
1/19

Injecting Code into Windows Protected Processes using
COM - Part 1

googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-protected.html

Posted by James Forshaw, Google Project Zero

At Recon Montreal 2018 I presented “Unknown Known DLLs and other Code Integrity Trust

Violations” with Alex Ionescu. We described the implementation of Microsoft Windows’ Code

Integrity mechanisms and how Microsoft implemented Protected Processes (PP). As part of

that I demonstrated various ways of bypassing Protected Process Light (PPL), some requiring

administrator privileges, others not.

In this blog I’m going to describe the process I went through to discover a way of injecting

code into a PPL on Windows 10 1803. As the only issue Microsoft considered to be violating a

defended security boundary has now been fixed I can discuss the exploit in more detail.

Background on Windows Protected Processes

The origins of the Windows Protected Process (PP) model stretch back to Vista where it was

introduced to protect DRM processes. The protected process model was heavily restricted,

limiting loaded DLLs to a subset of code installed with the operating system. Also for an

executable to be considered eligible to be started protected it must be signed with a specific

Microsoft certificate which is embedded in the binary. One protection that the kernel

enforced is that a non-protected process couldn’t open a handle to a protected process with

enough rights to inject arbitrary code or read memory.

In Windows 8.1 a new mechanism was introduced, Protected Process Light (PPL), which

made the protection more generalized. PPL loosened some of the restrictions on what DLLs

were considered valid for loading into a protected process and introduced different signing

requirements for the main executable. Another big change was the introduction of a set of

signing levels to separate out different types of protected processes. A PPL in one level can

open for full access any process at the same signing level or below, with a restricted set of

access granted to levels above. These signing levels were extended to the old PP model, a PP

at one level can open all PP and PPL at the same signing level or below, however the reverse

was not true, a PPL can never open a PP at any signing level for full access. Some of the levels

and this relationship are shown below:

https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-protected.html
https://recon.cx/2018/montreal/
https://twitter.com/aionescu
https://bugs.chromium.org/p/project-zero/issues/detail?id=1597
https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2018-8449
http://download.microsoft.com/download/a/f/7/af7777e5-7dcd-4800-8a0a-b18336565f5b/process_vista.doc

2/19

Signing levels allow Microsoft to open up protected processes to third-parties, although at

the current time the only type of protected process that a third party can create is an Anti-

Malware PPL. The Anti-Malware level is special as it allows the third party to add additional

permitted signing keys by registering an Early Launch Anti-Malware (ELAM) certificate.

There is also Microsoft’s TruePlay, which is an Anti-Cheat technology for games which uses

components of PPL but it isn’t really important for this discussion.

I could spend a lot of this blog post describing how PP and PPL work under the hood, but I

recommend reading the blog post series by Alex Ionescu instead (Parts 1, 2 and 3) which will

do a better job. While the blog posts are primarily based on Windows 8.1, most of the

concepts haven’t changed substantially in Windows 10.

I’ve written about Protected Processes before [link], in the form of the custom

implementation by Oracle in their VirtualBox virtualization platform on Windows. The blog

showed how I bypassed the process protection using multiple different techniques. What I

didn’t mention at the time was the first technique I described, injecting JScript code into the

process, also worked against Microsoft's PPL implementation. I reported that I could inject

arbitrary code into a PPL to Microsoft (see Issue 1336) from an abundance of caution in case

Microsoft wanted to fix it. In this case Microsoft decided it wouldn’t be fixed as a security

bulletin. However Microsoft did fix the issue in the next major release on Windows (version

1803) by adding the following code to CI.DLL, the Kernel’s Code Integrity library:

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjD9YhlHJ_fKbyq15QpImKt0hOo5_MuHBoqYxFEk_UpSZAbF_dYWN5-WdgGU_PIZx25DnkqcPE2BtwQ4DnWVh5-nQPRnNtcdcwdNcuMI5jN3WCRfnFafxE2bIvZbEuhKvUzwQOW-12FS9nMrioJUWrdobA4i57Bz9YOBRcqlV9J5CiHxkatLM6F4xgc/s555/dDW55mQLL7GDzFcHGMyI3qjy5bW9Ys2dfOZk3-lPug205-8aobd-Y9L2Wb6b8-pPwaT_y-O5omoOHEnGNntLGoJ0pwv3f34iHZaHvyprVyt3_DXLXVC2FmP_c91x_vmWShBVG4ON.png
https://msdn.microsoft.com/en-us/library/windows/desktop/dn313124%28v=vs.85%29.aspx
http://www.alex-ionescu.com/?p=97
http://www.alex-ionescu.com/?p=116
http://www.alex-ionescu.com/?p=146
https://googleprojectzero.blogspot.com/2017/08/bypassing-virtualbox-process-hardening.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1336

3/19

UNICODE_STRING g_BlockedDllsForPPL[] = {

 DECLARE_USTR("scrobj.dll"),

 DECLARE_USTR("scrrun.dll"),

 DECLARE_USTR("jscript.dll"),

 DECLARE_USTR("jscript9.dll"),

 DECLARE_USTR("vbscript.dll")

};

NTSTATUS CipMitigatePPLBypassThroughInterpreters(PEPROCESS Process,

 LPBYTE Image,

 SIZE_T ImageSize) {

 if (!PsIsProtectedProcess(Process))

 return STATUS_SUCCESS;

 UNICODE_STRING OriginalImageName;

 // Get the original filename from the image resources.

