
1/7

SizeOfStackReserve As Anti-Attaching Trick
waleedassar.blogspot.com/2012/11/sizeofstackreserve-as-anti-attaching.html

In this post i will show you a new anti-attaching trick that has been tested on Windows 7. It
does not work on Windows XP due to the changes Microsoft introduced in the way threads
are created.

Let's first see how thread creation in Windows 7 is different from that of Windows XP.

In Windows XP, whenever you call the kernel32 "CreateRemoteThread" or the ntdll
"RtlCreateUserThread" function to create a new thread, the following occurs underneath:

The kernel32 "BaseCreateStack" or ntdll "RtlpCreateStack" function is called in case of 
"CreateRemoteThread" or "RtlCreateUserThread" successively to allocate space for the
new thread's stack in the address space of the target process.

N.B. The kernel32 "CreateThread" function is only a call to the kernel32
"CreateRemoteThread" function with the "hProcess" parameter set to -1.

Since there is no big difference between the "BaseCreateStack" and "RtlpCreateStack"
functions, it is enough for us to take the "BaseCreateStack" function in disassembly in this
post.

The "BaseCreateStack" function takes four parameters, only three of them are of interest.
The first parameter is the handle to the process in which we are about to allocate user stack
memory. The second parameter is the size in bytes of user stack memory to COMMIT into
the target process's address space. The third parameter is the size in bytes of user stack
memory to RESERVE into the target process's address space. Hereafter, i will refer to them
as hProcess, CommitSize, and ReserveSize.

N.B. If you call the "CreateRemoteThread" function with the "dwStackSize" parameter set
to e.g. 0x10000, then BaseCreateStack commits 0x10000 bytes. On the other side, if the
"CreateRemoteThread" function is called with the "dwCreationFlags" parameter having the

http://waleedassar.blogspot.com/2012/11/sizeofstackreserve-as-anti-attaching.html
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682437%28v=vs.85%29.aspx
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/Executable%20Images/RtlCreateUserThread.html
http://1.bp.blogspot.com/-wOzAz6135ls/UJgjIdRCK9I/AAAAAAAABBA/b9QUKiIZyb4/s1600/begin.JPG


2/7

"STACK_SIZE_PARAM_IS_A_RESERVATION" flagset, then BaseCreateStack Reserves
0x10000.

Now, let's dive into the "BaseCreateStack" function and see what is going on inside.

1) It extracts the value of ImageBase from the PEB of the process in which it is called, the
value is then passed to the "RtlImageNtHeader" function. If the "RtlImageNtHeader"
function fails an error ERROR_BAD_EXE_FORMAT is returned.

If the "ReserveSize" parameter passed to it is zero, it uses the value of the
"SizeOfStackReserve" field of the IMAGE_OPTIONAL_HEADER structure.

3) Similarly, If the "CommitSize" parameter passed to it is zero, it uses the value of the
"SizeOfStackCommit" field of the IMAGE_OPTIONAL_HEADER
structure. Please
remember that the values are extracted from the PE header of the main executable of the
process that is calling the "CreateRemoteThread" function, not the target process.





4) It then makes some sanitization checks on the ReserveSize and CommitSize, for
example to ensure that the commit size is never greater than the reserve size. It also checks
to ensure that the commit size is never lower than the value of the "MinimumStackCommit"
field of PEB.










5) It calls the "ZwAllocateVirtualMemory" function to reserve memory of size ReserveSize
into the address space of the target process with the PAGE_READWRITE protection
attribute.





http://1.bp.blogspot.com/-7U8KtKWWceI/UJbdb8VO56I/AAAAAAAABAc/IfIEHAXmCiw/s1600/shit_rev.png
http://3.bp.blogspot.com/-bu2wJkIY77M/UJgkyzubW9I/AAAAAAAABBI/wZLs55LaThM/s1600/RTlImageNt.JPG
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680339%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680339%28v=vs.85%29.aspx
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Process/PEB.html


3/7



6) It calls the "ZwAllocateVirtualMemory" function to commit CommitSize+0x1000 of the
memory reserved in the previous step.








7) The extra page committed in the previous step is then given the PAGE_GUARD
protection attribute.

Here is a similar reversed code of the "BaseCreateStack" function. From here.

The reason why a PAGE_GUARD page always exists at the end of committed stack is for
the kernel to be notified each time the stack needs to be expanded. For example, if a thread
tries to touch its stack's PAGE_GUARD page, an STATUS_GUARD_PAGE_VIOLATION
exception is raised and swallowed by the kernel and it automatically commits one more
page.

N.B. If a thread tries to touch the PAGE_GUARD page of another thread's stack, the
exception is passed to the application or the debugger.

After the stack has been allocated in the target process's address space, the
"CreateRemoteThread" function formulates a CONTEXT structure for the new thread. After
the previous steps have completed successfully, the "ZwCreateThread" function is called to
initiate the new remote thread.

Now let's see how threads are created in Windows 7.

In Windows 7, if we take the "CreateRemoteThread" or "RtlCreateUserThread" function
into disassembly, we will see that the "dwStackSize" is directly passed to the
"ZwCreateThreadEx" function.


So, our first assumption here is that stack allocation is now forwarded to the kernel. Also, we
can note that now in later versions of Windows than XP, the "ZwCreateThreadEx" function
is by default used for thread creation instead of the "ZwCreateThread" function.

http://3.bp.blogspot.com/-s7xjTdPjJWM/UJhERJ2TYwI/AAAAAAAABCQ/irLtUFzSAIY/s1600/dddd.png
http://pastebin.com/79ZRpB6X


4/7

Now let's check the "NtCreateThreadEx" function in ntoskrnl.exe.

