
1/16

Jon Gabilondo July 25, 2022

How to Inject Code into Mach-O Apps. Part II.
jon-gabilondo-angulo-7635.medium.com/how-to-inject-code-into-mach-o-apps-part-ii-ddb13ebc8191

Dynamic Code Injection Techniques

Jon Gabilondo

Organismo-App-inspector within Microsoft Word 2018.

Update !

This article was written while finding a solution to inject Organismo framework, or any other
library, into hardened applications. The article described a journey to overcome the
limitations that prevent code injection, until we stumbled into the final hurdle of AMFI and the
Gatekeeper.

Gladly, a little research on AMFI brought a surprising solution. You may jump to the end of
the article to find out the solution to inject code freely on any Mac App. However the content
until there is really interesting if you are into the details of the OS X (& iOS) system security.

https://jon-gabilondo-angulo-7635.medium.com/how-to-inject-code-into-mach-o-apps-part-ii-ddb13ebc8191
https://jon-gabilondo-angulo-7635.medium.com/?source=post_page-----ddb13ebc8191--------------------------------
https://jon-gabilondo-angulo-7635.medium.com/?source=post_page-----ddb13ebc8191--------------------------------
https://www.theiphonewiki.com/wiki/AppleMobileFileIntegrity

2/16

In Part I we saw how easy it is to inject code into Mac Apps, from Calculator to Mail, even
more surprisingly, into Microsoft Apps like Word 2018. Why would such important
applications not have a simple protection (hardening) against external code injection is not
easy to understand. In fairness we must say that in Part I we worked with the condition of
disabling System Integrity Protection (SIP) which is a major security layer on OS X.

In Part I we used a dynamic code injection techique using the DYLD_INSERT_LIBRARIES
environment variable, an old property of the Dynamic Linker ‘dyld’ to load external libraries.

However, as one would expect, the simple dynamic code injection used in Part I would not
succeed in (important) Apps such as iTunes, Xcode, Photos... These Apps are hardened to
instruct the ‘dyld’ to disable the injection defined by environment variables as well as to reject
code that does not match code signature of the Application.

In this story we will walk towards finding a solution to inject external code into hardened Apps
like iTunes and Xcode.

Hardened Runtime

The Hardened Runtime, along with System Integrity Protection (SIP), protects the runtime
integrity of your software by preventing certain classes of exploits, like code injection,
dynamically linked library (DLL) hijacking, and process memory space tampering.

There are two ways to harden your Application, the official one is by using entitlements and a
less common one by creating a __RESTRICT segment in the Mach-O binary.

To harden your Application in Apple’s official way navigate in Xcode to your target’s Signing
& Capabilities information and click the + button. In the window that appears, choose
Hardened Runtime.

3/16

Then add the capability ‘Hardened Runtime”. Check in ‘Build Settings’ that “Hardened
Runtime” is enabled.

Find Apple’s documenttion here:

Hardened Runtime Entitlements

The Hardened Runtime, along with System Integrity Protection (SIP),
protects the runtime integrity of your software by…

developer.apple.com

All About Notarization - WWDC 2019 - Videos - Apple Developer

Notarization is all about identifying and blocking malicious Mac software
prior to distribution, without requiring App…

developer.apple.com

Hardening by Entitlements

We’ve seen that Xcode allows to harden one Application in a simple manner, but how are
they applied to the binary and where are they kept in a binary.

Let’s start by retrieving the the entitlements of any Application binary, this is done using
codesign, lets’ do it on Music.app:

$ codesign -d --entitlements :-
/System/Applications/Music.appExecutable=/System/Applications/Music.app/Contents/MacOS

https://developer.apple.com/documentation/security/hardened_runtime_entitlements?language=objc&source=post_page-----ddb13ebc8191--------------------------------
https://developer.apple.com/videos/play/wwdc2019/703/?source=post_page-----ddb13ebc8191--------------------------------

4/16

This is the output of the codesign command containing the xml list with the entitlements of
the Music.app:

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST
1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"><plist version="1.0"><dict>
<key>com.apple.PairingManager.Read</key><true/>
<key>com.apple.PairingManager.RemovePeer</key><true/>
<key>com.apple.PairingManager.Write</key><true/>
<key>com.apple.amp.artwork.client</key><true/><key>com.apple.amp.devices.client</key>
<true/><key>com.apple.amp.library.client</key><true/><key>com.apple.application-
identifier</key><string>com.apple.Music</string>
<key>com.apple.authkit.client.internal</key><true/><key>com.apple.avfoundation.allow-
system-wide-context</key><true/><key>com.apple.avfoundation.allows-access-to-device-
list</key><true/><key>com.apple.avfoundation.allows-set-output-device</key><true/>
<key>com.apple.cdp.recoverykey</key><true/><key>com.apple.mediaremote.allow</key>
<array><string>TVPairing</string></array>
<key>com.apple.private.accounts.allaccounts</key><true/>
<key>com.apple.private.applemediaservices</key><true/><key>com.apple.private.aps-
connection-initiate</key><true/><key>com.apple.private.audio.notification-wake-
audio</key><true/><key>com.apple.private.bmk.allow</key><true/>
<key>com.apple.private.commerce</key><array> <string>Accounts</string></array>
<key>com.apple.private.fpsd.client</key><true/>
<key>com.apple.private.notificationcenter-system</key><array> <dict>
<key>identifier</key> <string>com.apple.appstoreagent</string> </dict></array>
<key>com.apple.private.rtcreportingd</key><true/>
<key>com.apple.private.security.storage.mobilesync.heritable</key><true/>
<key>com.apple.private.sqlite.sqlite-encryption</key><true/>
<key>com.apple.private.tcc.allow</key><array> <string>kTCCServiceAddressBook</string>
<string>kTCCServicePhotos</string> <string>kTCCServiceAppleEvents</string>
<string>kTCCServiceSystemPolicyAllFiles</string> <string>kTCCServiceCamera</string>
</array><key>keychain-access-groups</key><array> <string>com.apple.pairing</string>
<string>com.apple.airplay</string> <string>apple</string></array></dict></plist>

At runtime the OSX/iOS needs to validate the operations and resources accessed by the
executable, for that it needs to know what has the App been validated for, via the
entitlements. The entitlements are kept in the binary Mach-O structure itself, in the ‘Code
Signature’ setion.

5/16

The Code Signature section in Music.app binary.

Entitlements is therefore a simple xml list of keys defining the entitlement and its properties.
Although Apple documents and offers a handful of them to programmers, internally there
might be hundreds.

The assignment of entitlements to an App is a matter of defining the entitlements xml file in
the codesign command:

$ codesign --entitlements entitlements.xml -f -s "iPhone Distribution: Company
(XYZ)" Payload/Example.appAn interesting option when resigning an App that has
already the entitlements set use the flag:--preserve-metadata=entitlements

Hardened by __RESTRICT

A __RESTRICT segment is a section in the Mach-O binary file that can be created at link
time. The section has no content. It acts like a flag to instruct the ‘dyld’ to perform code
signature validation to all code loaded to the process.

See bellow how does the __RESTRICT section look like in iTunes:

6/16

The __RESTRICT section in iTunes.

Creating the __RESTRICT segment in Xcode is actually very easy. It is done by adding the
following flags into your “Other Linker Flags”:

-Wl,-sectcreate,__RESTRICT,__restrict,/dev/null

Why Is the Injection Rejected

The __RESTRICT segment flags the ‘dyld’ to activate the code signature validation for all
library to be loaded.

We saw in Part I how the injection in iTunes failed with the following message:

7/16

“dyld warning: could not load inserted library into hardened process because no suitable
image found. Code signature in framework not valid for use in process using Library
Validation”

If we analyse the code signature of iTunes and Organismo we can see they obviously have a
different code signing values (certificates):

iTunes code signature values.

Organismo code signature values.

