Injecting Code into Windows Protected Processes using
COM - Part 1

B googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-protected.html

Posted by James Forshaw, Google Project Zero

At Recon Montreal 2018 I presented “Unknown Known DLLs and other Code Integrity Trust
Violations” with Alex Ionescu. We described the implementation of Microsoft Windows’ Code
Integrity mechanisms and how Microsoft implemented Protected Processes (PP). As part of
that I demonstrated various ways of bypassing Protected Process Light (PPL), some requiring
administrator privileges, others not.

In this blog I'm going to describe the process I went through to discover a way of injecting
code into a PPL on Windows 10 1803. As the only issue Microsoft considered to be violating a
defended security boundary has now been fixed I can discuss the exploit in more detail.

Background on Windows Protected Processes

The origins of the Windows Protected Process (PP) model stretch back to Vista where it was
introduced to protect DRM processes. The protected process model was heavily restricted,
limiting loaded DLLs to a subset of code installed with the operating system. Also for an
executable to be considered eligible to be started protected it must be signed with a specific
Microsoft certificate which is embedded in the binary. One protection that the kernel
enforced is that a non-protected process couldn’t open a handle to a protected process with
enough rights to inject arbitrary code or read memory.

In Windows 8.1 a new mechanism was introduced, Protected Process Light (PPL), which
made the protection more generalized. PPL loosened some of the restrictions on what DLLs
were considered valid for loading into a protected process and introduced different signing
requirements for the main executable. Another big change was the introduction of a set of
signing levels to separate out different types of protected processes. A PPL in one level can
open for full access any process at the same signing level or below, with a restricted set of
access granted to levels above. These signing levels were extended to the old PP model, a PP
at one level can open all PP and PPL at the same signing level or below, however the reverse
was not true, a PPL can never open a PP at any signing level for full access. Some of the levels
and this relationship are shown below:

1/19

https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-protected.html
https://recon.cx/2018/montreal/
https://twitter.com/aionescu
https://bugs.chromium.org/p/project-zero/issues/detail?id=1597
https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2018-8449
http://download.microsoft.com/download/a/f/7/af7777e5-7dcd-4800-8a0a-b18336565f5b/process_vista.doc

. Open for Full Access at Same Level

Windows TCB

Windows

Anti-Malware

CodeGen

More Secure

<sse::r::ﬂ~gur N4 Joj uado

Protected Protected
Process Process Light

Signing levels allow Microsoft to open up protected processes to third-parties, although at
the current time the only type of protected process that a third party can create is an Anti-
Malware PPL. The Anti-Malware level is special as it allows the third party to add additional
permitted signing keys by registering an Early Launch Anti-Malware (ELAM) certificate.

There is also Microsoft’s TruePlay, which is an Anti-Cheat technology for games which uses
components of PPL but it isn’t really important for this discussion.

I could spend a lot of this blog post describing how PP and PPL work under the hood, but I
recommend reading the blog post series by Alex Ionescu instead (Parts 1, 2 and 3) which will
do a better job. While the blog posts are primarily based on Windows 8.1, most of the
concepts haven’t changed substantially in Windows 10.

I've written about Protected Processes before [link], in the form of the custom
implementation by Oracle in their VirtualBox virtualization platform on Windows. The blog
showed how I bypassed the process protection using multiple different techniques. What I
didn’t mention at the time was the first technique I described, injecting JScript code into the
process, also worked against Microsoft's PPL implementation. I reported that I could inject
arbitrary code into a PPL to Microsoft (see Issue 1336) from an abundance of caution in case
Microsoft wanted to fix it. In this case Microsoft decided it wouldn’t be fixed as a security
bulletin. However Microsoft did fix the issue in the next major release on Windows (version
1803) by adding the following code to CI.DLL, the Kernel’s Code Integrity library:

2/19

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjD9YhlHJ_fKbyq15QpImKt0hOo5_MuHBoqYxFEk_UpSZAbF_dYWN5-WdgGU_PIZx25DnkqcPE2BtwQ4DnWVh5-nQPRnNtcdcwdNcuMI5jN3WCRfnFafxE2bIvZbEuhKvUzwQOW-12FS9nMrioJUWrdobA4i57Bz9YOBRcqlV9J5CiHxkatLM6F4xgc/s555/dDW55mQLL7GDzFcHGMyI3qjy5bW9Ys2dfOZk3-lPug205-8aobd-Y9L2Wb6b8-pPwaT_y-O5omoOHEnGNntLGoJ0pwv3f34iHZaHvyprVyt3_DXLXVC2FmP_c91x_vmWShBVG4ON.png
https://msdn.microsoft.com/en-us/library/windows/desktop/dn313124%28v=vs.85%29.aspx
http://www.alex-ionescu.com/?p=97
http://www.alex-ionescu.com/?p=116
http://www.alex-ionescu.com/?p=146
https://googleprojectzero.blogspot.com/2017/08/bypassing-virtualbox-process-hardening.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1336

UNICODE_STRING g_ BlockedDlIsForPPL[] = {
DECLARE_USTR("scrobj.dll"),
DECLARE_USTR("scrrun.dll"),
DECLARE_USTR("jscript.dll"),
DECLARE_USTR("jscriptg.dll"),
DECLARE_USTR("vbscript.dll")

5

NTSTATUS CipMitigatePPLBypassThroughInterpreters(PEPROCESS Process,
LPBYTE Image,
SIZE_T ImageSize) {
if (!PsIsProtectedProcess(Process))
return STATUS_SUCCESS;

UNICODE_STRING OriginallmageName;
// Get the original filename from the image resources.
SIPolicyGetOriginalFilenameAndVersionFromImageBase(
Image, ImageSize, &OriginallmageName);
for(inti = 0; i < _countof(g_BlockedDllsForPPL); ++i) {
if (RtlIEqualUnicodeString(g_BlockedDllsForPPL[i],
&OriginallmageName, TRUE)) {
return STATUS_DYNAMIC_CODE_BLOCKED;
¥
¥
return STATUS_SUCCESS;
¥

The fix checks the original file name in the resource section of the image being loaded against
a blacklist of 5 DLLs. The blacklist includes DLLs such as JSCRIPT.DLL, which implements
the original JScript scripting engine, and SCROBJ.DLL, which implements scriptlet objects.
If the kernel detects a PP or PPL loading one of these DLLs the image load is rejected with
STATUS_DYNAMIC_CODE_BLOCKED. This kills my exploit, if you modify the resource
section of one of the listed DLLs the signature of the image will be invalidated resulting in the
image load failing due to a cryptographic hash mismatch. It’s actually the same fix that
Oracle used to block the attack in VirtualBox, although that was implemented in user-mode.

