Hyper-V debugging for beginners
Author: Gerhart

Original article
https://hvinternals.blogspot.com/2015/10/hyper-v-debugging-for-beginners.html (blog article
can contains some updates in future)

Great thanks to ERNW for the translation of the article!

The article presents a study hypervisor Hyper-V 3.0, which is part of Windows Server 2012. For
the study was used the VMware Workstation 9, Windows Server 2012, Windows 7 x86, WinDBG 6.2 and
IDA PRO. To create a VMware virtual machine, set the type of the guest OS to - Hyper-V and put the
number of processors and cores to 1. Activate the Virtualize Intel VT-x / EPT, install Windows Server
2012 (or Hyper-V Server 2012) to activate the role of Hyper -V and install a guest in relation to the Hyper-
V on Windows 7 x86.

1. Terms and definitions

- The hypervisor — component of Hyper-V, depending on the manufacturer of the
processor (hvix64.exe for Intel and hvax64.exe for AMD). The article discusses the Intel hypervisor
processor.

- Hypercall (hypercall) - call a given function in the hypervisor using the instructions vmcall

- Root - partition (the rootpartition) — Windows Server 2012 with the included component

of Hyper-V.

- VMCS (virtual-machine control structure) — a structure that defines the logic of the

hypervisor.

- VMX root — mode, which is running a hypervisor.

- VMX non-root — mode in which the running operating system and its client application

software.

- VM exit— the transition ofthe VMX non-rootinto VMX root. Occurs when the

execution of instructions or conditions specified in the VMCS incorporated directly into the logic

of the processor.

2. Debugging

Hyper- (V) consists of several components, a brief description can be found in (1). For debugging
all components except the hypervisor you can use the standard methods, however, to connect to the
hypervisor you have to perform a few extra steps to configure root-partition.

For debugging the hypervisor, Microsoft developed a special extension to WinDBG hvexts.dll,
which, unfortunately, is not included in the distribution debugger and is available only to partners. Also
in the catalog winxp, located in a folder with WinDBG, is an extension of nvkd.dll, which is intended for
debugging extensions virtual switch Hyper-V.

The MSDN (2) and (3) is a description of debugging hypervisor via cable through the com-port,
implying the presence of two physical machines. However, the hypervisor can be debugged, if you run
it in VMware and use the com-port emulator Free Virtual Serial Ports Configuration Utility from the HHD-
software (4). To do this:

— createcom-port for a virtual machine (Hardware->Add->Serial port->Outputto a
named pipe)

https://hvinternals.blogspot.com/2015/10/hyper-v-debugging-for-beginners.html

Add Hardware YWizard @

Specify Socket
Which socket should this serial port connect to?

Mamed pipe

|This end is the server. - |

|The other end is a wirtual machine. - |

Device status

| Connect at power on

| < Back | [Finish] | Cancel |

- to perform root-partition commands to configure debugging hypervisor and the OS:
bcdedit /hypervisorsettings serial DEBUGPORT:1 BAUDRATE:115200

bcdedit /set hypervisordebug on

bcdedit /set hypervisorlaunchtype auto

bcdedit /set dbgtransport kdhvcom.dll

bcdedit /dbgsettings serial DEBUGPORT:1 BAUDRATE:115200

bcdedit /debug on

Bcdedit /set bootdebug on (needed to study the process for loading the hypervisor)

- restart Windows Server 2012. pending connections will stop Loading the debugger.
- run Free Virtual Serial Ports Select Pipe and press Create. In the field
of Pipe name specify the same value for a virtual machine- \\.\pipe\com 1. Press Create .

& Free Wirtual Serial Ports Configuration Utility EI =] @
E%' Unknown Create Delete Help
5 Pipe
%7 Bridge -
i 8 Jpipeicom
% InputfOutput Files Fips name: {1 pipelcom 1 Change
Create pipe

Mumber of instances:
Qutput buffer size:
Input buffer size:

Timeout, ms

Monitor these connections... Close About

file://///./pipe/com_1

In the case of a successful connection to the named pipe it will create a virtual com -port

ﬁ Free Virtual Serial Ports Configuration Utility = = @
E:":"' Unknavin | Create | | Delete | | Help |
=, Pipe
E:D Bridge Pipe name: . ipipelcom_1 | Change |

_:_Ej InputfOutput Files

Monitor these connections... | Close | | About |

- Run vmdemux (located in the Setup directory of WinDBG), specifying the name of the port
as one of the parameters:

vmdemux . exe - src com:port=com3,baud= 115200

In case of a successful connection we get:

BN Chindowssystem32icmd.exe === @

C:~Program Files (x86>\Windows Kits“B.0~Debhuggers-xb4>umndemux.exe —src com:port=
comd . baud=115200

[16:54:08]1 Demuxer attached to source: ““.“com3 at baudrate 115200

[16:54:08]1 Mew channel 1 to connect use —k com:iport=>“_“pipesUml.pipe. resets=0,r|
econnect

You created a named pipe \\.\pipe\Vm1 must be used to attach the debugger:
WinDBG.exe-b-k com: port = \\.\pipe\Vm1, pipe, reconnect, resets = 0

At the same time the debugger connects to the root-partition. Then you need to execute a command
several times, then vmdemux shall issue:

BN C:hWindowshsystem3Zhemd.exe

C:~Program Files (x86>\Windows Kits:B.0\Debuggers xb64>uvmdemux.exe —src com:port=
con3 . baud=115200

[17:14:20]1 Demuxer attached to source: “\.“\com3d at baudrate 115200

[17:14:20] New channel 1 to connect use —k com:port="“.\pipe~Uml.pipe.resets=0,r
econnect

[17:14:24] Pipe for channel ““.“pipe“Uml is now connected

[17:14:24] Requerying active channels from the hypervisor

[17:14:48]1 Mew channel 0 to connect use —k com:port=" _“\pipe~Umld,.pipe, resets=0,nr
econnect

[17:14:58]1 Pipe for channel ““.spipe~Uml0 is now connected

[17:16:28]1 Requerying active channels from the hypervisor

After that, with the help of IDA PRO, you can connect directly to the hypervisor via a named
pipe\\.\Pipe\VmO, choosing as WinDBG debugger and specifying process options in the connection
string:com: port = \\.\pipe\VmO, pipe, resets = 0

In case the following message appears choose Same.