Approaches to Overcome Hardening

In order to overcome the hardening barrier, these are the ideas that come to my mind. From
foolish to realistic, they are:

1. Build our own tweaked ‘dyld’ and instruct the Application to use it, instead of the default
‘/usr/lib/dyld’.

2. Codesign all software components with your own Certificate.
3. Remove the __RESTRICT segment.

8/16

Option 1. Create a Custom dyld

This is certainly a bold idea. To build a custom ‘dyld’ removing all the security measures that
would not care about SIP or __RESTRICT, sounds exciting. This option comes motivated by
two ‘reasonable’ facts. First, the ‘dyld’ code is open source:

macOS 10.14.5 - Source

Please be advised that unless your final product is also open source,
incorporating open source software containing…

opensource.apple.com

second, as we saw in part I, the Mach-O binary of every App specifies what dynamic linker
must be used. In Mac OS X is always ‘/usr/lib/dyld’:

As of today the macOS 10.14.5 open source site has more than one hundred projects. The
Dynamic Linker of OS X and iOS is right there. Impressive.

https://opensource.apple.com/release/macos-10145.html?source=post_page-----ddb13ebc8191--------------------------------
https://opensource.apple.com/release/macos-10145.html

9/16

Well, first problem:

Base SDK MacOSX.internal (SDK not found)

MacOSX.internal… Okay… I understand, Apple has its own SDK, makes sense. Can I get it
? Obviously not. So lets set the Base SDK to what we’ve got by default: ‘macOS’.

What happens from then on is a never ending compilation attempts with missing includes:
_simple.h, Block_private.h, coreSymbolicationDyldSupport.h, CrashReporterClient.h,
cs_blobs, objc-shared-cache, etc. etc. etc.

One can painstakingly find the missing includes from different packages of the open source,
until it makes no sense to continue. There must be a better way to do it, but it’s nowhere to
be found.

This option ends here. One wonders how does Apple understand open source.

Option 2. Re-Codesigning with Your Certificate

We assume that the Organismo framework is rejected by the ‘dyld’ because its code signing
certificate is different from the one of iTunes. Organismo uses your Developer Certificate,
iTunes uses Apple’s Private Certificate.

Therefore we assume that code signing iTunes with our Dev Certificate, the ‘dyld’ will pass
the code integrity validation when loading Organismo.

Re-codesigning any App is as simple as (remember to work on a copy of the App !):

$ codesign --deep --force --preserve-metadata=entitlements -s ‘Mac Developer: Jon
Gabilondo (HSU……MR)’ /Users/jongabilondo/Desktop/iTunes.app

10/16

Checking the signature with ‘codesign -dvvv’ we can actually see that the signature is now
‘Jon Gabilondo’, which is what we wanted. Let’s run the modified iTunes to see if it runs
properly, before we attempt the injection:

$ DYLD_INSERT_LIBRARIES=/path_to/Organismo-mac.framework/Versions/A/Organismo-mac
/Users/jongabilondo/Desktop/iTunes.app/Contents/MacOS/iTunes

The assumption of having the same code signature was right, partially. It did not consider the
ramifications of dylib dependencies that will always end up in an Apple system dylib with
Apple’s Signature. Like we see in the error report of the modified iTunes, the dylibs of iTunes
have Jon’s signature, but its dependencies always end up in Apple’s OSX /usr/lib dylibs.

Option 2 not good either.

11/16

Error loading dylib because binary is restricted.

It is always very useful to read Apple’s :

macOS Code Signing In Depth

Code signing is a facility by which developers can assign a digital identity to
their programs. Apple provides the…

developer.apple.com

Option 3. Removing the __RESTRICT segment

I’m left with the last bullet. If the __RESTRICT segment is the flag that is activating the code
signature validation, we might just remove it from the Mach-O binary.

This approach requires static code modification, which obviuously causes the binary
(checksums) invalidation. But we know how to recodesign an App with our Dev Certificate so
there should be no problem.

Removing the __RESTRICT segment

Several tools could be used to modify a Mach-O binary file, you can choose your favourite.
Here I will use iHex editor. Find the __RESTRICT segment and rename it , for instance to:
__XESTRICT. Save the file and codesign it with your Dev Certficate.

https://developer.apple.com/library/archive/technotes/tn2206/_index.html?source=post_page-----ddb13ebc8191--------------------------------

12/16

Renaming the __RESTRICT segment of iTunes Mach-O binary.