Finding New Targets

The previous injection technique using script code was a generic technique that worked on
any PPL which loaded a COM object. With the technique fixed I decided to go back and look
at what executables will load as a PPL to see if they have any obvious vulnerabilities I could
exploit to get arbitrary code execution. I could have chosen to go after a full PP, but PPL

3/19

seemed the easier of the two and I've got to start somewhere. There’s so many ways to inject
into a PPL if we could just get administrator privileges, the least of which is just loading a
kernel driver. For that reason any vulnerability I discover must work from a normal user
account. Also I wanted to get the highest signing level I can get, which means PPL at
Windows TCB signing level.

The first step was to identify executables which run as a protected process, this gives us the
maximum attack surface to analyze for vulnerabilities. Based on the blog posts from Alex it
seemed that in order to be loaded as PP or PPL the signing certificate needs a special Object
Identifier (OID) in the certificate’s Enhanced Key Usage (EKU) extension. There are separate
OID for PP and PPL; we can see this below with a comparison between
WERFAULTSECURE.EXE, which can run as PP/PPL, and CSRSS.EXE, which can only run

as PPL.
a Cerificate s Cerificate 4
General Defails Cortification Path General Details Cortification Path
Show | <All> L Show | <All> e
Fedd Waluss Fedd Walse .
Ivalid 1 10 Juby 2018 18:49:07] Pubilic key parameters 05 00
. Subject Microsoft Windows Publs.... £ Erhanced Key Usage Protected Process Light V...
o Public loey RSA (2048 Bits) il Subject Key Identifier 155e5aa0f6 1 faddTcfeabs..,
. Pulblic ey parameters 05 00 |. SUD_IEL'l ARermatve Name Directory Address:SERIAL.
Kl Ermanced Key Usage Windows TCB Companen... . Authority Key Identifier KeylD=a8 2902358016049, ..
& Subject Key Identifier 21BAcOfS09daan 29 15, & CRL Digtribution Foinks [1KRL Destribution Point:....
:|_. Subject ARernathve Name Directony Address:SERIAL. _|_. Autherity Information A, [1 }awthearity Infio Access:
'|,' Authority Key Identifier KeyD=a32902158e 16049, I | Basic Constraints Subject Type=End Entity,... "
\Wimdowes TCB Component (1.3.6.1.4.1.311.10.3.23) Protected Process Light Verification (1.3.6.1.4.1.311.10.3.22)
Protected Frocess Verification (1.3.6,1.4.1,311.10.3.24) \Wirdows TCE Component (1.3.6.1,4.1.311.10.3.23)
Wirdows System Comporent Verification (1.3,6,1.4.1,311.10.3.6) Wirdows System Component Verification (1.3,6,1.4.1,311.10.3.6)
Code Signing (1.3.6.1.5.5.7.3.3) Code Signing (1.3.6.1.5.5.7.3.3)
Edit Prope Copy to File... Edit Frops Copy 1o Fle...

I decided to look for executables which have an embedded signature with these EKU OIDs
and that’ll give me a list of all executables to look for exploitable behavior. I wrote the Get-
EmbeddedAuthenticodeSignature cmdlet for my NtObjectManager PowerShell module to
extract this information.

At this point I realized there was a problem with the approach of relying on the signing
certificate, there’s a lot of binaries I expected to be allowed to run as PP or PPL which were
missing from the list I generated. As PP was originally designed for DRM there was no
obvious executable to handle the Protected Media Path such as AUDIODG.EXE. Also, based
on my previous research into Device Guard and Windows 10S, I knew there must be an

4/19

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiroNkCJRk_I_hBCjsrIsOgGGwxIEu5rC-B9iYTn8P9Em3uCZcfMRKncV56h70fxF_X3TRSxlA2JMVh6WjeNZwFHQCBXybgm_8xk-5nkcdcTIPBegWLgBoMn8R-h2dsp8F3GrDrcalgm8j2yAaqIRH5wIGFok9ntgUg0g-ZjhxtmSp0gDQPQSir8A6J/s975/PL2pfhKLnBxtZd6jrQWTvKb35hiK_eVqywHeEiTLhoDuUt2aPL8sS1r_vWAREK7OaTshPYghXAPTe9heZvf5PzzaGbHsbsujjkdpHlCj6a-yq_oo-w7Z7zhQHYvCSbNQMvEBK_KP.png
https://www.powershellgallery.com/packages/NtObjectManager
https://docs.microsoft.com/en-us/windows/desktop/medfound/protected-media-path

executable in the .NET framework which could run as PPL to add cached signing level
information to NGEN generated binaries (NGEN is an Ahead-of-Time JIT to convert a .NET
assembly into native code). The criteria for PP/PPL were more fluid than I expected. Instead
of doing static analysis I decided to perform dynamic analysis, just start protected every
executable I could enumerate and query the protection level granted. I wrote the following
script to test a single executable:

Import-Module NtObjectManager

function Test-ProtectedProcess {
[CmdletBinding()]
param(
[Parameter(Mandatory, ValueFromPipelineByPropertyName)]
[string]$FullName,
[NtApiDotNet.PsProtectedType]$ProtectedType = o,
[NtApiDotNet.PsProtectedSigner]$ProtectedSigner = 0
)
BEGIN {
$config = New-NtProcessConfig abc -ProcessFlags ProtectedProcess *
-ThreadFlags Suspended -TerminateOnDispose *
-ProtectedType $ProtectedType °
-ProtectedSigner $ProtectedSigner

PROCESS {
$path = Get-NtFilePath $FullName
Write-Host $path
try {
Use-NtObject($p = New-NtProcess $path -Config $config) {
$prot = $p.Process.Protection
$props = @{
Path=$path;
Type=$prot.Type;
Signer=$prot.Signer;
Level=$prot.Level. ToString("X");
¥
$0obj = New-Object —TypeName PSObject —Prop $props
Write-Output $obj
¥
} catch {
)
¥

5/19

When this script is executed a function is defined, Test-ProtectedProcess. The function takes
a path to an executable, starts that executable with a specified protection level and checks
whether it was successful. If the ProtectedType and ProtectedSigner parameters are o then
the kernel decides the “best” process level. This leads to some annoying quirks, for example
SVCHOST.EXE is explicitly marked as PPL and will run at PPL-Windows level, however as
it’s also a signed OS component the kernel will determine its maximum level is PP-
Authenticode. Another interesting quirk is using the native process creation APIs it’s possible
to start a DLL as main executable image. As a significant number of system DLLs have
embedded Microsoft signatures they can also be started as PP-Authenticode, even though
this isn’t necessarily that useful. The list of binaries that will run at PPL is shown below along
with their maximum signing level.