“Debuggerwarning @

Debugger found two modules with same base name but different paths
! This could happen if the program loads the module frorm a path different than
the specified input file

Is the loaded file "hvixid.exe” the same as the input file "Dihida_files\2012
Checkedyhwixid,exe"?

Same] |N0tthe same

Don't display this message again

The debugger will stop within the hypervisor:

Modules =]

Path Base
(58] hwixgd.exe FFFFFE00030A0000

However, the above method of debugging is quite slow and relatively unstable (at time of
writing, the debugger when you connect to the hypervisor via com-port several times just hang). In
Windows Server 2012 hypervisor an opportunity to debug the network, and even on MSDN at the time
the article was no description of this method, however, a little digging in to help the team bcdedit, you
can choose the options you want.

To do this in Windows Server 2012, it is necessary to write

bcdedit/set dbgtransport kdnet.dll

bcdedit/debug to yes

bcdedit/dbgsettings net hostip: 192.168.2.1 port: 50002

in response, the command will display the connection string of the root - partition

bcdedit/set hypervisordebug on

bcdedit/hypervisorsettings NET HOSTIP: 192.168.2.1 PORT: 50000

in response, the command will display the connection string of the hypervisor.

Inside the VMware virtual machine configuration for installing the Host Only adapter, go into the
virtual network settings to configure DHCP for the adapter and make sure that Windows Server 2012 is
normally assigned to this address, for example, by running the command ipconfig / renew.

Then run 2 instances of IDA PRO, set the debug type to KernelMode and specify the Process Option-
>Connection string to the following line from the command above:
net : port = 50002, Key =
2 ryd 8 (m) 5 mtthis . yomvgm 0 wtjzp 2. ip 83 bg 5 uczdf 1. ya 73 ieco 8 mhj -the rootpartition
net : port = 50000, Key =2 10
ml 6 pt 2 onihj . hfak 67 vz 3 rei 14. kocxhm 1 ucio 2. |hd 41 tj 99 oa 2- hypervisor
thereby acquiring the ability to simultaneously debug root-partition and the hypervisor.
Option bededit /dbgsettings nodhcp allows the debugger to use network mode, use the ip-
address of the rootpartition. In this case, configuring the DHCP in VMware is not necessary.

Debugging the guest against Hyper-V OS can be made either by the standard method via a virtual com-
port or by using the debugging capabilities of the hypervisor. An example was given of a second
embodiment is online OSR Online (5), and this is how you can set it up:

- copy the file kdvm.dll from the Windows 8 directory C:\Windows\system32\kdvm.dll same goes
for Windows 7 (of course, the file must be identical to the 64-bit operating system). For Windows 8.1 \
Windows Server 2012 R2 kdvm.dIl must be taken from preview-build, since the RTM versions of the file
has been removed.

- in Windows 7 run following commands

bcdedit/set dbgtransport kdvm.dll

bcdedit/set {default} loadoptions = host_ip "1.2.3.4", host_port = 50005, "encryption_key ="
1.234"

bcdedit / set debug on

- restart the OS.
- specify the parameters of the script hyperv-dbg.ps1 (the script in the archive has been adapted
for Windows Server 2012 R2 \ Windows 8.1)"

#

Argument initialization
#

tnextarg "none”

$DebugPort "50005" #port number (use in windbg connection string)
$targetcomputer env :COMPUTERNAME #name of host 05

FVMName "Windows 7" #virtual machine name

fautoAssign "falze"

fDebugoff "falze”

— Run the script hyperv-dbg.ps1 (run through the ,,Run as Administrator”, or disable UAC,
run gpedit.msc and set Computer configuration \ Windows Settings \ Security Settings \
Local Policies \ Security Options \ User Account Control: Run All administrators in Admin
Approval Mode to Disable) in the root-section

— start WinDBG:

WinDBG -k net:port=50005,target=127.0.0.1,key=1.2.3.4

— execute the command break, then the debugger will stop inside the guest OS:
kd> wertarget
Windows 7 Eernel Ver=s=ion 7801 (Service Pack 1) HP {1 proc=) Free x86 compatible
Product: Winlt, suite: TerminalSerwver SinglelserTS
Built by: 7601.17514 =x86fre win7=pl_rtm.101119-1850
Machine Hame:
Kernel base = 0x=82604000 PsLloadedModulelist = 0xB8274e850
Debug ses=ion time: Mon Jun 10 15:36:14.382 2013 (UTC + 4:00)
Sy=stem Uptime: 0 days 0:00:52.296

Also, for the virtual machine VMware, where Windows Server 2012 is installed on, the gdb-debugger
must be enabled. To do this, vmx-file of this machine, you have to add the line

debugStub.listen.guest64 = "TRUE"
debugStub.hideBreakpoints= "TRUE"

3. Loading the hypervisor

The research used checked-file versions on hvloader.exe (6.2.9200.16384) and hvix64.exe
(6.2.9200.16384). Before debugging load winload.exe into IDA PRO, choose Debugger -> Select
Debugger -> GDB, in the Process Options to specify the Host name 127.0.0.1 and port 8864.

Q Debug application setup: gdb @
Application Dohida_files\2012\winload . exe -
Inputfile Dvyida_files) 2012\ winload.exe hd
Parameters -
Hostname 127.0.0.1) - Pork 5864 -

Save network settings as default

[0K]l Cancel || Help |

Thanks to the previously installed boot loader options bootdebug on an early connection
to download winload.exe, which produces the hypervisor launch this after the start of
the OS, you need to:
run WinDBG:
WinDBG.exe -b -k net:port=50002,key=2ryd8m5mtthis.yomvgmOwtjzp.2ip83bg5uczdf.
lya73ieco8mhj