 SIPolicyGetOriginalFilenameAndVersionFromImageBase(

 Image, ImageSize, &OriginalImageName);

 for(int i = 0; i < _countof(g_BlockedDllsForPPL); ++i) {

 if (RtlEqualUnicodeString(g_BlockedDllsForPPL[i],

 &OriginalImageName, TRUE)) {

 return STATUS_DYNAMIC_CODE_BLOCKED;

 }

 }

 return STATUS_SUCCESS;

}

The fix checks the original file name in the resource section of the image being loaded against

a blacklist of 5 DLLs. The blacklist includes DLLs such as JSCRIPT.DLL, which implements

the original JScript scripting engine, and SCROBJ.DLL, which implements scriptlet objects.

If the kernel detects a PP or PPL loading one of these DLLs the image load is rejected with

STATUS_DYNAMIC_CODE_BLOCKED. This kills my exploit, if you modify the resource

section of one of the listed DLLs the signature of the image will be invalidated resulting in the

image load failing due to a cryptographic hash mismatch. It’s actually the same fix that

Oracle used to block the attack in VirtualBox, although that was implemented in user-mode.

Finding New Targets

The previous injection technique using script code was a generic technique that worked on

any PPL which loaded a COM object. With the technique fixed I decided to go back and look

at what executables will load as a PPL to see if they have any obvious vulnerabilities I could

exploit to get arbitrary code execution. I could have chosen to go after a full PP, but PPL

4/19

seemed the easier of the two and I’ve got to start somewhere. There’s so many ways to inject

into a PPL if we could just get administrator privileges, the least of which is just loading a

kernel driver. For that reason any vulnerability I discover must work from a normal user

account. Also I wanted to get the highest signing level I can get, which means PPL at

Windows TCB signing level.

The first step was to identify executables which run as a protected process, this gives us the

maximum attack surface to analyze for vulnerabilities. Based on the blog posts from Alex it

seemed that in order to be loaded as PP or PPL the signing certificate needs a special Object

Identifier (OID) in the certificate’s Enhanced Key Usage (EKU) extension. There are separate

OID for PP and PPL; we can see this below with a comparison between

WERFAULTSECURE.EXE, which can run as PP/PPL, and CSRSS.EXE, which can only run

as PPL.

I decided to look for executables which have an embedded signature with these EKU OIDs

and that’ll give me a list of all executables to look for exploitable behavior. I wrote the Get-

EmbeddedAuthenticodeSignature cmdlet for my NtObjectManager PowerShell module to

extract this information.

At this point I realized there was a problem with the approach of relying on the signing

certificate, there’s a lot of binaries I expected to be allowed to run as PP or PPL which were

missing from the list I generated. As PP was originally designed for DRM there was no

obvious executable to handle the Protected Media Path such as AUDIODG.EXE. Also, based

on my previous research into Device Guard and Windows 10S, I knew there must be an

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiroNkCJRk_I_hBCjsrIsOgGGwxIEu5rC-B9iYTn8P9Em3uCZcfMRKncV56h70fxF_X3TRSxlA2JMVh6WjeNZwFHQCBXybgm_8xk-5nkcdcTIPBegWLgBoMn8R-h2dsp8F3GrDrcalgm8j2yAaqIRH5wIGFok9ntgUg0g-ZjhxtmSp0gDQPQSir8A6J/s975/PL2pfhKLnBxtZd6jrQWTvKb35hiK_eVqywHeEiTLhoDuUt2aPL8sS1r_vWAREK7OaTshPYghXAPTe9heZvf5PzzaGbHsbsujjkdpHlCj6a-yq_oo-w7Z7zhQHYvCSbNQMvEBK_KP.png
https://www.powershellgallery.com/packages/NtObjectManager
https://docs.microsoft.com/en-us/windows/desktop/medfound/protected-media-path

5/19

executable in the .NET framework which could run as PPL to add cached signing level

information to NGEN generated binaries (NGEN is an Ahead-of-Time JIT to convert a .NET

assembly into native code). The criteria for PP/PPL were more fluid than I expected. Instead

of doing static analysis I decided to perform dynamic analysis, just start protected every

executable I could enumerate and query the protection level granted. I wrote the following

script to test a single executable:

Import-Module NtObjectManager

function Test-ProtectedProcess {

 [CmdletBinding()]

 param(

 [Parameter(Mandatory, ValueFromPipelineByPropertyName)]

 [string]$FullName,

 [NtApiDotNet.PsProtectedType]$ProtectedType = 0,

 [NtApiDotNet.PsProtectedSigner]$ProtectedSigner = 0

)

 BEGIN {

 $config = New-NtProcessConfig abc -ProcessFlags ProtectedProcess `

 -ThreadFlags Suspended -TerminateOnDispose `

 -ProtectedType $ProtectedType `

 -ProtectedSigner $ProtectedSigner

 }

 PROCESS {

 $path = Get-NtFilePath $FullName

 Write-Host $path

 try {

 Use-NtObject($p = New-NtProcess $path -Config $config) {

 $prot = $p.Process.Protection

 $props = @{

 Path=$path;

 Type=$prot.Type;

 Signer=$prot.Signer;

 Level=$prot.Level.ToString("X");

 }

 $obj = New-Object –TypeName PSObject –Prop $props

 Write-Output $obj

 }

 } catch {

 }

 }

6/19

}

When this script is executed a function is defined, Test-ProtectedProcess. The function takes

a path to an executable, starts that executable with a specified protection level and checks

whether it was successful. If the ProtectedType and ProtectedSigner parameters are 0 then

the kernel decides the “best” process level. This leads to some annoying quirks, for example

SVCHOST.EXE is explicitly marked as PPL and will run at PPL-Windows level, however as

it’s also a signed OS component the kernel will determine its maximum level is PP-

Authenticode. Another interesting quirk is using the native process creation APIs it’s possible

to start a DLL as main executable image. As a significant number of system DLLs have

embedded Microsoft signatures they can also be started as PP-Authenticode, even though

this isn’t necessarily that useful. The list of binaries that will run at PPL is shown below along

with their maximum signing level.

Path Signing Level

C:\windows\Microsoft.Net\Framework\v4.0.30319\mscorsvw.exe CodeGen

C:\windows\Microsoft.Net\Framework64\v4.0.30319\mscorsvw.exe CodeGen

C:\windows\system32\SecurityHealthService.exe Windows

C:\windows\system32\svchost.exe Windows

C:\windows\system32\xbgmsvc.exe Windows

C:\windows\system32\csrss.exe Windows TCB

C:\windows\system32\services.exe Windows TCB

C:\windows\system32\smss.exe Windows TCB

C:\windows\system32\werfaultsecure.exe Windows TCB

C:\windows\system32\wininit.exe Windows TCB

Injecting Arbitrary Code Into NGEN

After carefully reviewing the list of executables which run as PPL I settled on

trying to attack the previously mentioned .NET NGEN binary, MSCORSVW.EXE. My

rationale for choosing the NGEN binary was:

Most of the other binaries are service binaries which might need administrator

privileges to start correctly.

The binary is likely to be loading complex functionality such as the .NET framework as

well as having multiple COM interactions (my go-to technology for weird behavior).

7/19

In the worst case it might still yield a Device Guard bypass as the reason it runs as PPL

is to give it access to the kernel APIs to apply a cached signing level. Any bug in the

operation of this binary might be exploitable even if we can’t get arbitrary code running

in a PPL.

But there is an issue with the NGEN binary, specifically it doesn’t meet my own criteria that I

get the top signing level, Windows TCB. However, I knew that when Microsoft fixed Issue

1332 they left in a back door where a writable handle could be maintained during the signing

process if the calling process is PPL as shown below:

NTSTATUS CiSetFileCache(HANDLE Handle, ...) {

 PFILE_OBJECT FileObject;

 ObReferenceObjectByHandle(Handle, &FileObject);

 if (FileObject->SharedWrite ||

 (FileObject->WriteAccess &&

 PsGetProcessProtection().Type != PROTECTED_LIGHT)) {

 return STATUS_SHARING_VIOLATION;

 }

 // Continue setting file cache.

}

If I could get code execution inside the NGEN binary I could reuse this backdoor to cache

sign an arbitrary file which will load into any PPL. I could then DLL hijack a full PPL-

WindowsTCB process to reach my goal.

To begin the investigation we need to determine how to use the MSCORSVW executable.

Using MSCORSVW is not documented anywhere by Microsoft, so we’ll have to do a bit of

digging. First off, this binary is not supposed to be run directly, instead it’s invoked by NGEN

when creating an NGEN’ed binary. Therefore, we can run the NGEN binary and use a tool

such as Process Monitor to capture what command line is being used for the MSCORSVW

process. Executing the command:

C:\> NGEN install c:\some\binary.dll

Results in the following command line being executed:

MSCORSVW -StartupEvent A -InterruptEvent B -NGENProcess C -Pipe D

https://bugs.chromium.org/p/project-zero/issues/detail?id=1332

8/19

A, B, C and D are handles which NGEN ensures are inherited into the new process before it

starts. As we don’t see any of the original NGEN command line parameters it seems likely

they’re being passed over an IPC mechanism. The “Pipe” parameter gives an indication that

 named pipes are used for IPC. Digging into the code in MSCORSVW, we find the method

NGenWorkerEmbedding, which looks like the following:

void NGenWorkerEmbedding(HANDLE hPipe) {

 CoInitializeEx(nullptr, COINIT_APARTMENTTHREADED);

 CorSvcBindToWorkerClassFactory factory;

 // Marshal class factory.