Path Signing Level

C:\windows\Microsoft.Net\Framework\v4.0.30319\mscorsvw.exe CodeGen

C:\windows\Microsoft.Net\Framework64\v4.0.30319\mscorsvw.exe CodeGen

C:\windows\system32\SecurityHealthService.exe Windows
C:\windows\system32\svchost.exe Windows
C:\windows\system32\xbgmsvc.exe Windows
C:\windows\system32\csrss.exe Windows TCB
C:\windows\system32\services.exe Windows TCB
C:\windows\system32\smss.exe Windows TCB
C:\windows\system32\werfaultsecure.exe Windows TCB
C:\windows\system32\wininit.exe Windows TCB

Injecting Arbitrary Code Into NGEN

After carefully reviewing the list of executables which run as PPL I settled on
trying to attack the previously mentioned .NET NGEN binary, MSCORSVW.EXE. My
rationale for choosing the NGEN binary was:
e Most of the other binaries are service binaries which might need administrator
privileges to start correctly.
e The binary is likely to be loading complex functionality such as the .NET framework as
well as having multiple COM interactions (my go-to technology for weird behavior).

6/19

e In the worst case it might still yield a Device Guard bypass as the reason it runs as PPL
is to give it access to the kernel APIs to apply a cached signing level. Any bug in the
operation of this binary might be exploitable even if we can’t get arbitrary code running
in a PPL.

But there is an issue with the NGEN binary, specifically it doesn’t meet my own criteria that I
get the top signing level, Windows TCB. However, I knew that when Microsoft fixed Issue
1332 they left in a back door where a writable handle could be maintained during the signing
process if the calling process is PPL as shown below:

NTSTATUS CiSetFileCache(HANDLE Handle, ...) {

PFILE_OBJECT FileObject;
ObReferenceObjectByHandle(Handle, &FileObject);

if (FileObject->SharedWrite ||
(FileObject->WriteAccess &&
PsGetProcessProtection().Type != PROTECTED_LIGHT)) {
return STATUS_SHARING_VIOLATION;

b

// Continue setting file cache.

h

If I could get code execution inside the NGEN binary I could reuse this backdoor to cache
sign an arbitrary file which will load into any PPL. I could then DLL hijack a full PPL-
WindowsTCB process to reach my goal.

To begin the investigation we need to determine how to use the MSCORSVW executable.
Using MSCORSVW is not documented anywhere by Microsoft, so we’ll have to do a bit of
digging. First off, this binary is not supposed to be run directly, instead it’s invoked by NGEN
when creating an NGEN’ed binary. Therefore, we can run the NGEN binary and use a tool
such as Process Monitor to capture what command line is being used for the MSCORSVW
process. Executing the command:

C:\> NGEN install c:\some\binary.dll
Results in the following command line being executed:

MSCORSVW -StartupEvent A -InterruptEvent B -NGENProcess C -Pipe D

7/19

https://bugs.chromium.org/p/project-zero/issues/detail?id=1332

A, B, C and D are handles which NGEN ensures are inherited into the new process before it
starts. As we don’t see any of the original NGEN command line parameters it seems likely
they’re being passed over an IPC mechanism. The “Pipe” parameter gives an indication that
named pipes are used for IPC. Digging into the code in MSCORSVW, we find the method
NGenWorkerEmbedding, which looks like the following;:

void NGenWorkerEmbedding(HANDLE hPipe) {
ColnitializeEx(nullptr, COINIT_APARTMENTTHREADED);
CorSvcBindToWorkerClassFactory factory;

// Marshal class factory.

IStream* pStm;

CreateStreamOnHGlobal(nullptr, TRUE, &pStm);
CoMarshalInterface(pStm, &IID_IClassFactory, &factory,

MSHCTX_LOCAL, nullptr, MSHLFLAGS_NORMAL);

// Read marshaled object and write to pipe.
DWORD length;

char* buffer = ReadEntirelStream(pStm, &length);
WriteFile(hPipe, &length, sizeof(length));
WriteFile(hPipe, buffer, length);
CloseHandle(hPipe);

// Set event to synchronize with parent.
SetEvent(hStartupEvent);

// Pump message loop to handle COM calls.
MessageLoop();

/]
¥

This code is not quite what I expected. Rather than using the named pipe for the entire
communication channel it’s only used to transfer a marshaled COM object back to the calling
process. The COM object is a class factory instance, normally you’d register the factory using
CoRegisterClassObject but that would make it accessible to all processes at the same security
level so instead by using marshaling the connection can be left private only to the NGEN
binary which spawned MSCORSVW. A .NET related process using COM gets me interested
as I've previously described in another blog post how you can exploit COM objects
implemented in .NET. If we’re lucky this COM object is implemented in .NET, we can
determine if it is implemented in .NET by querying for its interfaces, for example we use the

8/19

https://googleprojectzero.blogspot.com/2017/04/exploiting-net-managed-dcom.html

Get-ComlInterface command in my OleViewDotNet PowerShell module as shown in the
following screenshot.

EX Windows PowerShell [x

$([System.Convert]: : ToBase64String($ba))
Get-ComMon r
QueryInterface(
: New-ComObject
> Get=-ComInterface

Get-Content .\objref.bin Byte

IID asProxy HasTypeLib
IUnknown f2ePE000-0000-2000-cP02 - 200200000046 False
IMarshal PEERRRA3-0000-0000-cPRA-000008000046 False
IMultiQI PE808020-0000-2000-cE00 - 200000000046 False
IClientSecurity 2eeeel3d-0000-00088-cR08 - 200000000045 False
ICorSvcBindToWorker 5S5c6fb596-4828-4ed5-b9dd-293dad?36Fb5 True

We're out of luck, this object is not implemented in .NET, as you’d at least expect to see an
instance of the _Object interface. There’s only one interface implemented,
ICorSvcBindToWorker so let’s dig into that interface to see if there’s anything we can exploit.