These circumstances must occur within the function winload! DebugService2

- find download address of winload.exe
kd> Im

start end module name
00000000°007df000 00000000°00971000 winload (pdb symbols)
run IDA PRO and load the previously analyzed module winload.exe, choose Debugger ->
attach to process -> attach to process started on target, and after stopping run Edit ->
Segments -> Rebase program, specified in the Image base load address winload.exe
(0x007df000) and save it in IDA PRO. When loading winload.exe ASLR is not used, so the
load address will not change when you restart the operating system and downloading to
the IDA PRO winload.exe will be immediately posted to the correct address

o put in IDA PRO a breakpoint on winload!OslArchHypervisorSetup and continue

debugging (F9). Also continue debugging in WinDBG:

kd>g

Winload checks whether the given parameter loader hypervisorlaunchtype (0x250000f0) is.
¥

"]
00A0BAABABYEYL1E mov rcx, cs:quord_959E7E
08008008007E941F and [rsp+3gh+var_18], 0
08008008007E9425 lea r8, [rsp+38h+uar_18]
a00B00ABRRTEYH2ZA MmOV edx,
00000000087 E942F call BlGetBootOptionInteger
00A0BAABABYEYLZY mov ebx, eax
00A0ABBAABYEYL36 test eax, eax
0060P0ABABTEPLIE js loc_7E95AF
Ll
]
[
60008000067EQ43E mov rax, [rsp+38h+var_18]
0000BOB0OABYEY L3 Cp rax, 1
00000000007E9447 jnz loc_7E9546
1
v
[P
0000000087 EY 44D mov rdx, rdi
B0000000007E9450 movy ecx, esi

B0006000BAFETL52 call HulpLaunchHuLoader
A00080BPRAAYEYLST7 movsxd rbx, eax

If the parameter is specified and its value is 1 (Auto), the function call HvlpLaunchHvLoader that
loads and passes the control module hvloader.exe which will have to download the file of the
hypervisor hvix 64.exe and prepare it for future work.

B0B0BOAAABB2D3IOF mov cs:ArchpChildaAppStack, rax
000000008082D316 call BlBdStop

A000A0AAABRZDI 1B call Archpx64TransferTo64BitApplicationAsm
00AABOAAAAB2D320 call B1Bdstart

Function BIBdStop shuts off the WinDBG but you debug through gdb in Vmware which cannot be
prevented.

The function Archpx64TransferTo64BitApplicationAsm is used to give control to
the hvIMain from hvloader.exe (the address of the functionhviMain is in ArchpChildAppEntryRoutine).

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

.text:000800000808D2688 mov ds, word ptr [rdx+]
-text:00000000068D268E assume ds:_data

-text:00000000B68D268E mov es, word ptr [rdx+]
.text:00000000008DI68E mou gs, word ptr [rdxz+]
-text:000000B0A08D?691 assume gs:nothing
text:000800000808D2691 mov fs, word ptr [rdx+]
-text:000BABABABBDYG69L assume fs:nothing
-text:000AABOOBA8D2624 mov ss, word ptr [rdx+]
text:00000000068D697 mou rax, crh

.text:0008000008088D269A or rax, 286h
.text:000800000808D25A8 mov CrY4, rax

-text:00000000068D26A3 mov rax, cs:ArchpChildAppPageTable
text:00000B000BBDI6AA mou crd, rax

.text:000000000868D26AD sSub rbp, rbp

.text:000800000808D25E0 mov rsp, cs:ArchpChildAppStack
.text:AOA00000ABRD?GBY sub rsi, rsi

-text:00000000068D26EA mov rcx, cs:ArchpChildAppParameters
.text:00000000068DI6C1 mou rax, CS:nrchthildﬂppEntryRuutine
.text:000000008088D965C8 call rax nrchpchildnppEntranutind
.text:0008000008088D26CA mov rsp, cs:ArchpParentAppStack
-text:00000000868D26D1 pop rax

text:0B0BBABABARD26D2 mov crd, rax

text:00000000068D26D5 mou rdx=, CS:nrchpParentnppDescripturTahlecuntext

In order to properly debug hvloader.exe you can either load a previously created idb file, or
cancel the current debugging session and reconnect. Uploading the File hvloader.idb hang IDA, so you
will have to take advantage of the second option. This is done by replacing the first instruction of HvIMain
to EB FE 90 that fixated the code and will provide an opportunity to restart IDA PRO, download
hvloader.exe and reconnect gdb-debugger to VMware. You must then return the changed bytes in place
and perform rebase module. To improve the speed of operations you can apply changes to code with
simple scripts written in python (PatchHvLoader.py and RestoreHvLoader.py). Base load hvloader.exe
does not change and always has been 0x971000, so that, by analogy with winload.exe once performed

rebase, the base remains, and on subsequent connections debugger module is located to the right
address without performing additional operations.

In hvloader.exe you should pay attention to the function BtPrepareHypervisorLaunch, which
does basic operations for loading the hypervisor. Shortly before calling this function, you can see that
the function BtLoadUpdateDlIl, which loads the library processor microcode updates
mcupdate_Genuinelntel.dll. The functions BtLoadUpdateDIl and BtPrepareHypervisorLaunch first
performing BtpldentityPlatform, which is determined by the manufacturer of the processor

BtpIdentifyPlatform proc near
var_28= dword ptr -28h
var_18= quord ptr -18h
mov 11, rsp
nov [r11+16n], rdx
mnov [F11+8], rcx
push rbx
sub ¥Fsp, 48h
moy rax, cs:i_ security_cookie
xor rax, rsp
nov [rsp+48h+var_18], rax
mov r?, rcx
xor eax, eax
®xor ecx, ecx
mov r18, rdx
cpuid
®xor r8d, r8d
mnov [rsp+48h+var_28], eax
cmp ecx, 'DHAc’
jnz short loc_9764A8
1
v
[
loc_9764A8:
cmp ecx, 'letn’
jnz short loc_9764D1

and returns a pointer to a structure BtpPlatformTable and the names of uploaded files.