We can easily see in "NtCreateThreadEx" a call to the "PspCreateThread" function.

The "PspCreateThread" function calls the "PspAllocateThread" function which calls
"RtlCreateUserStack" function.

The "RtlCreateUserStack" function is called after attaching to the target process's address
space. Now let's look at the "RtlCreateUserStack" function in disassembly.

http://1.bp.blogspot.com/-Lb_Flrj8iZc/UJgyOS8TbZI/AAAAAAAABBs/FxFLsF4Cu8A/s1600/shi.png
http://2.bp.blogspot.com/-F9U3Zg6YJf8/UJhLiWPbOII/AAAAAAAABC8/PMLPbqwfjv8/s1600/Untitled_.png
http://2.bp.blogspot.com/-ZR5rPL6A8lU/UJhLL4SS_oI/AAAAAAAABC0/JMiVv479jBQ/s1600/Untitled.png
http://4.bp.blogspot.com/-P1ziG2X5xjs/UJhM5JiQKHI/AAAAAAAABDE/DPZuSm9XgWI/s1600/xxxxs.png
http://3.bp.blogspot.com/-K_cpT9QAiFI/UJhNlcB636I/AAAAAAAABDM/EO0u4Fvsanc/s1600/zzzzzz.png


5/7

Now it is easy to see that it reads the PE header from the main executable of the process in
which the remote thread is being created unlike XP where information was extracted from
the main executable of the process that creates the thread. Yeah, it seems Microsoft fixed a
very minor issue.

From the image above, it is also easy to conclude that if we forced the "RtlImageNtHeader"
function to fail, we can prevent any foreign process including the debugger from attaching to
our process. The easiest way to accomplish that is by erasing the PE header at runtime. 
Any call to ZwCreateThreadEx as part of calling the "DebugActiveprocess" function (Used
for attaching to a running process) would fail. For more information and examples, please
refer to my previous post.

N.B.DebugActiveProcess calls DbgUiIssueRemoteBreakin which calls
~RtlCreateUserThread which calls "ZwCreateThreadEx".

One may say, "Erasing the whole PE header may render many APIs which read from the PE
header useless e.g. FindResource or GetProcAddress". My answer will be "Yes, you are
right".

So, we should find a smarter way to do it.

Okay, let's continue disassembling the "RtlCreateUserStack" function.

 
As you can see in the image above if the size of stack commit argument passed to it is zero,
it takes the value of the "SizeOfStackCommit" field from the PE header. The same measure
is taken if the size of stack reserve passed is zero. It is also noteworthy that if both the size
of stack commit argument passed and "SizeOfStackCommit" of the PE header are zero,
the commit size becomes 0x4000 (The default commit size is 0x4000).

http://3.bp.blogspot.com/-CJbyV9XnP1M/UJhPyddf-FI/AAAAAAAABDU/LOrGoQx1-3g/s1600/imp.png
http://waleedassar.blogspot.com/2012/02/debuggers-anti-attaching-techniques_15.html
http://1.bp.blogspot.com/-YRuL5zDj_GA/UJhVk2NxhZI/AAAAAAAABD4/P6QnFcEK6NQ/s1600/shhshshs.png
http://4.bp.blogspot.com/-sDh9RVmuQ-Y/UJhXSdBsgwI/AAAAAAAABEA/2kDBDDoD9yc/s1600/d.png


6/7

The function then checks the size of stack commit against the size of stack reserve. If the
size of stack commit happens to be greater, then the size of stack reserve is adjusted to be
greater.

 
The function then ensures that the size to be committed is not less than the
"MinimumStackCommit" field of  the process's PEB. If it is less, the size to be committed is
adjusted.

The function then calls the "ZwSetInformationProcess" function with the
"ProcessInformationClass" parameter set to 0x29 (ProcessThreadStackAllocation). The
size to be reserved is passed in the 4th member of the structure passed in the
"ProcessInformation" parameter.

Now let's quickly have a look at the "NtSetInformationProcess" function.

As you can see in the two images above, the value of the 4th member of the structure
passed to the "ZwSetInformationProcess" function is used as the "RegionSize" parameter

http://4.bp.blogspot.com/-01XX_iLLysM/UJhZTi0240I/AAAAAAAABEI/Ccyel0PcbIM/s1600/shshsh.png
http://1.bp.blogspot.com/-bJM0z9EUbok/UJhcj9NDb7I/AAAAAAAABEs/f153uuOVdi8/s1600/wut.png
http://3.bp.blogspot.com/-b3wQLHj6458/UJhg10FB9_I/AAAAAAAABFQ/GCvw9ciZwrM/s1600/SHIT1.png
http://4.bp.blogspot.com/-MjhJMsq9z50/UJhg6dJUkgI/AAAAAAAABFY/d1hdiNg-E28/s1600/SHIT2.png


7/7

passed to the "ZwAllocateVirtualMemory" function.
Given this knowledge, if we at runtime change the value of the "SizeOfStackReserve" field
of the PE header to a huge value, then we can cause the "ZwAllocateVirtualMemory",
"ZwSetInformationProcess", "RtlCreateUserThread", "PspAllocateThread",
"PspCreateThread", and "NtCreateThreadEx" functions to successively fail preventing
any foreign processes including debuggers from creating any thread in our process.
A demo can be found here and its source code from here.
Any comments or ideas are more than welcome.
You can follow me on Twitter @waleedassar





http://code.google.com/p/ollytlscatch/downloads/detail?name=SizeOfStackReserve.exe
http://pastebin.com/yUsjVbzL
http://www.twitter.com/waleedassar