Something caught my eye, in the screenshot there’s a HasTypeLib column, for
ICorSvcBindToWorker we see that the column is set to True. What HasTypeLib indicates is
rather than the interface’s proxy code being implemented using an predefined NDR byte
stream it’s generated on the fly from a type library. I've abused this auto-generating proxy
mechanism before to elevate to SYSTEM, reported as issue 1112. In the issue I used some
interesting behavior of the system’s Running Object Table (ROT) to force a type confusion in
a system COM service. While Microsoft has fixed the issue for User to SYSTEM there’s
nothing stopping us using the type confusion trick to exploit the MSCORSVW process
running as PPL at the same privilege level and get arbitrary code execution. Another
advantage of using a type library is a normal proxy would be loaded as a DLL which means
that it must meet the PPL signing level requirements; however a type library is just data so
can be loaded into a PPL without any signing level violations.

How does the type confusion work? Looking at the ICorSvcBindToWorker interface from the
type library:

interface ICorSveBindToWorker : IUnknown {
HRESULT BindToRuntimeWorker(
[in] BSTR pRuntimeVersion,
[in] unsigned long ParentProcessID,
[in] BSTR pInterruptEventName,
[in] ICorSvcLogger* pCorSvcLogger,

9/19

https://www.powershellgallery.com/packages/OleViewDotNet
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhJdhGLBE8arI0qwk4-pgCMnhAplMPYLlnpBI8_8dAY4qJUBjCr8TqOKOgXTdmXO_MmMcNkRXA-YQeQH5EajyPBrrT9PtMhHkmpH0enZkw1pSV1OKjz_wYu_Uj6wgMJUJY5IYDpujAQmc-1syFmcihPPCyeXylgJFA95lAsfdSiWKUt6HBHmjY34_YD/s929/UJYmb3RK9q81XK2CUlzm88pXNoJNHXDNhWA83dVa2pBretNyevqqQbeRuxwogMP52WNVOhCWdMQtUmoJm8s4O6s4XSNn71TYV5H33aiu5iSffqh6T_TIoNWTPndx-idluNcoRaYn.png
https://bugs.chromium.org/p/project-zero/issues/detail?id=1112

[out] ICorSveWorker** pCorSvcWorker);
5

The single BindToRuntimeWorker takes 5 parameters, 4 are inbound and 1 is outbound.
When trying to access the method over DCOM from our untrusted process the system will
automatically generate the proxy and stub for the call. This will include marshaling COM
interface parameters into a buffer, sending the buffer to the remote process and then
unmarshaling to a pointer before calling the real function. For example imagine a simpler
function, DoSomething which takes a single IUnknown pointer. The marshaling process
looks like the following:

void DoSomethingProxy(IUnknown* intf) { Untrusted Process
IMarshalBuffer* buffer = GetBuffer();
buffer-:>MarshalObject(inft);
buffer-»Callstub();

} ~

R void DoSomethingStub(IMarshalBuffer® buffer) {
IUnknown* arg = buffer-»UnmarshalObject();
this->RealObject->DoSomething(arg);

}
B
void DoSomething(IUnknown* intf) {
intf->AddRef();
}

The operation of the method call is as follow:

1. The untrusted process calls DoSomething on the interface which is actually a pointer to
DoSomethingProxy which was auto-generated from the type library passing an
IUnknown pointer parameter.

2. DoSomethingProxy marshals the IlUnknown pointer parameter into the buffer and calls
over RPC to the Stub in the protected process.

3. The COM runtime calls the DoSomethingStub method to handle the call. This method
will unmarshal the interface pointer from the buffer. Note that this pointer is not the
original pointer from step 1, it’s likely to be a new proxy which calls back to the
untrusted process.

4. The stub invokes the real implemented method inside the server, passing the
unmarshaled interface pointer.

5. DoSomething uses the interface pointer, for example by calling AddRef on it via the
object’s VTable.

How would we exploit this? All we need to do is modify the type library so that instead of
passing an interface pointer we pass almost anything else. While the type library file is in a

10/19

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhBOmPDZZTBxQBFxI-bAUM8DeTeNcYvx6mpn8yAOsSLSTWF_TvvuSn-NQgHVVnhNQXs4lrYPfSpaF8HkijNPjRy8iCkSsg_UwZWMpkATLqRWnhmIhl6KhNPv5EHZcaoPboybDGbUak8cq6PSdy2R9gazIiZrsHsS2gkC_DAhBz03NydVVEYE5ZkpYB8/s940/obREQpGz4nheBu-Nbd7nA2a_qY7g3kNndjRDiCClVsFeBbfFvQ6zCCdHjyknAvGPSkyw7Gpdr4r-tfka_n9w5EwJQojls3KqGcacbDsrSCnSHjeg0X8DYCf8lwC8iBCFBOSuaPXO.png

system location which we can’t modify we can just replace the registration for it in the
current user’s registry hive, or use the same ROT trick from before issue 1112. For example if
we modifying the type library to pass an integer instead of an interface pointer we get the
following:

void DoSomethingProxy(long 1) { Untrusted Process
IMarshalBuffer* buffer = GetBuffer();
buffer->Marshallong(l)};
buffer-:Callstub();

} e

Protected NGEN Process void DoSomethingStub(IMarshalBuffer* buffer) {
long 1 = buffer-:UnmarshallLong();

this->RealObject->DoSomething((IUnknown*)1);
}

Results in_L type —
confusion ‘H“x oid DoSomething(IUnknown* intf) {
intf->AddRef();

}

The operation of the marshal now changes as follows:

1. The untrusted process calls DoSomething on the interface which is actually a pointer to
DoSomethingProxy which was auto-generated from the type library passing an
arbitrary integer parameter.

. DoSomethingProxy marshals the integer parameter into the buffer and calls over RPC
to the Stub in the protected process.

. The COM runtime calls the DoSomethingStub method to handle the call. This method
will unmarshal the integer from the buffer.

. The stub invokes the real implement method inside the server, passing the integer as
the parameter. However DoSomething hasn’t changed, it’s still the same method which
accepts an interface pointer. As the COM runtime has no more type information at this
point the integer is type confused with the interface pointer.