-data:o000000000A6GE080 BtpPlatformTable dq offset UmxDetect ; DATA XREF: BtpIdentifyPlatform+71To

-data:00B0BARE00AGEARE dq offset aHuixéh_exe ; "huizél_exe™
-data:00B0BRREA0AGRA0E dq offset aMcupdate_genui ; "mcupdate_GenuineIntel.d1l™
-data:o000000000AGB098 dq offset SumDetect

-data:o000000000AGE0A0 dq offset aHvax6h_exe ; "huaxéh_exe”
-data:o000000000AGE0AE dq offset abcupdate_authe ; "mcupdate_AuthenticAMD.d11*

Pointers to function and VmxDetect SvmDetect needed only BtPrepareHypervisorLaunch. These
functions are called immediately after BtpldentityPlatform depending on the platform
(VmxDetect for Intel and SvmDetect for AMD):

f0PBBNOBBRY75933 mov [rsp+168h+var_125], sil -
0000A60A0R975938 call quord ptr [r14] ; UmxDetect
00000A0OAB975938 mov rbx, rax
000000000097593E test rax, rax quord ptr [ri14]=[.data:BtpPlatformTable]
0000000000975941 jnz short loc_97595BtpPlatformTable dq offset UmxDetect
TF
VmxDetect, for example, determines the capabilities of the processor
|#00600000097A33B lea r9, UmxpCapabilities||

Ll 2 =3

0800B0AADAY7 ASL2

0060ARABRAY7A3L2 loc_07A3L2: ; cycle 1A32_UMX_BASIC- TA32_UMX_PROCBASED_CTLS? msr

00POAPOADAYTAZLZ lea ecx, [r8+ |

0800A0AARAY7ASLY rdmsr

0800BPAABAY7ASLE shl rdx, 20h

0B0ABRBARAY7ASAF inc r8d

00PAAPAADAYTAISZ OF rax, rox

0800APAABAY7ASSS moy [r9], rax

0800APAABAY7ASSE add v, 8

006AARABAAYTASSE cmp vad,

000000000097A360 jb short loc_97A342

[~ =)

000000008R97AITS

060680080897A375 loc_97A375: ; IA32_UMX_TRUE_PINBASED_CTLS - A32_UMX_TRUE_ENTRY_CTLS msr
0000000B0OP7A37S lea ecx, [r8+ 1
000000000097A37C rdmsr

080BAABAABY7A3TE shl rdx, 28h
000060000697A382 inc rad
000000000097A38S or rax, rdz
000000008097 AIEE mov [+2]. rax
0A0BAAEAABY7A3EE add r9, 8
0000000ODDPTAIEF cmp rad,
880600080097A393 jb short loc_97A375

and returns a pointer to the next platform specific function VmxValidate (SvmDetect returns
SvmValidate), etc.

Additionally, attention may be drawn to the calculation of the random offset for the load adress of the
hypervisor xFFFFF800 0000000000000000 and its subsequent displacement by calling
BtpLayoutHvimage.

The structure BtpAllocateAndBuildLoaderBlock is filled with BtpLoaderBlockPages (aka HvlpLoaderBlock
in winload.exe), which later will be used to transfer control to the start of the procedure hvix64.exe.

The Rebase Message Hv by: 6282000 shows the boot offset hypervisor on address OxFFFFF800
0000000000000000. This shift will be needed at the moment we switch to IDA PRO debug with
winload.exe on hvix64.exe

Back in the winload.exe

The function HvlpTransferToHypervisor made the transition to the start feature of hvix64.exe.

lal s
80060000868082D8

00BBB0BBBBDE2DB

80060000868082D8

AA0AAOAARARDE2DA HulpTransferToHypervisor proc near
80060000608082D8 push rbx

80060000808082D2 push rbp

80060000808082D3 push rsi

00BB000BBB8DE2D4 push rdi

80060000808D82D5 push r12

80060000808082D7 push r13

80060000808082D9 push 14

80060000808D82DB push r15

000006000808D82DD mov cs:HulpSavedRsp, rsp
880AA000AASDE2EL jmp r8

AA0AAOAARARDE2ZES HulpTransferToHypervisor endp
8006000000808 2EL

The Instruction jmp r8 transfers execution to the code located at the address specified in
HvlpBelow1MbPage (0x1000)

MEMORY : 8600088000861 0868 mov cr3, rcx
MEMORY : 0000066AA6A61002 jmp rdx

nnnnnnnnnnnnnnnnnnnnnnnnn

In a previous rdx the structure was placed by hvLoaderBlock address to the start of hvix64.exe

Later in IDA PRO you have to download hvix64.idb (similar to hvloader. exe), which works as follows:
— insert statement jmp S (EB FE) at the start of the procedure start in hvix64. exe;

— completion debugging of winload.exe through the Debugger->the Detach from process;

- file download hvix64.exe in IDA PRO;

— connection to the gdb debugger vmware;

- restore the changed bytes to the original (OF 32);

performing the operation Edit -> Segment -> Rebase program indicating
an Image Base OxFFFFFO000000000000000 800 + value, which was issued by the debugger in the
Rebase Hv by: 6282000.

Next quite a number of different operations as to be done in preparation for the execution of the
vmxon hypervisor:

-CEXTIFFFFFSUUBAST0BLUS LOC_FEFFFS0OB4/ 106U 4D ;3 LUVE AKEFD .TEXTIFFFFFEUUB4/T0BLS]]

-text:FFFFFEBAB4F16EDY mov rax, cri

-text:FFFFF80AB4716BD7 bts rax,

-text:FFFFFE8BAB4F16BEDC mov crly, rax

-text:FFFFF8868B4716BDF vmxon quord ptr [r8+ 1

-text:FFFFFEBABAF16BES setz cl

_text:FFFFFE0004716BEB ja short [qQword ptr [rB+BE93Bh]=[.data:FFFFF80004881930]
-text:FFFFF80004716BED setb al db 8

_text :FFFFFRAAALF1ARFA arde r1. a1db BEBh ; p

Then vmptrld, subsequent filling VMCS with necessary values and in the last instance it will start
vmlaunch.

After vmlaunch gets into HvlpReturnFromHypervisor while debugging via GDB we will see that after the
first instruction cpuid, calling VM exit, the transition is made directly to the HOST_RIP.

