDll.write(str(p_id) + '\t' + "Warning: No Loaded Dlls found" + '\t' + process.ImageFileName +'\n')
SuspectedDlls=[]

#-—--- Characterize DLL : Find suspicious loaded DLLs in process ----

for dll in DllsLoaded:

DllName--> dll name
t1=dll1[0].rfind(".d11l")
t2=d11[0].rfind ("\\")
Dl1Name =dl1[0][t2+1:t1+4]

80

foundl=False
for item in DLLsFromImport:
if item.lower () .find(DllName) !=-1:
foundl=True
break
found2=False
for item in DLLsMappedOnce:
if item.lower () .find(Dl11Name) !=-1:
found2=True

break

#---- The DLL does not exist in process IAT AND the corresponding VAD fulfill OneProcess criteria ----
if foundl==False and found2==True:
-——-- DLL loaded at least 1 sec after from previously loaded DLL AND ----

---- LoadReason==LoadReasonDynamicLoad OR ObsoletelLoadCount is 6 (DLL explicitly loaded using LoadLibrary
function) ----

if d11[12] > 1 and (d11[10]==4 or dll[4]==0):
#-—-- Is the DLL in the White List? ----
if d11[0] not in WhiteList:

append ImageFileName, p id, mod.FullDllName, mod.LoadTime, mod.LoadTime-previous load ,
mod.Dl11Base, mod.LoadTime in UTC

SuspectedDlls.append ([str (process.ImageFileName),int(d11[2]),d1l1[0],
int (d11[9]),int(d11[12]),d11[6], datetime.utcfromtimestamp (d11[9])])

else:

Out_SuspectedDll.write(str(p_id) + '\t' + "Warning: D1l in WhiteList"™ + '\t' + d11[0] +'\n")

if len(SuspectedDlls) >0:

#--—-- Get Threads in the context of the process (in Thread List) ----
Thread List=[]
for thread in process.ThreadlListHead.list of type (" ETHREAD", "ThreadListEntry"):

timestamp utc = calendar.timegm(time.strptime (str(thread.CreateTime), "$¥Y-%m-%d %H:%M:%S UTC+0000"))

81

timestamp utc,

Thread List.append([int (thread.Cid.UniqueProcess) int (thread.Cid.UniqueThread), str (thread.CreateTime),

’
str(thread.ExitTime or ' '), hex(thread.StartAddress)])

#-——— Get Process Handles (in Handle_List) and update ALL Processes' handles (AllProcessHandle_List) ————

Handle List=[]

process

.ObjectTable.HandleTablelList

pid=int (p_id)

for handle in process.ObjectTable.handles () :

if not handle.is valid():

continue
object type = handle.get object type()

if object type == "Thread":
thrd obj = handle.dereference as (" ETHREAD")
Details handle PID, TID, process id that owns the handle
Handle List.append([int (thrd obj.Cid.UniqueProcess),int (thrd obj.Cid.UniqueThread),p id])
AllProcessHandle List.append([int (thrd obj.Cid.UniqueProcess),int (thrd obj.Cid.UniqueThread),p id])

handle pid=0 # to be filled later

len SuspectedDlls=len (SuspectedDlls)

for i in range (0, len SuspectedDlls):

for thread item in Thread List:
#-—--- Is there a thread created in DLLs TimeWindow? AND still executing? ----

(if thread creation time between SupsectedDllLoadTime and SupsectedDlllLoadTime + TimeWindow

and thread not terminated)
if (SuspectedDlls[i][3] >= thread item[3] and SuspectedDlls[i][3] <= thread item[3] + TimeWindow) \
and thread item[4] ==" ":

FoundInHandleList=False

82

for hanle item in Handle List:

TID of thread same as TID of specific process handle (meaning the thread is created by the
specific process) --> not suspicious

if thread item[1l] == hanle item([1]

FoundInHandleList =True

#-—--- If this thread is not handled/created by the specific process --> suspicious ----

if FoundInHandlelList == False:

AllProcessSuspectedDlls.append([SuspectedDlls[i], thread item, handle pid])

Minimize False Positives
len AllProcessSuspectedDlls=len (AllProcessSuspectedDlls)

for i in range(0,len AllProcessSuspectedDlls):

FoundInHandleList=False

FoundInCrss=False

for handle item in AllProcessHandle List:
TID found in another processes' handle --> suscicious
if AllProcessSuspectedDlls([i] [1][1] == handle item[1]

FoundInHandleList=True

#--—-- The thread is not handled by csrss.exe --> suspicious
Handle on the Thread Id not created by csrss.exe --> suscicious
if handle item[2] not in CsrssPids:

AllProcessSuspectedDlls[i] [2]=int (handle item[2]) #--> update with the malware Pid

str (AllProcessSuspectedDlls[i] [1
+'\n")

Out SuspectedDll.write(str (AllProcessSuspectedDlls[i] [0][1]) + '"\t' + "Suspicious process" + '\t' +
str (AllProcessSuspectedDlls[i] [0] [0]) + "\t + str (AllProcessSuspectedDlls[i] [0][2]) + "\t +
str (AllProcessSuspectedDlls[1i][0][6]) + "\t + str (AllProcessSuspectedDlls[i] [0][4]) + "\t +
str (AllProcessSuspectedDlls[i] [1][0]) + "\t + str (AllProcessSuspectedDlls[i] [1][1]) + "\t +
[11)

2]) + '\t' + str(AllProcessSuspectedDlls[i][1][4]) + '\t'+ str(AllProcessSuspectedDlls[i][2]

else:

83

FoundInCrss=True

if FoundInHandlelList==False:

Out SuspectedDll.write (str (AllProcessSuspectedDlls[i][0] [1]) + "\t' + "Warning: No handle found" + "\t +
str (AllProcessSuspectedDlls[i1][0][0]) + '\t' + str(AllProcessSuspectedDlls[i][0][2]) +
"\t + str(AllProcessSuspectedDlls[1] [0][6]) + "\t' + str (AllProcessSuspectedDlls[1][0][4]) + "\t +
str (AllProcessSuspectedDlls[i] [1][0]) + "\t + str (AllProcessSuspectedDlls[i] [1][1]) + "\t +

str (AllProcessSuspectedDlls[1][1][2]) + '"\t' + str (AllProcessSuspectedDlls[i] [1][4])
+'\n")

footer line
import datetime
Out_ SuspectedDll.write (str(datetime.datetime.now()) + '\n'")

Out_ SuspectedDll.close ()

+

v\tv

+str (AllProcessSuspectedDlls[1][2])

84

	Contents
	List of Figures and Tables
	List of Abbreviations
	Abstract
	1 Introduction
	1.1 Malware Analysis
	1.2 The Volatility Framework
	1.3 Virtualization
	1.4 What is process injection
	1.5 Prerequisites
	1.6 Problem definition and thesis’ scope
	1.7 Organization of this document

	2 Hollow process or process replacement
	2.1 Introduction and hollow process description
	2.2 Steps to hollow a process
	2.3 Process Hollowing Variations
	Address of the hollow and address of the allocated memory
	Memory protection for the region of pages at memory allocation step
	No memory umapping
	Modifying the legitimate code

	2.4 Testing Environment
	2.5 Methodology of Detection
	2.5.1 Process Listing
	2.5.2 Comparing kernel and process memory structures
	Dynamic Link Library Listing
	Virtual Address Descriptor information
	Module linked lists and VAD

	2.5.3 Checking memory permissions
	2.5.4 Vadinfo – Looking Deeper
	2.5.5 Hollowfind plugin
	2.5.6 Extracting executables
	2.5.7 Comparing executables sizes
	2.5.8 Determining the owner of the hollowed process
	2.5.9 Priority level
	2.5.10 Malfofind plugin
	2.5.11 Threadmap plugin

	2.6 Summary

	3 DLL Injection
	3.1 How DLL Injection works
	3.2 DLL Injection Detection: A different approach
	3.2.1 Detection Flowchart
	3.2.2 Detection Idea Verification

	3.3 Detection Code - FindDLLInj.py
	3.3.1 Explanations relating the script
	Determining whether a DLL file is loaded via LoadLibrary using its attributes
	Scan processes’ memory for IAT entries
	Confirmation of the IAT reproduction
	Process’s Threads
	Handles on the Threads

	3.4 Calling FindDllInj.py
	3.5 FindDLLInj Testing
	3.5.1 Testing Environment
	3.5.2 Testing results

	3.6 Testing conclusions
	3.7 Future Improvements

	4 Conclusion
	5 References
	6 Appendix
	6.1 Hollow process injection and detection examples
	6.1.1 Injection Using InjectProc project
	6.1.2 Injection Detection on InjectProc memory image
	Process Listing
	Dynamic Link Library Listing
	Virtual Address Descriptor information
	Module linked lists and VAD
	Checking memory permissions
	Hollowfind plugin
	Extracting executables, Comparing executables sizes
	Malfofind
	Threadmap plugin

	6.1.3 Injection Using Process Hollow project

	6.2 A DLL injection testing example
	6.2.1 Gathering useful information from Virtual Machines
	6.2.2 Executing the script

	6.3 FindDLLInj Script