. DoSomething uses the interface pointer, for example by calling AddRef on it via the
object’s VTable. As this pointer is completely under control of the untrusted process
this likely results in arbitrary code execution.

By changing the type of parameter from an interface pointer to an integer we induce a type
confusion which allows us to get an arbitrary pointer dereferenced, resulting in arbitrary
code execution. We could even simplify the attack by adding to the type library the following

structure:

struct FakeObject {
BSTR FakeVTable;

11/19

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgc75Q6hHhYN29EJPcsRyJZAg_ZjYOKHH1frjUR3PABrGrlfOM0wSROH_2QIZmNhANbHhX9ql81uPuCtEQvOHUmaE4MbS4rk6Gb7Mto7VN5_zBLDULS_kJtuK3H8qXrlIrRtBeFcPxzkiY2NTuCl7Rl_EvhRMMz35Ep1697VEbkVLh5l3DkOb33Xibc/s939/pqCXdG050a-DcdPsmeTXtMnU4PQAiwnckZX_C9QT2-nF1kLPZm3m5ue-DBMdEBwi9AZ3rB_5PydXC63JMOhRbciI--xWz7u-jD97uuLD1B1eqWoR0TKArzMPzB3_onQ17pWfg2rg.jpg

};

If we pass a pointer to a FakeObject instead of the interface pointer the auto-generated proxy
will marshal the structure and its BSTR, recreating it on the other side in the stub. As a BSTR
is a counted string it can contain NULLS so this will create a pointer to an object, which
contains a pointer to an arbitrary byte array which can act as a VTable. Place known function
pointers in that BSTR and you can easily redirect execution without having to guess the
location of a suitable VTable buffer.

To fully exploit this we’d need to call a suitable method, probably running a ROP chain and
we might also have to bypass CFG. That all sounds too much like hard work, so instead I'll
take a different approach to get arbitrary code running in the PPL binary, by abusing
KnownDlls.

KnownDlls and Protected Processes.

In my previous blog post I described a technique to elevate privileges from an arbitrary object
directory creation vulnerability to SYSTEM by adding an entry into the KnownDIls directory
and getting an arbitrary DLL loaded into a privileged process. I noted that this was also an

administrator to PPL code injection as PPL will also load DLLs from the system’s KnownDlls
location. As the code signing check is performed during section creation not section mapping
as long as you can place an entry into KnownDlIls you can load anything into a PPL even
unsigned code.

This doesn’t immediately seem that useful, we can’t write to KnownDIls without being an
administrator, and even then without some clever tricks. However it’s worth looking at how a
Known DLL is loaded to get an understanding on how it can be abused. Inside NTDLL’s
loader (LDR) code is the following function to determine if there’s a preexisting Known DLL.

NTSTATUS LdrpFindKnownDII(PUNICODE_STRING DIlIName, HANDLE *SectionHandle)

{
// If KnownDII directory handle not open then return error.

if (\LdrpKnownDIIDirectoryHandle)
return STATUS_DLL _NOT_FOUND;

OBJECT_ATTRIBUTES ObjectAttributes;
InitializeObjectAttributes(&ObjectAttributes,
&DIIName,
OBJ_CASE_INSENSITIVE,
LdrpKnownDIIDirectoryHandle,
nullptr);

12/19

https://googleprojectzero.blogspot.com/2018/08/windows-exploitation-tricks-exploiting.html

return NtOpenSection(SectionHandle,
SECTION_ALL_ACCESS,
&ObjectAttributes);

The LdrpFindKnownDII function calls NtOpenSection to open the named section object for
the Known DLL. It doesn’t open an absolute path, instead it uses the feature of the native
system calls to specify a root directory for the object name lookup in the
OBJECT_ATTRIBUTES structure. This root directory comes from the global variable
LdrpKnownDIIDirectoryHandle. Implementing the call this way allows the loader to only
specify the filename (e.g. EXAMPLE.DLL) and not have to reconstruct the absolute path as
the lookup with be relative to an existing directory. Chasing references to
LdrpKnownDIIDirectoryHandle we can find it’s initialized in LdrpInitializeProcess as
follows:

NTSTATUS LdrplnitializeProcess() {
/]
PPEBpeb=// ...
// If a full protected process don't use KnownDlIs.
if (peb->IsProtectedProcess && !peb->IsProtectedProcessLight) {
LdrpKnownDIIDirectoryHandle = nullptr;
}else{
OBJECT_ATTRIBUTES ObjectAttributes;
UNICODE_STRING DirName;
RtlInitUnicodeString(&DirName, L"\\KnownDIIs");
InitializeObjectAttributes(&ObjectAttributes,
&DirName,
OBJ_CASE_INSENSITIVE,
nullptr, nullptr);
// Open KnownDlls directory.
NtOpenDirectoryObject(&LdrpKnownDIlDirectoryHandle,
DIRECTORY_QUERY | DIRECTORY_TRAVERSE,
&ObjectAttributes);

This code shouldn’t be that unexpected, the implementation calls NtOpenDirectoryObject,
passing the absolute path to the KnownDIls directory as the object name. The opened handle
is stored in the LdrpKnownDIIDirectoryHandle global variable for later use. It’s worth noting
that this code checks the PEB to determine if the current process is a full protected process.
Support for loading Known DLLs is disabled in full protected process mode, which is why
even with administrator privileges and the clever trick I outlined in the last blog post we
could only compromise PPL, not PP.

13/19

How does this knowledge help us? We can use our COM type confusion trick to write values
into arbitrary memory locations instead of trying to hijack code execution resulting in a data
only attack. As we can inherit any handles we like into the new PPL process we can setup an
object directory with a named section, then use the type confusion to change the value of
LdrpKnownDIIDirectoryHandle to the value of the inherited handle. If we induce a DLL load
from System32 with a known name the LDR will check our fake directory for the named
section and map our unsigned code into memory, even calling DlIMain for us. No need for
injecting threads, ROP or bypassing CFG.