.yyy: 06660000608D8188 ;

| -Yyy:00A0BOBO0BABDR188 mov rsp, cs:95F778h
-Yyy:60eBABOBBABDE18F mov cs:95F786h, r9
-Yyy:00000000008D8196 mov eax,
-yyy:ABAAAAOARBDE19E cpuid
-yyy:-B000BAO00B8DE19D test ecx, 88000086h

2 |.yyy:008000888008D81A3 jnz loc_B8DBA4BS
-Yyy:60eBRBOBBABDE1AY? mov rbx, cs:95F778h
-Yyy:60080000808D81B0 mov rcx, [rbx+]
-yyy:-B000BA000B8DE1EY mov crh4, rcx
-yyy:-B000BOA000B8DE1EA mov rcx, [rbx+ 1
-Yyy:606BEBOEOBABDE1CT mov cr@, rcx
-Yyy:600BOBOOBABDE1CS mov rcx, [rbx+]
-Yyy:00000000808D81CE mov cr2, rcx
-Yyy:00000000808D81CE mov rcx, [rbx+]
-yyy:-B000BAOO068DE1DS mov cr8, rcx
-Yyy:6ABBOBOOBABDR1DY? mov rdx, [rbx+ 1
-Yyy:000BOBOOBABDR1ES mov ecx,
-Yyy:600BOBOBBABDE1ES mov eax, edx
-Yyy:00000000808D81E7 Shr rdx, 28h
-yyy:B000BAOO0BSDE1ERB wrmsH
-yyy:B000BAOOBBSDE1ED 1gdt fword ptr [rbx+ 1
-yyy:B0080000ABASDB1FS lidt fuword ptr [rbx+]
-Yyy:00eBRB00BABDE1FE lea rax, [rbx+]
-Yyy:60000000008D8202 mov fs, word ptr [rax]
-yyy:-B000BOO00B8DE20, lea rax, [rbx+ 1
-yyy:-B000BAOO0B8DE20B mov gs, word ptr [rax]
-Yyy:000BOBOOBABDR206D lea rax, [rbx+]
-Yyy:00eBRB0BBABDE214 mov ds, word ptr [rax]

After Returning from the procedure, HvlpReturnFromHypervisor passes control to the next
HvlpTransferToHypervisor for instructions.

HHUMHUMHUYAEYE /L mOow c5-HulpbelowliHMbFage

¥,

00000000007E2B88 cmp
AAAAAAAAAA7FORRF inz

cs:HulpHypervisoHLaunchSucceeded,
chnrt Tnr 7FORAL

at the end of the function HvlpLaunchHypervisor starts the
kernel Windows through OslArchTransferToKernel.

nov recx, [ri14]

lea rdx, [rex+ 1

add rcx, 818h

call HulpLaunchHypervisor

‘mnu [rdx+ 1. rex

W =

loc_7VEBF48:

lea rex, [rsi+16n]

lea rdx, aNtoskrnl_exe ; “"ntoskrnl.exe”
call OslFindDataTableEntry

test rax, rax

jnz short loc_7EOFSC

|

"I

loc_7EOFSC:

mov rbx, [rax+ 1

call B1BdStop

mov rdx, rbx

nou rex, psi

call 0slArchTransferToKernel

If the Debugger is connected to the hypervisor, we can observe the following output(for the
virtual system with two processors, each consists of two cores).

[0] Hypervisor initialized.

[0] Root Vp created.

MTRR map: number of ranges = 6 (default=UC)

Base=0x0000000000000000, Size=0x00000000000a0000, Type=WB, Synth=0

Base=0x00000000000a0000, Size=0x0000000000020000, Type=UC, Synth=0

Base=0x00000000000c0000, Size=0x000000000000c000, Type=WP, Synth=0

Base=0x00000000000cc000, Size=0x0000000000024000, Type=UC, Synth=0

Base=0x00000000000f0000, Size=0x0000000000010000, Type=WP, Synth=0

Base=0x0000000000100000, Size=0x00000000bff00000, Type=WB, Synth=0

[0] Root Vp started.

[1] Root Vp created.

[1] Root Vp started.

[2] Root Vp created.

[2] Root Vp started.

[3] Root Vp created.

[3] Root Vp started.

MTRR map: number of ranges = 6 (default=UC)

Base=0x0000000000000000, Size=0x00000000000a0000, Type=WB, Synth=0

Base=0x00000000000a0000, Size=0x0000000000020000, Type=UC, Synth=0

Base=0x00000000000c0000, Size=0x000000000000c000, Type=WP, Synth=0

Base=0x00000000000cc000, Size=0x0000000000024000, Type=UC, Synth=0

Base=0x00000000000f0000, Size=0x0000000000010000, Type=WP, Synth=0

Base=0x0000000000100000, Size=0x00000000bff00000, Type=WB, Synth=0
It is worth mentioning that the process of loading a hypervisor in Windows Server 2012 differs significantly

from Windows Server 2008R2, where the preparation and launch of the hypervisor directly produced by the
hvboot.sys that run after loading the kernel Windows. This activation of the hypervisor instruction vmlaunch
performed in the driver hvboot.sys and the next VM exit was processed in the hvix64.exe.

Find symbol information

When loading hvix64.exe in IDA PRO we get about three thousand functions with names like
sub_FFFFF8000XXXXXbecause Microsoft, unfortunately, does not provide the symbol information for
the hypervisor. facilitate the research of the hypervisor can first try to identify some of the functions

without detailed study.

In the first place it is worth using bindiff (or diaphora) to compare the files hvix 64.exe, hvloader. exe
and winload . exe where symbol information are provided. Comparison shows that the networking

function (e,1000_), USB , cryptography and some other features are exactly the same as the ones that
are present in winload.exe. This will help set the appointment of 500 functions. The same bindiff allows
you to move the names of matching functions from one database to another idb. However, this method
should be taken with caution and do not move all fully matched functions. At least the result should be
analyzed by Visual comparison graph matching functions (Ctrl + E).

Next, let's define exception/interrupt functions, which are standard for processor architecture x86. A
little script is written in python (ParselDT.py) to parse the IDT, which must be run in IDA PRO, beeing
connected through a debugging module of WinDBG to the hypervisor.

In the case of ISR was not found, check the tab List of problems in IDA PRO, since these procedures can
not be found in the automatic analysis code that IDA performs.

Next, you can define the exit procedure in VM after reading field values VMCS. This can be done after
the procedure fill the VMCS at hvix64. exe or use this script display-vmcs.py, which in the context of the
hypervisor reads all fields VMCS and prints their values.