 IStream* pStm;

 CreateStreamOnHGlobal(nullptr, TRUE, &pStm);

 CoMarshalInterface(pStm, &IID_IClassFactory, &factory,

 MSHCTX_LOCAL, nullptr, MSHLFLAGS_NORMAL);

 // Read marshaled object and write to pipe.

 DWORD length;

 char* buffer = ReadEntireIStream(pStm, &length);

 WriteFile(hPipe, &length, sizeof(length));

 WriteFile(hPipe, buffer, length);

 CloseHandle(hPipe);

 // Set event to synchronize with parent.

 SetEvent(hStartupEvent);

 // Pump message loop to handle COM calls.

 MessageLoop();

 // ...

}

This code is not quite what I expected. Rather than using the named pipe for the entire

communication channel it’s only used to transfer a marshaled COM object back to the calling

process. The COM object is a class factory instance, normally you’d register the factory using

CoRegisterClassObject but that would make it accessible to all processes at the same security

level so instead by using marshaling the connection can be left private only to the NGEN

binary which spawned MSCORSVW. A .NET related process using COM gets me interested

as I’ve previously described in another blog post how you can exploit COM objects

implemented in .NET. If we’re lucky this COM object is implemented in .NET, we can

determine if it is implemented in .NET by querying for its interfaces, for example we use the

https://googleprojectzero.blogspot.com/2017/04/exploiting-net-managed-dcom.html

9/19

Get-ComInterface command in my OleViewDotNet PowerShell module as shown in the

following screenshot.

We’re out of luck, this object is not implemented in .NET, as you’d at least expect to see an

instance of the _Object interface. There’s only one interface implemented,

ICorSvcBindToWorker so let’s dig into that interface to see if there’s anything we can exploit.

Something caught my eye, in the screenshot there’s a HasTypeLib column, for

ICorSvcBindToWorker we see that the column is set to True. What HasTypeLib indicates is

rather than the interface’s proxy code being implemented using an predefined NDR byte

stream it’s generated on the fly from a type library. I’ve abused this auto-generating proxy

mechanism before to elevate to SYSTEM, reported as issue 1112. In the issue I used some

interesting behavior of the system’s Running Object Table (ROT) to force a type confusion in

a system COM service. While Microsoft has fixed the issue for User to SYSTEM there’s

nothing stopping us using the type confusion trick to exploit the MSCORSVW process

running as PPL at the same privilege level and get arbitrary code execution. Another

advantage of using a type library is a normal proxy would be loaded as a DLL which means

that it must meet the PPL signing level requirements; however a type library is just data so

can be loaded into a PPL without any signing level violations.

How does the type confusion work? Looking at the ICorSvcBindToWorker interface from the

type library:

interface ICorSvcBindToWorker : IUnknown {

 HRESULT BindToRuntimeWorker(

 [in] BSTR pRuntimeVersion,

 [in] unsigned long ParentProcessID,

 [in] BSTR pInterruptEventName,

 [in] ICorSvcLogger* pCorSvcLogger,

https://www.powershellgallery.com/packages/OleViewDotNet
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhJdhGLBE8arI0qwk4-pgCMnhAplMPYLlnpBI8_8dAY4qJUBjCr8TqOKOgXTdmXO_MmMcNkRXA-YQeQH5EajyPBrrT9PtMhHkmpH0enZkw1pSV1OKjz_wYu_Uj6wgMJUJY5IYDpujAQmc-1syFmcihPPCyeXylgJFA95lAsfdSiWKUt6HBHmjY34_YD/s929/UJYmb3RK9q81XK2CUlzm88pXNoJNHXDNhWA83dVa2pBretNyevqqQbeRuxwogMP52WNVOhCWdMQtUmoJm8s4O6s4XSNn71TYV5H33aiu5iSffqh6T_TIoNWTPndx-idluNcoRaYn.png
https://bugs.chromium.org/p/project-zero/issues/detail?id=1112

10/19

 [out] ICorSvcWorker** pCorSvcWorker);

};

The single BindToRuntimeWorker takes 5 parameters, 4 are inbound and 1 is outbound.