All we need is a suitable primitive to write an arbitrary value, unfortunately while I could find
methods which would cause an arbitrary write I couldn’t sufficiently control the value being
written. In the end I used the following interface and method which was implemented on the
object returned by ICorSvcBindToWorker::BindToRuntimeWorker.

interface ICorSvcPooledWorker : IUnknown {
HRESULT CanReuseProcess(

[in] OptimizationScenario scenario,

[in] ICorSvcLogger* pCorSvcLogger,

[out] long* pCanContinue);
¥
In the implementation of CanReuseProcess the target value of pCanContinue is always
initialized to 0. Therefore by replacing the [out] long* in the type library definition with [in]
long we can get 0 written to any memory location we specify. By prefilling the lower 16 bits of
the new process’ handle table with handles to a fake KnownDlls directory we can be sure of
an alias between the real KnownDIls which will be opened once the process starts and our
fake ones by just modifying the top 16 bits of the handle to 0. This is shown in the following
diagram:

14/19

Handle Table

Fake KnownDlls (0x104)

Aliased
Handle in

First Handle (0x10000) Lower 16 bits.
Handles (....)

Once we’ve overwritten the top 16 bits with o (the write is 32 bits but handles are 64 bits in
64 bit mode, so we won’t overwrite anything important) LdrpKnownDIIDirectoryHandle now
points to one of our fake KnownDIls handles. We can then easily induce a DLL load by
sending a custom marshaled object to the same method and we’ll get arbitrary code
execution inside the PPL.

Elevating to PPL-Windows TCB

We can’t stop here, attacking MSCORSVW only gets us PPL at the CodeGen signing level, not
Windows TCB. Knowing that generating a fake cached signed DLL should run in a PPL as
well as Microsoft leaving a backdoor for PPL processes at any signing level I converted my C#
code from Issue 1332 to C++ to generate a fake cached signed DLL. By abusing a DLL hijack
in WERFAULTSECURE.EXE which will run as PPL Windows TCB we should get code
execution at the desired signing level. This worked on Windows 10 1709 and earlier, however
it didn’t work on 1803. Clearly Microsoft had changed the behavior of cached signing level in
some way, perhaps they’d removed its trust in PPL entirely. That seemed unlikely as it would

have a negative performance impact.

After discussing this a bit with Alex Ionescu I decided to put together a quick parser with
information from Alex for the cached signing data on a file. This is exposed in
NtObjectManager as the Get-NtCachedSigningLevel command. I ran this command against a
fake signed binary and a system binary which was also cached signed and immediately
noticed a difference:

15/19

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgdr3uxnKC-itsuk0jQOHM0qcW0dGFcTZaLEWMxeWAL1frvTbVp-21FA-KtwK_AB9ZNNWSkib_FL7C7-pFGHSzYO42rnnUSu0sp1Ctb-8FTZiF-JFRmuAeJXf0Dp6F9VXr9LAfENPGTf3SNEfCJyvbunmVmkQDzH0tLaSrUYHvApek-zk5vyDhpupc9/s452/aPPRjwqJaNxXZ7ZtYTO1cynZbzQKBERSLsbg5BEM9FE_YSzcnXyF45RjK9RaWVSg8qK7hA5KzjRA_BLRVnkU6hrJtFh9sB4-mQ6Y3l5lG7Tn1b4R2GQugUlnmhhjsKJ1QVQqRTXz.png
https://bugs.chromium.org/p/project-zero/issues/detail?id=1332

E¥ windows PowerShell] }(
PS5 C:\>» Get-NtCachedSigninglLevel .\temp\fakesigned.dll

Flags : TrustedSignature

SigninglLevel : Windows

Thumbprint : BCOEFEABA33BDSEDFB188574D9259881AFASASE92062224E1DFCF35B41C662
84D

ThumbprintBytes : {188, 1 251, 1e68...}

ThumbprintaAlgorithm : B

PS C:\» Get-NtCachedSigninglLevel .\Windows\system32\ntdll.dll

Flags

SigninglLevel ! Windows

Thumbprint : AABEC2661338F46C270DE599254E9342EF356405AA431925759CF97F116D4
78F

ThumbprintBytes : {74, 142, 194, 162...}

ThumbprintAlgorithm : Sha25eé

For the fake signed file the Flags are set to TrustedSignature (0x02), however for the system
binary PowerShell couldn’t decode the enumeration and so just outputs the integer value of
66 which is 0x42 in hex. The value 0x40 was an extra flag on top of the original trusted
signature flag. It seemed likely that without this flag set the DLL wouldn’t be loaded into a
PPL process. Something must be setting this flag so I decided to check what happened if I
loaded a valid cached signed DLL without the extra flag into a PPL process. Monitoring it in
Process Monitor I got my answer:

16/19

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhAIAM1s4QowqgvWYO3pzoYeTPJMV1M9vqTHgFsNnSdkaWduLfaWOiSDpiHcmSjY9s_wFrgolpEtitJugBpyhvw-eBOnDO5RArQnO_HAPC6Xs_gTWIMOVRVILtdtVbG_zRxYWgrpiZUMHD63FffkqMtp6NKvnn89VAnuQlPPwc-0BSbUst5rctJNwgh/s929/nZgar3xdihocEH1t_Rw1kZpX0RaKD1yK6kFzPfS_7BGHRHxUnQz_LfVZHNAqV6czYAp5KeUeRi5pUflGJnaKQraqF3mvHeuA0KlnE-76ofpAfvPBKGQj-JxiICVrSWXWQwxbqS6U.png

27 Process Monitor Sysinternals: www. sysinternals.com

File Edit Evenl Filter

lools Options Help

FEREBE(TLDS [45 KB LTE

Process Name
W o aultSecine o
w'u'l'erFaLitSEcure.axa
I8 Werk aultSecune pxe
R e FaullSacure axe
% WerF aultSecure see
R W Faull Secuis exe
B VerFaultSecure axe
% W aultSecune
B erFaultSecurs axe
W b aultSecine o
@'WﬁFadtSEﬂ:ur&.axﬂ
B8 Werk aultSecure sxe
T e Faull Sacure e
% WerF aultSecure see
WerFaullSecus exe
HWerFaultSecure axe
R Wl aultSecurne e
B WerFaultSecurs axe
% ek aultSecine
A WarFaullSacura.axs
I8 Werk aultSecure sxe
% e Faull Secure exe
% WerF aultSecure see