Hypercall

Microsoft released document Hypervisor Top-Level Functional Specification: Windows Server 2012 (6),
describes the principles of Hyper-V 3.0.

Each virtual machine, as well as directly with the OS component installed Hyper - (V) is presented in
terms of the partition (partition). each section has its own identifier that must be unique to the host
server.

For each section are given privileges to create (structure HV_PARTITION_PRIVILEGE_MASK), which
determine the ability to perform specific hypercall.

Learn privileges by executing in the root-partition the following code in ring0:

WinHvGetPartitionId(&PartID);//PartID - ID section
WinHvGetPartitionProperty(PartID,HvPartitionPropertyPrivilegeFlags,&HvProp);// the result
is returned in HvProp.

HvPartitionPropertyPrivilegeFlags— One of the enumeration values
HV_PARTITION_PROPERTY_CODE, which operate functions exported driver winhv.sys.

HV_STATUS

WinHvGetPartitionProperty(
__in HV_PARTITION_ID Partitionld,
__in HV_PARTITION_PROPERTY_CODE PropertyCode,
__out PHV_PARTITION_PROPERTY PropertyValue

Also, if necessary, these privileges can be changed, causing root-partition in the following
function:

HV_STATUS
WinHvSetPartitionProperty(
__in HV_PARTITION_ID Partitionld,
__in HV_PARTITION_PROPERTY_CODE PropertyCode,

__in HV_PARTITION_PROPERTY PropertyValue

The value of HvPartitionPropertyPrivilegeFlags for the root partition: 000039FFO0001FFF

AccessVpRunTimeMsr AccessGuestldleMsr ConnectPort
AccessPartitionReferenceCounter AccessFrequencyMsrs AccessStats
AccessSynicMsrs AccessDebugMsrs Debugging
AccessSyntheticTimerMsrs CreatePartitions CpuManagement
AccessApicMsrs AccessPartitionld ConfigureProfiler
AccessHypercallMsrs AccessMemoryPool

AccessVplndex AdjustMessageBuffers

AccessResetMsr PostMessages

AccessStatsMsr SignalEvents

AccessPartitionReferenceTsc CreatePort

The value of HvPartitionPropertyPrivilegeFlags for child partition 000008BO0O0000E7F:

AccessVpRunTimeMsr AccessPartitionReferenceTsc
AccessPartitionReferenceCounter AccessGuestldleMsr
AccessSynicMsrs AccessFrequencyMsrs
AccessSyntheticTimerMsrs PostMessages
AccessApicMsrs SignalEvents
AccessHypercallMsrs ConnectPort

AccessVplndex Debugging

In a Windows guest OS, privileges can be obtained by placing EAX 0x40000003 and following

the instructions CPUID (in document Hypervisor Functional Specification top-level 3.0 a given
interpretation of the results of the cpuid).

CPUID 40000003 called
EAX = 00000E7F (00001110 01111111)
Bit 0: VP Runtime (HV_X64_MSR_VP_RUNTIME)
Bit 1: Partition Reference Counter (HV_X64_MSR_TIME_REF_COUNT)
Bit 2: Basic SynIC MSRs (HV_X64_MSR_SCONTROL through HV_X64_MSR_EOM and HV_X64_MSR_SINTO
through HV_X64_MSR_SINT15)
Bit 3: Synthetic Timer MSRs (HV_X64_MSR_STIMERO_CONFIG through HV_X64_MSR_STIMER3_COUNT)
Bit 4: APIC access MSRs (HV_X64_MSR_EOI, HV_X64_MSR_ICR and HV_X64_MSR_TPR)
Bit 5: Hypercall MSRs (HV_X64_MSR_GUEST_OS_ID and HV_X64_MSR_HYPERCALL)
Bit 6: Access virtual processor index MSR (HV_X64_MSR_VP_INDEX)
EBX = 000008B0 (00001000 10110000)
Bit4: PostMessages
Bit 5: SignalEvents
Bit7: ConnectPort
Bit 11: Debugging
ECX = 00000002 (00000000 00000010)
Maximum Processor Power State is C2
EDX = 00000782 (00000111 10110010)
Bit1: Guest debugging support is available
Bit4: Support for passing hypercall input parameter block via XMM registers is available
Bit 5: Support for a virtual guest idle state is available

The hypervisor privileges section, which carried out the operation that caused the VM exit, can

be obtained by calculating the value of gs: 0, read the value of the field in the VMCS HOST_GS_BASE or
IA32_GS_BASE MSR:

WINDBG>rdmsr 0xc0000101
msr[c0000101] = fffff800°05464000

then get the value pointed to gs: 82e8, and go to the offset Oxd8.

WINDBG>dc poi(fffff800°05464000+82e8)+0xd8
00000080°04dd70d8 00001fff 000039ff 00000000 ffffe8009..........
00000080°04dd70e8 00000001 00000000 00000000 00000000

In this case, the VM exit was made from root-partition.
The hypervisor in each section forms a special page to run hypercall. Its address can be obtained by
reading MSR 0x40000001 (HV_X64 MSR_HYPERCALL):

kd> rdmsr 0x40000001
msr[40000001] = 00000000 1ffb1001
kd> !dc 00000000 1ffb1001

#1ffb1000 c3c1010f 90909090 90909090 90909090
#1ffb1010 90909090 90909090 90909090 90909090
As you can see, 0xc3c1010f - instructs opcodes to vmcall; ret

Windows Server 2012 following changes took place in the export of the driver winhv.sys in comparison
with the Windows Server 2008 R2:

Do6asneHo YpaneHo
WinHvAddLogicalProcessor WinHvOnlInterrupt
WinHvAttachDevice WinHvReclaimInterruptVector
WinHvDetachDevice WinHvSupplylInterruptVector

WinHvGetLogicalProcessorProperty
WinHvGetLogicalProcessorRegisters
WinHvGetNextQueuedPort
WinHvGetSystemInformation
WinHvlInjectSyntheticMachineCheckEvent
WinHvMapDevicelnterrupt
WinHvPrepareForSleep
WinHvProcessorindexTolLpIndex
WinHvProcessorNumberToVplndex
WinHvRemovelogicalProcessor
WinHvSetLogicalProcessorProperty
WinHvSetLogicalProcessorRegisters
WinHvUnmapDevicelnterrupt

In order to be able to use the export function winhv.sys can either dynamically calculate the
addresses of the functions (7), or to create a lib-file (8). Consider the second option.

