
1/2

April 19, 2021

Beyond the good ol' LaunchAgents - 13 - Audio Plugins
theevilbit.github.io/beyond/beyond_0013

This is part 13 in the series of “Beyond the good ol' LaunchAgents”, where I try to collect
various persistence techniques for macOS. For more background check the introduction.

This is another one of my favorites for some reason. macOS being a popular audio editing

device, supports external audio drivers and plugins. @xorrior wrote a very extensive blog

post about these at his website, here: Audio Unit Plug-ins. Legitimate Un-signed Code

Execution | by Christopher Ross | Posts By SpecterOps Team Members

It is pretty amazing, and I don’t plan to repeat what it’s there but show another way of

implementing a plugin. I will briefly describe how to create a Hardware Abstraction Layer

(HAL) Service plug-in.

Apple has a nice documentation as well: Core Audio Overview

HAL plugins are loaded by coreaudiod , which runs as root, and defined at

/System/Library/LaunchDaemons/com.apple.audio.coreaudiod.plist . HAL plugins

are located at /Library/Audio/Plug-Ins/HAL , which means that we require root access to

install them.

We can easily create such a plugin with Xcode, by creating a new project, and selecting the

type as bundle . For the bundle extension we need to provide .driver . Once the project is

created we need to add a new source file.

#import <Foundation/Foundation.h>

__attribute__((constructor)) static void run()
{
 NSLog(@"%@", @"Hello from MasterAudio");
}

We can implement a simple constructor which will be loaded when the driver is loaded.

We don’t really need to do anything else. This will work just fine, and won’t crash

coreaudiod .

In the Info.plist we also need to add some UUID, and default function name, but we

don’t need to implement it.

https://theevilbit.github.io/beyond/beyond_0013/
https://theevilbit.github.io/beyond/beyond_intro/
https://twitter.com/xorrior
https://posts.specterops.io/audio-unit-plug-ins-896d3434a882
https://developer.apple.com/library/archive/documentation/MusicAudio/Conceptual/CoreAudioOverview/Introduction/Introduction.html

2/2

<key>CFPlugInFactories</key>
<dict>
 <key>00000000-0000-0000-0000-000000000000</key>
 <string>SomeFunction</string>
</dict>
<key>CFPlugInTypes</key>
<dict>
 <key>00000000-0000-0000-0000-000000000000</key>
 <array>
 <string>00000000-0000-0000-0000-000000000000</string>
 </array>
</dict>

Next we can simply compile it and place it in /Library/Audio/Plug-Ins/HAL . We will

need to set folder ownership to root:wheel .

We can then go and restart coreaudiod .

csaby@dev ~ % sudo launchctl stop com.apple.audio.coreaudiod
csaby@dev ~ % sudo launchctl start com.apple.audio.coreaudiod

Now we can query the logs.

csaby@dev ~ % log show --predicate 'eventMessage contains[c] "MasterAudio"' --last
20m
Filtering the log data using "composedMessage CONTAINS[c] "MasterAudio""
Skipping info and debug messages, pass --info and/or --debug to include.
Timestamp Thread Type Activity PID
TTL
2021-04-19 22:39:55.144111+0200 0x18e2 Default 0x0 586 0
coreaudiod: (MasterAudio) Hello from MasterAudio

As we can see our driver was loaded, and it will run as root.

This was just one option, Chris’s blog (linked above) details a few more.