FID Operation
13666 B Closef e
13668 =) QuenyEAFia
13668 fﬂ..l-nln.’-;ye;mm[:nn‘:rnl
13668 Sh FileSyslemConlrol
13668 B QuenStandard nfam
13666 S Crealelile
13668 5 CreateFileMapping
13666 =h QueryEAFie
13668 2 FileSystemControl
13668 S FleSystemtGontrol
13668 =) QuenyEAFia
13668 Rl-lln:-;gpﬁlnmi:nn‘:rnl
13668 Sh FileSyslemConlrol
13668 B QuenStandard i nfam
13666 Zh QueryEAFie
13668 Sh QueryEAFile
13666 ShFileSystemControl
13668 S FileSystemConirol
13668 Fh FleSystemControl
13668 o, 1SalEAFi

13668 Bk CreateFileMappng
13666 OF Load Image
13668 B ClosaFile

Path
C-Atemplabgheip ol
Citempldbgheip dl
C\emplabghedp ol
C:Mempldbgheip di
CMempldbghep i
C:Mempldbgheip di
C\empidbgheip di
Cotemprdbghedp 0l
Citempldbghelp di
C-Atemplabg e ol
Citempidbgheipdl
- \emplabghedp ol
CMempldbgheip di
C Mempldbghep i
Ci\lamphdbghedp gl
Citempldbghelp di
Citemplabgieip ol
Cilempldbghelp di
C-itemplabghedp ol

C Aemplbghelp ol
C:Mempldbgheip di
CMempldbghep di

Dietai ~

Contral FSCTL_GET_EXTERNAL _BACKIND
Control: FSCTL_QUERY_USM_JOURNAL

AlocabionSize 1,728 512, End0fFie 1,728 51;
Dessined Access: Read Datailisl Direclory, Exe
SyncType: SyncTypeCreateSaction, PageProte

Control FSCTL_GET_EXTERMNAL_BACKING
Control FSCTL_ QUERY _LUSM JOLIHBMAL

Control FSGTL_GET_EXTERNAL_BACKING
Contral FSCTL_QUERY _USN_JOURMNAL
AbocationSize 1,728 512, Fnd0fFie 1,728 51;

Control FSGTLWHRITE USH CLOSE RECO
Control FSCTL_GET_EXTERMAL_BACKING
Control FSCTL_CQUERY _LUSM JOLIHBMAL

SyneType: SynclypeOther
Image Basa: OxTMcEbELED00, Image Siee: Ox1

Coilemptdbagheio di Control FSGTL WRITE USN CLOSE RECO

W Wl aultSecure oo 13666 _rfll eSyslemCGontrol
< >

|Shl.rl.-.'il1g Al af 5403 events (0074%) Backed by virtual memory

The Process Monitor trace shows that first the kernel queries for the Extended Attributes
(EA) from the DLL. The cached signing level data is stored in the file’s EA so this is almost
certainly an indication of the cached signing level being read. In the full trace artifacts of
checking the full signature are shown such as enumerating catalog files, I've removed those
artifacts from the screenshot for brevity. Finally the EA is set, if I check the cached signing
level of the file it now includes the extra flag. So setting the cached signing level is done

automatically, the question is how? By pulling up the stack trace we can see how it happens:

17/19

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEicuUqzbc2GqzLMK6fcLwpz5nXOknJtfnqDKn-gUvrbnEs1TECdF3kG_5aTXAljGtaTfgi8-3CHa4wk7zDGRNMsgZdN75nPPitPdHiUW893Ka-ymiNtsL5AKeuggzJLBZOYtbjN-pVs_Ep8HUsmsv88pvuWPbCuuR_VQh3tuS8r8pOFG6u4fYrDO3Dh/s1062/qE7QBfCbiHE1HuqTa0sDhmDwyfNmAiB8bAXt_Z0-Q2vgH1UeE9mZGd3H3N2ZBqwTIpWr2nZ61dlirfRw7SF41bAVJ-36RccVo-kVZaZFFhyXm7afQ9uZJgcGOinY4dEBI2Cw_UaB.png

&Y Event Properties — O =
Fwent Process Stack
Frama Module Location Adddress Path ~
K FLTMGR.SYS FpPerformPreCalbacks + (cddc (cfififiOa308d66c COWINDOWS System3Zdmears FLTMGR S5
K1 FLTMGR.SYS FRpFassThroughinbernal + o ffifd0i3osdizic COWINDOWS SystemdZdme s FLTMGH 55
K2 FLTMGR.SYS FiRpHassThrough + Dnl44 et fFS0E39E45304 COWINDOWS \ System3AdmvarsiFL TMGH 55
K 3 FLTMGR.SYS FipDespatch + Oxba (ififi0E396d5 1ae COOWWINDOWS\ SystemdZdmens|FLTMGH 55
K4 nkoskml exe lofCalDmver + Ox39 xdfffe02E0252etd COWNINDOW S systemd2 ntoskml exe
K5 ntoskml axe FsRESalKamealEaFile + Dnel (etffE0ZE0 /500¢7 COWWINDOWSsystem 32\ ntoskml axe
K & [Cl.al CipSatFieCache + Oxdba] ifrE0E39a00881 COWINDOWSSystem3Cl ol
K7 Clail CivabdgalmageHeader « D 1a Ouififa0839aaddaa COWNNDOWS systemI2C) al
K 4 nkoskmi exa SaVabdytalmageHaader + Dxaa OxIfTE0ZEL 736al8 CWINDOWSsyslemIZ\ntoskmil axe
K g nkcskmi axa MivabdleSecionCreate + D45 OifNrE0ZE0 7 35ach CWINDOWSSyslemIZintoskmil axe
K 10 nteskmlexs MivabdfleSechonSgnngPobey + Oxh? (dtfROZEL MR S3e COWWINDOWS syslemIntoskml e
K11 nteskmlexe MivabdfieEsstnglmage + el 21 OfHFBOZELTRA 107 CUWWINDOWS Syslom N ntoskml e
K 12 ntosknl exs MiShargEestingConbrolAres + Che? OxIPNFBOZEL 7086 CUWWINDOWSSyslemIdntoskml exe
K 13 nloskmlexe MiCrealglmagedsDataSectan + 0150 CTHPROZELTRE00] CUWWINDOWS syslem TN ntoskinl e
K 14 Aokl oo MiCraaleSaction = Dol O PNrA0ZELTHG 168 COWWINDOWS Syslem A ntoskmil oo
K 15 aboskml o BmCraaSecion + O Ol PFBOZELTRG0%: CUWNINDOWS syslam LN ntoskomil o
K 18 [nboskml gum MiCraalaSaction = 153] CefENFRO2ELTHSa5] CUWWINDOWS syslamLAntoskmil o
K17 ntoskmlexn KSystemSorvcaCopyEnd + a3 CelfifA02 8030 1243 CONINDOWS syslem X ntoskml axe
U 1a nbdil il RilDoesFieEasts_UskEx + ChcldGal D Miiocd s 1 i34 CoWindows SystemdZinidi di
U e ntddn LdpSearchResourceSection_U + (xbf8 (7 iocd Thba4 B C-iindows System3Zinidl di
20 nbaidn LoiloadAllemaleRasowceModuieEx + Iedfa (Iffccd Thadea CoWindows' Systemd il ol
U21 ntddn LdpSearchResourcaSection_U + (b (s Miccd Thbi23b C:IWindows System3 Zinldl di
U2z negian LopinsertModule TolndexockHekd + 05 [¥ifccd Thbiad CoiwWindows\System3dZnidl di W
Properties... Search... SSOUIE. . Sane...
* % [West Highlighted Copy Al Close