When trying to access the method over DCOM from our untrusted process the system will

automatically generate the proxy and stub for the call. This will include marshaling COM

interface parameters into a buffer, sending the buffer to the remote process and then

unmarshaling to a pointer before calling the real function. For example imagine a simpler

function, DoSomething which takes a single IUnknown pointer. The marshaling process

looks like the following:

The operation of the method call is as follow:

1. The untrusted process calls DoSomething on the interface which is actually a pointer to

DoSomethingProxy which was auto-generated from the type library passing an

IUnknown pointer parameter.

2. DoSomethingProxy marshals the IUnknown pointer parameter into the buffer and calls

over RPC to the Stub in the protected process.

3. The COM runtime calls the DoSomethingStub method to handle the call. This method

will unmarshal the interface pointer from the buffer. Note that this pointer is not the

original pointer from step 1, it’s likely to be a new proxy which calls back to the

untrusted process.

4. The stub invokes the real implemented method inside the server, passing the

unmarshaled interface pointer.

5. DoSomething uses the interface pointer, for example by calling AddRef on it via the

object’s VTable.

How would we exploit this? All we need to do is modify the type library so that instead of

passing an interface pointer we pass almost anything else. While the type library file is in a

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhBOmPDZZTBxQBFxI-bAUM8DeTeNcYvx6mpn8yAOsSLSTWF_TvvuSn-NQgHVVnhNQXs4lrYPfSpaF8HkijNPjRy8iCkSsg_UwZWMpkATLqRWnhmIhl6KhNPv5EHZcaoPboybDGbUak8cq6PSdy2R9gazIiZrsHsS2gkC_DAhBz03NydVVEYE5ZkpYB8/s940/obREQpGz4nheBu-Nbd7nA2a_qY7g3kNndjRDiCClVsFeBbfFvQ6zCCdHjyknAvGPSkyw7Gpdr4r-tfka_n9w5EwJQojls3KqGcacbDsrSCnSHjeg0X8DYCf8lwC8iBCFBOSuaPXO.png

11/19

system location which we can’t modify we can just replace the registration for it in the

current user’s registry hive, or use the same ROT trick from before issue 1112. For example if

we modifying the type library to pass an integer instead of an interface pointer we get the

following:

The operation of the marshal now changes as follows:

1. The untrusted process calls DoSomething on the interface which is actually a pointer to

DoSomethingProxy which was auto-generated from the type library passing an

arbitrary integer parameter.

2. DoSomethingProxy marshals the integer parameter into the buffer and calls over RPC

to the Stub in the protected process.

3. The COM runtime calls the DoSomethingStub method to handle the call. This method

will unmarshal the integer from the buffer.

4. The stub invokes the real implement method inside the server, passing the integer as

the parameter. However DoSomething hasn’t changed, it’s still the same method which

accepts an interface pointer. As the COM runtime has no more type information at this

point the integer is type confused with the interface pointer.

5. DoSomething uses the interface pointer, for example by calling AddRef on it via the

object’s VTable. As this pointer is completely under control of the untrusted process

this likely results in arbitrary code execution.

By changing the type of parameter from an interface pointer to an integer we induce a type

confusion which allows us to get an arbitrary pointer dereferenced, resulting in arbitrary

code execution. We could even simplify the attack by adding to the type library the following

structure:

struct FakeObject {

 BSTR FakeVTable;

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgc75Q6hHhYN29EJPcsRyJZAg_ZjYOKHH1frjUR3PABrGrlfOM0wSROH_2QIZmNhANbHhX9ql81uPuCtEQvOHUmaE4MbS4rk6Gb7Mto7VN5_zBLDULS_kJtuK3H8qXrlIrRtBeFcPxzkiY2NTuCl7Rl_EvhRMMz35Ep1697VEbkVLh5l3DkOb33Xibc/s939/pqCXdG050a-DcdPsmeTXtMnU4PQAiwnckZX_C9QT2-nF1kLPZm3m5ue-DBMdEBwi9AZ3rB_5PydXC63JMOhRbciI--xWz7u-jD97uuLD1B1eqWoR0TKArzMPzB3_onQ17pWfg2rg.jpg

12/19

};

If we pass a pointer to a FakeObject instead of the interface pointer the auto-generated proxy

will marshal the structure and its BSTR, recreating it on the other side in the stub. As a BSTR

is a counted string it can contain NULLs so this will create a pointer to an object, which

contains a pointer to an arbitrary byte array which can act as a VTable. Place known function

pointers in that BSTR and you can easily redirect execution without having to guess the

location of a suitable VTable buffer.

To fully exploit this we’d need to call a suitable method, probably running a ROP chain and

we might also have to bypass CFG. That all sounds too much like hard work, so instead I’ll

take a different approach to get arbitrary code running in the PPL binary, by abusing

KnownDlls.

KnownDlls and Protected Processes.