Now let’s inject Organismo into iTunes:

$ DYLD_INSERT_LIBRARIES=/path-to/Organismo-mac.framework/Versions/A/Organismo-mac
/Users/jongabilondo/Desktop/iTunes.app/Contents/MacOS/iTunes

This time Organismo framework was successfully loaded into iTunes.

13/16

Update for Catalina!

Mac OSX Catalina has added new system protections. After changing the RESTRICT
section the Apps and re-codesigning with the Dev Certificate it does result in a non valid
App.

Music.app crashes on start. The logs hint to the the taskgated-helper and amfid processes.
The error says: Disallowing com.apple.Music because no eligible provisioning profiles
found.

Here the Console logs:

error 11:06:47.743379+0200 error 11:06:47.743805+0200 default 11:06:47.743834+0200
default 11:06:47.743870+0200 default 11:06:47.743884+0200 default
11:06:47.744097+0200 default 11:06:47.744129+0200 default 11:06:47.744136+0200
default 11:06:47.744201+0200

The taskgated process belong to a daemon that can be found in:

/System/Library/LaunchDaemons/com.apple.taskgated.plistand the
related:/System/Library/LaunchDaemons/com.apple.taskgated-helper.plist

Which executables are : /usr/libexec/taskgated and /usr/libexec/tasgated-helper

14/16

The amfid is a daemon of the Apple Mobile File Integrity found in
/System/Library/LaunchDaemons/com.apple.MobileFileIntegrity.plist which launches
/usr/libexec/amfi.

This is a very interesting article on AMFI:

AMFI: checking file integrity on your Mac

https://eclecticlight.co/2018/12/29/amfi-checking-file-integrity-on-your-mac/?source=post_page-----ddb13ebc8191--------------------------------

15/16

Digging around looking at signature checking for apps in Mojave brought
me in contact with a part of macOS with which I…

eclecticlight.co

We can assume that these two Apple Security daemons are rejecting our codesigned
Music.app because the entitlements it requires are not accepted for our Dev Certificate. To
confirm this we can create an entitlements file based on Music.app’s entitlements and
removing the entries that start com.apple.private.*. The resulting Music.app will pass the
AMFI and Gatekeeper security validation and it will launch, but it will fail in operations that
require those entitlements.

These is a great WWDC video on Gatekeeper and other security updates for Catalina:

Advances in macOS Security - WWDC 2019 - Videos - Apple
Developer

We are on a journey to continuously improve macOS security, with a
particular focus on preventing malware and…

developer.apple.com

The Solution

The ending of the first version of the article was this one:

For my purpose of making Organismo App Inspector still work in Catalina and coming
versions, the direction to take is to get dyld, AMFI and the Gatekeeper ‘out of the way’, i.e. to
disable their integrity validation.

The expression to ‘get them out of the way’, could have not been more premonitory. See the
entry on AMFI on iphonewiki.

The amfi kext recognizes quite a few boot-args, including: — Allowing the above to
proceed even without entitlement — Allowing any digital signature on code, not just
Apple’s — disable amfi — Disable code signing enforcement — Debug code signing

We can set a boot-arg to disable AMFI daemon process completely !

% sudo nvram boot-args="amfi_get_out_of_my_way=0x1"(careful with the quotes if you
copy-paste.)

Reboot. The AMFI will disappear from your system. Organismo is free to be injected into any
App.

https://eclecticlight.co/2018/12/29/amfi-checking-file-integrity-on-your-mac/?source=post_page-----ddb13ebc8191--------------------------------
https://developer.apple.com/videos/play/wwdc2019/701?source=post_page-----ddb13ebc8191--------------------------------
https://www.theiphonewiki.com/wiki/AppleMobileFileIntegrity

16/16

% DYLD_INSERT_LIBRARIES=/path/to/Organismo-mac.framework/Versions/A/Organismo-mac
/System/Applications/Music.app/Contents/MacOS/Music

Organismo injected into Music.app

Thanks !

I hope you enjoyed it. You may explore it yourself using Organismo.

JonGabilondoAngulo/Organismo-Lib

Organismo framework to be injected into Mac Apps to explore them at
runtime…

github.com

https://github.com/JonGabilondoAngulo/Organismo-Lib?source=post_page-----ddb13ebc8191--------------------------------