Looking at the middle of the stack trace we can see the call to CipSetFileCache originates
from the call to NtCreateSection. The kernel is automatically caching the signature when it
makes sense to do so, e.g. in a PPL so that subsequent image mapping don’t need to recheck
the signature. It’s possible to map an image section from a file with write access so we can
reuse the same attack from Issue 1332 and replace the call to NtSetCachedSigningLevel with
NtCreateSection and we can fake sign any DLL. It turned out that the call to set the file cache
happened after the write check introducted to fix Issue 1332 and so it was possible to use this
to bypass Device Guard again. For that reason I reported the bypass as Issue 1597 which was
fixed in September 2018 as CVE-2018-8449. However, as with Issue 1332 the back door for
PPL is still in place so even though the fix eliminated the Device Guard bypass it can still be
used to get us from PPL-CodeGen to PPL-WindowsTCB.

Conclusions

This blog showed how I was able to inject arbitrary code into a PPL without requiring
administrator privileges. What could you do with this new found power? Actually not a great
deal as a normal user but there are some parts of the OS, such as the Windows Store which
rely on PPL to secure files and resources which you can’t modify as a normal user. If you
elevate to administrator and then inject into a PPL you’ll get many more things to attack such
as CSRSS (through which you can certainly get kernel code execution) or attack Windows
Defender which runs as PPL Anti-Malware. Over time I'm sure the majority of the use cases
for PPL will be replaced with Virtual Secure Mode (VSM) and Isolated User Mode (IUM)

18/19

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiCwg5nib8Yv7pqjv-tw3I8Dh-kkjUct76MHA5h4RdvV7oIDtFC-woWZ2s08Gn8E7VXlQtMO-g5rl7XTb2fHXxQ6Sk5Y3mMe6iUcjK_b0BClhtcOumP4q84l569GqZNWEDRIjv0I1m0RhF8bVJhUwV8wYjxbkqpOqa0hN2I4clgAiQFBuTNjo4BDUl-/s928/q5jxEBAbN9pDSIQEB71vUaGojwxsFOf_4Ya-p34wZJFKwtaq1R7v9FNqZGw_Up-TmPsqIn16LDU3_LQyJ4LT8SGCBkw9iN9svM7jbYvV7XpVZS-7lgIONsUf_g8tyX8MSy5G538b.png
https://bugs.chromium.org/p/project-zero/issues/detail?id=1597
https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2018-8449

applications which have greater security guarantees and are also considered security
boundaries that Microsoft will defend and fix.

Did I report these issues to Microsoft? Microsoft has made it clear that they will not fix issues
only affecting PP and PPL in a security bulletin. Without a security bulletin the researcher
receives no acknowledgement for the find, such as a CVE. The issue will not be fixed in
current versions of Windows although it might be fixed in the next major version. Previously
confirming Microsoft’s policy on fixing a particular security issue was based on precedent,
however they’ve recently published a list of Windows technologies that will or will not be
fixed in the Windows Security Service Criteria which, as shown below for Protected Process
Light, Microsoft will not fix or pay a bounty for issues relating to the feature. Therefore, from
now on I will not be engaging Microsoft if I discover issues which I believe to only affect PP
or PPL.

Intent
is to
Category Security feature Security goal service? Bounty?
User safety User Acc.ount Prevent un'.-.'anred system-wide changes (files, No No
Control (UAC) registry, etc) without administrator consent
Exploit Windows Allow apps to enable additional defense-in-
mitigations Defender Exploit depth exploit mitigation features that make it Mo Ma
9 Guard (WDEG) more difficult to exploit vulnerabilities
___ -
/ Prevent non-administrative non-PPL |
: Platform Protected Process processes from accessing or tampering with No No I
| lockdown Light (PPL) code and data in a PPL process via open '
2\ process functions |

The one bug I reported to Microsoft was only fixed because it could be used to bypass Device
Guard. When you think about it, only fixing for Device Guard is somewhat odd. I can still
bypass Device Guard by injecting into a PPL and setting a cached signing level, and yet
Microsoft won'’t fix PPL issues but will fix Device Guard issues. Much as the Windows
Security Service Criteria document really helps to clarify what Microsoft will and won't fix it’s
still somewhat arbitrary. A secure feature is rarely secure in isolation, the feature is almost
certainly secure because other features enable it to be so.

In part 2 of this blog we’ll go into how I was also able to break into Full PP-WindowsTCB
processes using another interesting feature of COM.

19/19

https://www.microsoft.com/en-us/msrc/windows-security-servicing-criteria
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiJMNOYIKWkGJXG6L7Jv_aSs0a0wJioN3_ENbtpnEtVOVWdeNm79k6i1xMAhN25_lUELR60hvMb4DFUp-dIwViQJdLmnlpr6rwmT43sgKBy66n-Jdyg7sp0APefmXhiMMlVi1reZw8GRsoGOhswRQLNnPN6OI8yhIhlIXrsA79V67opGTOewDtW2Wgh/s920/MSPiRQQiE9KxoLqxkKIjERKvuoGDgHZmie4ad97rQnzVPhXAtMxGn0oNQ8NgYXEQRGhtszrOMyKTmOJVQ7SkBx2ofA2MiyvedN8MTD1bkcicsQipefb_jTcwGz5xp9Yuqv-Q9b18.png