When you declare functions like stdcall (32-bit version of the driver) in the def-file, you must specify
the ordinals of the functions or when loading the driver the imported functions will not be found (for
some reason, the table import function hyperv3.sys driver gets a postfix @ number, even if the def-file
register WinHvGetPartitionProperty @ 16 = WinHvGetPartitionProperty):

WinHvGetPartitionProperty@16 @42

To create a def-file using the output of dumpbin:
dumpbin /exports winhv.sys

(The Windows Server 2012 R2 is using a winhvr.sys driver root-section, so the def-file for the driver
in the OS is necessary to form it).

To build a 64-bit driver you do not need to make any changes.
After editing the def-file it must be re-form the lib-file with the command (for x86):

"C:\Program Files (x86)\Microsoft Visual Studio 11.0\VC\bin\lib.exe" /def:D:\hyperv3\winhv.def
/OUT:D:\ hyperv3\winhv.lib /machine:x86

Ona x64 (BbinonHaeTca 1 pa3 gns KOHKPETHOM Bepcumn winhv.sys):

"C:\Program Files (x86)\Microsoft Visual Studio 11.0\VC\bin\amd64\lib.exe"
/def:D:\hyperv3\winhvé64.def /OUT:D:\hyperv3\winhv64.lib /machine:x64

For x64 (performed 1 time for a specific version winhv.sys):

Let's try it in a loop from 0 to 0 x 100 consistently meet Hypercall O x 41 (HvlnitializePartition), with the
PartitionID in ECX, equal to the value of the loop iterator, with Fast bit (to pass parameters through the
registers.) with EAX returns the output of the hypervisor.

for (i = 0x0; i <=0x100; i++)

{

DbgPrintEx(DPFLTR_IHVDRIVER_ID, DBG_PRINT_LEVEL,"i %x VMCALL_EAX %x",i, ARCH_VMCALL_REG_MOD(i));
}
ARCH_VMCALL_REG_MOD PROC param1:DWORD

push esi

push edi

push ebx

xor edx,edx

mov ecx, paraml

xor ebx,ebx

Xor esi,esi

xor edi,edi

mov eax, 10041h

vmcall

pop ebx

pop edi

pop esi

ret
ARCH_VMCALL_REG_MOD ENDP

As a result, we obtain

%% DebugView on \\USER-PC (local)
File Edit Capture Options Computer Help

ZEHEA QSR BBT| ST | s

Time Debug Print

1 0.00000000 IOCTL VMCALL [00000808]

2 0.00007170 pHyperCallInPa [000000001A3B2000]
3 0.00007750 pHyperCallCutPhA [0000000003BB3000]
4 0.00010180 i 0 VMCALL E2X d

& 0.00014210 i 2 VMCALL EAX d

T 0.00016150 i 3 VMCALL EAX &

8 0.00027910 i 4 VMCALL EAX d

3 0.00025930 i 5 VMCALL EAX d

10 0.00031860 i 6 VMCALL EAX d

11 0.00033780 i 7 VMCALL EAX d

iz 0.00035690 i § VMCALL EAX d

13 0.00037590 i 9 VMCALL EAX d

14 0.00035500 i a VMCALL EAX d

In case if in the ecx was transferred to the active virtual machine PartitionID, the hypervisor returns-6
(HV_STATUS_ACCESS_DENIED), in other cases - d (HV_STATUS_INVALID_PARTITION_ID). Taking
advantage of this fact, and the fact that the ID of each new section is calculated by simple adding 1 to
the ID of the previous section, and the ID root-partition is always equal to 1, you can set the number of
active virtual machines on the host. To do this, slightly modify the code for the driver:

for (i = Ox2; i <=0x10000; i++)
{
res = ARCH_VMCALL_REG_MOD(i);
if (res == HV_STATUS_INVALID_PARTITION_ID){

DbgPrintEx(DPFLTR_IHVDRIVER_ID, DBG_PRINT_LEVEL,"PartitionID %x VMCALL_EAX %x \n",i,res);

}
¥

DbgPrintEx(DPFLTR_IHVDRIVER_ID, DBG_PRINT_LEVEL,"Number of active virtual machines: %X
\n",counter);

and get a list of active sections ID and number:

4 0.00017750 PartitionID 3 VMCALL EAX &
5 0.00019740 PartitionID 4 VMCALL EAX &
8 0.5205076% HNumber of active virtual machines: 2

The number of loop iterations must be greater than the number of running VMs + number of
overloaded since the start VM hypervisor. After restarting the hypervisor numbering of all sections
begins again.

These data are available for the following two reasons:

— The section PartitionID generated by simply adding 1 to the last used PartitionID.

— When processing a hypercall the hypervisor first checks the validity of the transferred
PartitionID and just in case whats the referred PartitionID active partition, it checks the
rights to perform hypercall.

This feature hypervisor can be used to determine the number of virtual machines running on a
given host server. For the name of the host server, you can peek in the registry of the guest OS under
HKLM \ Software \ Microsoft \ Virtual Machine \ Guest \ Parameter, which contains data on the host
operating system, transmitted by Key Value Pair Integration Component, which is normally enabled by
default. Also controlled restarting the virtual machine on the second Monday of the month and secure
it PartitionlID (there is quite a high probability that he will be the last in the list of active VM), you can
determine whether a virtual neighbors on their servers coming out every second Tuesday security fixes.
However, the reality is quite difficult to imagine that someone will need this information ...

This hypervisor behavior could be observed in the assembly 6.3.9431.0 (Windows Server 2012
R2 Preview), but Microsoft recognized this behavior as "unexpected behavior" and eliminated him in the
assembly 6.3.9600.16384 ". the TLFS changes were made to allow for the enforcement of such hypercall
behavior only from root-partition.