In my previous blog post I described a technique to elevate privileges from an arbitrary object

directory creation vulnerability to SYSTEM by adding an entry into the KnownDlls directory

and getting an arbitrary DLL loaded into a privileged process. I noted that this was also an

administrator to PPL code injection as PPL will also load DLLs from the system’s KnownDlls

location. As the code signing check is performed during section creation not section mapping

as long as you can place an entry into KnownDlls you can load anything into a PPL even

unsigned code.

This doesn’t immediately seem that useful, we can’t write to KnownDlls without being an

administrator, and even then without some clever tricks. However it’s worth looking at how a

Known DLL is loaded to get an understanding on how it can be abused. Inside NTDLL’s

loader (LDR) code is the following function to determine if there’s a preexisting Known DLL.

NTSTATUS LdrpFindKnownDll(PUNICODE_STRING DllName, HANDLE *SectionHandle)

{

 // If KnownDll directory handle not open then return error.

 if (!LdrpKnownDllDirectoryHandle)

 return STATUS_DLL_NOT_FOUND;

 OBJECT_ATTRIBUTES ObjectAttributes;

 InitializeObjectAttributes(&ObjectAttributes,

 &DllName,

 OBJ_CASE_INSENSITIVE,

 LdrpKnownDllDirectoryHandle,

 nullptr);

https://googleprojectzero.blogspot.com/2018/08/windows-exploitation-tricks-exploiting.html

13/19

 return NtOpenSection(SectionHandle,

 SECTION_ALL_ACCESS,

 &ObjectAttributes);

}

The LdrpFindKnownDll function calls NtOpenSection to open the named section object for

the Known DLL. It doesn’t open an absolute path, instead it uses the feature of the native

system calls to specify a root directory for the object name lookup in the

OBJECT_ATTRIBUTES structure. This root directory comes from the global variable

LdrpKnownDllDirectoryHandle. Implementing the call this way allows the loader to only

specify the filename (e.g. EXAMPLE.DLL) and not have to reconstruct the absolute path as

the lookup with be relative to an existing directory. Chasing references to

LdrpKnownDllDirectoryHandle we can find it’s initialized in LdrpInitializeProcess as

follows:

NTSTATUS LdrpInitializeProcess() {

 // ...

 PPEB peb = // ...

 // If a full protected process don't use KnownDlls.

 if (peb->IsProtectedProcess && !peb->IsProtectedProcessLight) {

 LdrpKnownDllDirectoryHandle = nullptr;

 } else {

 OBJECT_ATTRIBUTES ObjectAttributes;

 UNICODE_STRING DirName;

 RtlInitUnicodeString(&DirName, L"\\KnownDlls");

 InitializeObjectAttributes(&ObjectAttributes,

 &DirName,

 OBJ_CASE_INSENSITIVE,

 nullptr, nullptr);

 // Open KnownDlls directory.

 NtOpenDirectoryObject(&LdrpKnownDllDirectoryHandle,

 DIRECTORY_QUERY | DIRECTORY_TRAVERSE,

 &ObjectAttributes);

}

This code shouldn’t be that unexpected, the implementation calls NtOpenDirectoryObject,

passing the absolute path to the KnownDlls directory as the object name. The opened handle

is stored in the LdrpKnownDllDirectoryHandle global variable for later use. It’s worth noting

that this code checks the PEB to determine if the current process is a full protected process.

Support for loading Known DLLs is disabled in full protected process mode, which is why

even with administrator privileges and the clever trick I outlined in the last blog post we

could only compromise PPL, not PP.

14/19

How does this knowledge help us? We can use our COM type confusion trick to write values

into arbitrary memory locations instead of trying to hijack code execution resulting in a data

only attack. As we can inherit any handles we like into the new PPL process we can setup an

object directory with a named section, then use the type confusion to change the value of

LdrpKnownDllDirectoryHandle to the value of the inherited handle. If we induce a DLL load

from System32 with a known name the LDR will check our fake directory for the named

section and map our unsigned code into memory, even calling DllMain for us. No need for

injecting threads, ROP or bypassing CFG.

All we need is a suitable primitive to write an arbitrary value, unfortunately while I could find

methods which would cause an arbitrary write I couldn’t sufficiently control the value being

written. In the end I used the following interface and method which was implemented on the

object returned by ICorSvcBindToWorker::BindToRuntimeWorker.

interface ICorSvcPooledWorker : IUnknown {

 HRESULT CanReuseProcess(

 [in] OptimizationScenario scenario,

 [in] ICorSvcLogger* pCorSvcLogger,

 [out] long* pCanContinue);

};

In the implementation of CanReuseProcess the target value of pCanContinue is always

initialized to 0. Therefore by replacing the [out] long* in the type library definition with [in]

long we can get 0 written to any memory location we specify. By prefilling the lower 16 bits of

the new process’ handle table with handles to a fake KnownDlls directory we can be sure of

an alias between the real KnownDlls which will be opened once the process starts and our

fake ones by just modifying the top 16 bits of the handle to 0. This is shown in the following

diagram:

15/19

Once we’ve overwritten the top 16 bits with 0 (the write is 32 bits but handles are 64 bits in

64 bit mode, so we won’t overwrite anything important) LdrpKnownDllDirectoryHandle now

points to one of our fake KnownDlls handles. We can then easily induce a DLL load by

sending a custom marshaled object to the same method and we’ll get arbitrary code

execution inside the PPL.