The Statement which is processing vmcall in the hypervisor runs roughly as follows:

— check ring protection in which the statement has been issued, if the statement was
executed in ring 3, then processing stops;

— if the instruction is executed in ring0, it checks, whether at the same processor
LongMode.

— depending on the operating mode of the processor to perform two different procedures,
the logic is quite similar;

— each procedure loads a pointer to an array of structures that contain the parameters
necessary for processing each of hypercall 0 to 8C (decryption codes listed in hypercall
Hypervisor Top-Level Functional Specification: Windows Server 2012. Appendix B:
Hypercall Code Reference). One of the elements of each structure is a pointer to a
procedure for processing hypercall:

mUmcallHandlersTable dq offset HuCallReservedB®

du
dw
du
du
dw
du
du
dw
dq
du
dw
du
du
dw
du
du

Bh

Foo Q@D -0 ofo0 @@

3h

du 8

dq offset HuFlushVirtualAddressSpace

du 2
du 8
dw 18h

ffset HuSwitchUirtualfnddressSpace

address of specific hypercall handler

UMGALL ID

REP CALL

size of hypercall input param (in bytes) without rep prefix
size of hypercall input param with rep prefix

hypercall output 1 element param size without rep prefix
hypercall output 1 element param size with rep prefix

group number of hypercall (f.e Uirtual Interrupt Interfaces)
used like index in table of statistics of hypercall using

- thenthereisacheck which way the hypervisor have been transferred parameters through
memory or through the registers (in this case, the fast call bit in EAX before hypercall

should equal 1).

- then call the corresponding function..

For comparison, some of the important fields VMCS were obtained by using the script display -

vmcs.py after VM exit:

Root partition

Child partition

CPU_BASED_VM_EXEC_CONTROL = 0xb6206dfa

Use TSC offsetting

HLT exiting

MWAIT exiting

RDPMC exiting

Use TPR shadow

Use 1/O bitmaps

Use MSR bitmaps

MONITOR exiting

Activate secondary controls
I0_BITMAP_A = 0x4e06000
10_BITMAP_A_HIGH =0x0
10_BITMAP_B = 0x4e07000
10_BITMAP_B_HIGH =0x0
EXCEPTION_BITMAP = 0x40000
MSR_BITMAP = 0x4e08000
MSR_BITMAP_HIGH = 0x0
PIN_BASED_VM_EXEC_CONTROL = 0x1f

External-interrupt exiting

NMI exiting
SECONDARY_VM_EXEC_CONTROL =0x2a

Enable EPT

Enable RDTSCP

Enable VPID
VM_ENTRY_CONTROLS = 0x13ff

Load debug controls

1A-32e mode guest
VM_EXIT_CONTROLS = 0x3efff

Save debug controls

Host address space size

Acknowledge interrupt on exit

CPU_BASED_VM_EXEC_CONTROL = 0xb5a06dfa

Use TSC offsetting

HLT exiting

MWAIT exiting

RDPMC exiting

Use TPR shadow

MOV-DR exiting

Unconditional 1/0 exiting

Use MSR bitmaps

MONITOR exiting

Activate secondary controls
CRO_GUEST_HOST_MASK = 0xffffffel
CRO_READ_SHADOW = 0x8001003b
CR4_GUEST_HOST_MASK = 0xfffff874
CR4_READ_SHADOW = 0x406f8
EXCEPTION_BITMAP = 0x40000
GUEST_CRO = 0x8001003b
GUEST_CR3 = 0x185000
GUEST_CR4 = 0x4269
GUEST_RIP = 0x839b1000
GUEST_RSP = 0x8870f8a4
HOST_CRO = 0x80010031
PIN_BASED_VM_EXEC_CONTROL = 0x1f

External-interrupt exiting

NMI exiting
SECONDARY_VM_EXEC_CONTROL = 0x62

Enable EPT

Enable VVPID

WBINVD exiting
VM_ENTRY_CONTROLS = 0x11ff

Load debug controls
VM_EXIT_CONTROLS = 0x3efff

Save debug controls

Host address space size

Acknowledge interrupt on exit

For example , you can see, that for guest-partition the hypervisor handles all input/output (I/0

exiting Unconditional), and for the root partition monitors only certain ports (Use I/O bitmaps).
WINDBG>!dc 0x4e06000 L250 - 10_BITMAP_A
406000 00000000 00000003 00000000 00000010
406010 00000000 00000003 00000000 00000000
4206020 00000000 00000000 00000000 00000000

If am not mistaken in the calculations, then the root-partition monitored ports are 20h, 21h, 44h,
AOh, Alh, 1D5Fh, 1D64h, 1D65h, 1D66h, 1D67h.
closing
The article describes the steps that must be done to create a stand for the research of Hyper-V,
and very briefly describes some aspects of the work of the hypervisor. | hope this information is useful
for beginners in hypervisor security researcher at Microsoft.

Sources:

1. http://msdn.microsoft.com/en-us/library/Windows/hardware/ff540654(v=vs.85).aspx
2. http://msdn.microsoft.com/en-us/library/cc768520%28v=bts.10%29.aspx

3. http://en.community.dell.com/techcenter/virtualization/w/wiki/3029.aspx

4. http://www.hhdsoftware.com/Downloads/free-virtual-serial-ports

5. http://ww.osronline.com/showthread.cfm?link=234398

6. http://www.microsoft.com/en-us/download/details.aspx?id=39289

7. http://alter.org.ua/docs/nt_kernel/procaddr/

8. http://www.osronline.com/showthread.cfm?link=132065

9. http://blog.crd.sh/2012/07 /vmware-gdb-stub-ida.html

http://msdn.microsoft.com/en-us/library/windows/hardware/ff540654(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc768520%28v=bts.10%29.aspx
http://en.community.dell.com/techcenter/virtualization/w/wiki/3029.aspx
http://www.hhdsoftware.com/Downloads/free-virtual-serial-ports
http://ww.osronline.com/showthread.cfm?link=234398
http://www.microsoft.com/en-us/download/details.aspx?id=39289
http://alter.org.ua/docs/nt_kernel/procaddr/
http://www.osronline.com/showthread.cfm?link=132065
http://blog.cr4.sh/2012/07/vmware-gdb-stub-ida.html