Elevating to PPL-Windows TCB

We can’t stop here, attacking MSCORSVW only gets us PPL at the CodeGen signing level, not

Windows TCB. Knowing that generating a fake cached signed DLL should run in a PPL as

well as Microsoft leaving a backdoor for PPL processes at any signing level I converted my C#

code from Issue 1332 to C++ to generate a fake cached signed DLL. By abusing a DLL hijack

in WERFAULTSECURE.EXE which will run as PPL Windows TCB we should get code

execution at the desired signing level. This worked on Windows 10 1709 and earlier, however

it didn’t work on 1803. Clearly Microsoft had changed the behavior of cached signing level in

some way, perhaps they’d removed its trust in PPL entirely. That seemed unlikely as it would

have a negative performance impact.

After discussing this a bit with Alex Ionescu I decided to put together a quick parser with

information from Alex for the cached signing data on a file. This is exposed in

NtObjectManager as the Get-NtCachedSigningLevel command. I ran this command against a

fake signed binary and a system binary which was also cached signed and immediately

noticed a difference:

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgdr3uxnKC-itsuk0jQOHM0qcW0dGFcTZaLEWMxeWAL1frvTbVp-21FA-KtwK_AB9ZNNWSkib_FL7C7-pFGHSzYO42rnnUSu0sp1Ctb-8FTZiF-JFRmuAeJXf0Dp6F9VXr9LAfENPGTf3SNEfCJyvbunmVmkQDzH0tLaSrUYHvApek-zk5vyDhpupc9/s452/aPPRjwqJaNxXZ7ZtYTO1cynZbzQKBERSLsbg5BEM9FE_YSzcnXyF45RjK9RaWVSg8qK7hA5KzjRA_BLRVnkU6hrJtFh9sB4-mQ6Y3l5lG7Tn1b4R2GQugUlnmhhjsKJ1QVQqRTXz.png
https://bugs.chromium.org/p/project-zero/issues/detail?id=1332

16/19

For the fake signed file the Flags are set to TrustedSignature (0x02), however for the system

binary PowerShell couldn’t decode the enumeration and so just outputs the integer value of

66 which is 0x42 in hex. The value 0x40 was an extra flag on top of the original trusted

signature flag. It seemed likely that without this flag set the DLL wouldn’t be loaded into a

PPL process. Something must be setting this flag so I decided to check what happened if I

loaded a valid cached signed DLL without the extra flag into a PPL process. Monitoring it in

Process Monitor I got my answer:

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhAIAM1s4QowqgvWYO3pzoYeTPJMV1M9vqTHgFsNnSdkaWduLfaWOiSDpiHcmSjY9s_wFrgolpEtitJugBpyhvw-eBOnDO5RArQnO_HAPC6Xs_gTWIMOVRVILtdtVbG_zRxYWgrpiZUMHD63FffkqMtp6NKvnn89VAnuQlPPwc-0BSbUst5rctJNwgh/s929/nZgar3xdihocEH1t_Rw1kZpX0RaKD1yK6kFzPfS_7BGHRHxUnQz_LfVZHNAqV6czYAp5KeUeRi5pUflGJnaKQraqF3mvHeuA0KlnE-76ofpAfvPBKGQj-JxiICVrSWXWQwxbqS6U.png

17/19

The Process Monitor trace shows that first the kernel queries for the Extended Attributes

(EA) from the DLL. The cached signing level data is stored in the file’s EA so this is almost

certainly an indication of the cached signing level being read. In the full trace artifacts of

checking the full signature are shown such as enumerating catalog files, I’ve removed those

artifacts from the screenshot for brevity. Finally the EA is set, if I check the cached signing

level of the file it now includes the extra flag. So setting the cached signing level is done

automatically, the question is how? By pulling up the stack trace we can see how it happens:

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEicuUqzbc2GqzLMK6fcLwpz5nXOknJtfnqDKn-gUvrbnEs1TECdF3kG_5aTXAljGtaTfgi8-3CHa4wk7zDGRNMsgZdN75nPPitPdHiUW893Ka-ymiNtsL5AKeuggzJLBZOYtbjN-pVs_Ep8HUsmsv88pvuWPbCuuR_VQh3tuS8r8pOFG6u4fYrDO3Dh/s1062/qE7QBfCbiHE1HuqTa0sDhmDwyfNmAiB8bAXt_Z0-Q2vgH1UeE9mZGd3H3N2ZBqwTIpWr2nZ61dlirfRw7SF41bAVJ-36RccVo-kVZaZFFhyXm7afQ9uZJgcGOinY4dEBI2Cw_UaB.png

18/19

Looking at the middle of the stack trace we can see the call to CipSetFileCache originates

from the call to NtCreateSection. The kernel is automatically caching the signature when it

makes sense to do so, e.g. in a PPL so that subsequent image mapping don’t need to recheck

the signature. It’s possible to map an image section from a file with write access so we can

reuse the same attack from Issue 1332 and replace the call to NtSetCachedSigningLevel with

NtCreateSection and we can fake sign any DLL. It turned out that the call to set the file cache

happened after the write check introducted to fix Issue 1332 and so it was possible to use this

to bypass Device Guard again. For that reason I reported the bypass as Issue 1597 which was

fixed in September 2018 as CVE-2018-8449. However, as with Issue 1332 the back door for

PPL is still in place so even though the fix eliminated the Device Guard bypass it can still be

used to get us from PPL-CodeGen to PPL-WindowsTCB.

Conclusions

This blog showed how I was able to inject arbitrary code into a PPL without requiring

administrator privileges. What could you do with this new found power? Actually not a great

deal as a normal user but there are some parts of the OS, such as the Windows Store which

rely on PPL to secure files and resources which you can’t modify as a normal user. If you

elevate to administrator and then inject into a PPL you’ll get many more things to attack such

as CSRSS (through which you can certainly get kernel code execution) or attack Windows

Defender which runs as PPL Anti-Malware. Over time I’m sure the majority of the use cases

for PPL will be replaced with Virtual Secure Mode (VSM) and Isolated User Mode (IUM)

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiCwg5nib8Yv7pqjv-tw3I8Dh-kkjUct76MHA5h4RdvV7oIDtFC-woWZ2s08Gn8E7VXlQtMO-g5rl7XTb2fHXxQ6Sk5Y3mMe6iUcjK_b0BClhtcOumP4q84l569GqZNWEDRIjv0I1m0RhF8bVJhUwV8wYjxbkqpOqa0hN2I4clgAiQFBuTNjo4BDUl-/s928/q5jxEBAbN9pDSIQEB71vUaGojwxsFOf_4Ya-p34wZJFKwtaq1R7v9FNqZGw_Up-TmPsqIn16LDU3_LQyJ4LT8SGCBkw9iN9svM7jbYvV7XpVZS-7lgIONsUf_g8tyX8MSy5G538b.png
https://bugs.chromium.org/p/project-zero/issues/detail?id=1597
https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2018-8449

19/19

applications which have greater security guarantees and are also considered security

boundaries that Microsoft will defend and fix.

Did I report these issues to Microsoft? Microsoft has made it clear that they will not fix issues

only affecting PP and PPL in a security bulletin. Without a security bulletin the researcher

receives no acknowledgement for the find, such as a CVE. The issue will not be fixed in

current versions of Windows although it might be fixed in the next major version. Previously

confirming Microsoft’s policy on fixing a particular security issue was based on precedent,

however they’ve recently published a list of Windows technologies that will or will not be

fixed in the Windows Security Service Criteria which, as shown below for Protected Process

Light, Microsoft will not fix or pay a bounty for issues relating to the feature. Therefore, from

now on I will not be engaging Microsoft if I discover issues which I believe to only affect PP

or PPL.

The one bug I reported to Microsoft was only fixed because it could be used to bypass Device

Guard. When you think about it, only fixing for Device Guard is somewhat odd. I can still

bypass Device Guard by injecting into a PPL and setting a cached signing level, and yet

Microsoft won’t fix PPL issues but will fix Device Guard issues. Much as the Windows

Security Service Criteria document really helps to clarify what Microsoft will and won’t fix it’s

still somewhat arbitrary. A secure feature is rarely secure in isolation, the feature is almost

certainly secure because other features enable it to be so.

In part 2 of this blog we’ll go into how I was also able to break into Full PP-WindowsTCB

processes using another interesting feature of COM.

https://www.microsoft.com/en-us/msrc/windows-security-servicing-criteria
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiJMNOYIKWkGJXG6L7Jv_aSs0a0wJioN3_ENbtpnEtVOVWdeNm79k6i1xMAhN25_lUELR60hvMb4DFUp-dIwViQJdLmnlpr6rwmT43sgKBy66n-Jdyg7sp0APefmXhiMMlVi1reZw8GRsoGOhswRQLNnPN6OI8yhIhlIXrsA79V67opGTOewDtW2Wgh/s920/MSPiRQQiE9KxoLqxkKIjERKvuoGDgHZmie4ad97rQnzVPhXAtMxGn0oNQ8NgYXEQRGhtszrOMyKTmOJVQ7SkBx2ofA2MiyvedN8MTD1bkcicsQipefb_jTcwGz5xp9Yuqv-Q9b18.png

