
1/34

Tutorials - Polymorphism Tutorial Part II v1.0
ivanlef0u.fr/repo/madchat/vxdevl/vdat/tupolyii.htm

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/tupolyii.htm

2/34

--------------------------------[foreword]--------------------------------

 Well, people... It's been a full year since the first part of this
article was released over the Net, and I can say it was pretty good at the
time. This made it appear in the second issue of the 29A viral magazine. At
the end of the article I was speaking, blindly at the time, about the
changing of the times and the migration towards the 32bit Windows
programming. Well, it seems that Windowz is here to stay, so we all have to
agree...windows 32bit programming is a 'must know'... Then the question
comes... how much can we rely on old 16bit thingies? As for hardware access,
the answer is ZERO... But still, the microprocessor is almost the same.
Everything you had in 16bit still exists in 32bit... So, can we use any of
the old stuff? The answer here is 'a lot'!

 Right after the beginning of the win32 asm programs, the people
started to ask whether or not a polymorphic engine can be done in win32 or
not. Being a curious man I started to dig... As a matter of fact by the time
you read this my first win32 poly engine is already finished.

 So, what do I intend to do in this article?

 If you read my first article, you must know: it stays on! In this
article I will not give you more ideas on the decryptor itself (check my
encryption articles for that), but I shall concentrate on the garbage
generator, as the best way to hide the real decryptor. In the first article
I described the way some instructions are created... Here I will describe
ALL the instructions and I will try to present an easy way to generate ALL
of them. I shall give you some ideas that will make a code emulator in great
difficulty... At the end I will explain the win32 things you need to make
in order to make a win32 poly engine... So, let's run!

--------------------------------[credits]---------------------------------

 There is always somebody in this bussiness who had such an influence
on you that he deserves all the credits... Just a small piece of it:

 dark avenger, dark fiber, dark angel, darkman, mr.sandman,
 virtual daemon, qark, quantum, b0z0, wild worker, black baron,
 the unforgiven, murkry, shaitan, tatung, jacky qwerty, griyo,
 kid chaos, cicatrix, priest, liquid jesus, metabolis, nowhere man,
 opic, blue skull, hellfire, hellraiser, and many more...

 a piece of my knowledge is right there...

 A special thanx to the entire SLAM group!

----------------------------[legal disclaimer]----------------------------

 The following document is a study based on information made public by
Intel(c). The information revealed here is not intended to harm anybody and
the author cannot be held responsible for it's use that led to data loss or
damage. This article represent a comprehesive explanation of the methods
behind the opcode generation inside the Intel or Intel compatible

3/34

microprocessors.

-------------------------------[the source]-------------------------------

 The biggest part of this tutorial is based on Intel's original 386
documentation, and more specific the part that speaks about the
microprocessor's instructions. I need to talk about this so you can
understand and see how easy is it to generate whatever instruction you want.
I will also not bother to quote what I pasted from Intel's manual, as you
will surely recognize the famous opcode tables... The thing is, do you know
how to use them, or, actually, do you know how to optimize their use? If you
do, please tell me...;-)) Because, as far as I am concerned, I couldn't find
anything better than the things you are gonna read right away...
 Anyway, the article is divided in 2 big parts: the instruction
description and the specific poly engine techniques.

 .-------------------.
----------------------------| PART I |-----------------------------
 '-------------------'

----------------------------[instruction set]-----------------------------

<------------------------------------ Operand-Size and Address-Size Attributes

 When executing an instruction, the 80386 can address memory using
either 16 or 32-bit addresses. Consequently, each instruction that uses
memory addresses has associated with it an address-size attribute of either
16 or 32 bits. 16-bit addresses imply both the use of a 16-bit displacement
in the instruction and the generation of a 16-bit address offset (segment
relative address) as the result of the effective address calculation.
32-bit addresses imply the use of a 32-bit displacement and the generation
of a 32-bit address offset. Similarly, an instruction that accesses words
(16 bits) or doublewords (32 bits) has an operand-size attribute of either
16 or 32 bits.

 The attributes are determined by a combination of defaults,
instruction prefixes, and (for programs executing in protected mode)
size-specification bits in segment descriptors.

 Programs that execute in real mode or virtual-8086 mode have 16-bit
addresses and operands by default.

 The internal encoding of an instruction can include two byte-long
prefixes: the address-size prefix, 67H, and the operand-size prefix, 66H.
These prefixes override the default segment attributes for the instruction
that follows. The next table shows the effect of each possible combination
of defaults and overrides.

 Instructions that use the stack implicitly (for example: POP EAX also

4/34

have a stack address-size attribute of either 16 or 32 bits. Instructions
with a stack address-size attribute of 16 use the 16-bit SP stack pointer
register; instructions with a stack address-size attribute of 32 bits use
the 32-bit ESP register to form the address of the top of the stack.

 .---.
Segment Default D = ...	0 0 0 0 1 1 1 1
Operand-Size Prefix 66H	N N Y Y N N Y Y
Address-Size Prefix 67H	N Y N Y N Y N Y
--------------------------+--	
Effective Operand Size	16 16 32 32 32 32 16 16
Effective Address Size	16 32 16 32 32 16 32 16

Y = Yes, this instruction prefix is present	
N = No, this instruction prefix is not present	
 '---'

 So, basically, one instruction has an operand and/or an address to
work with. We can have all kinds of combinations of 16 and 32 bit and also,
we can override the defaults. The override prefix can appear no matter how
many times, but only the last one will do the job.

<-- Instruction Format

 All instruction encodings are subsets of the general instruction
format shown in the next figure. Instructions consist of optional
instruction prefixes, one or two primary opcode bytes, possibly an address
specifier consisting of the ModR/M byte and the SIB (Scale Index Base) byte,
a displacement, if required, and an immediate data field, if required.

 Smaller encoding fields can be defined within the primary opcode or
opcodes. These fields define the direction of the operation, the size of the
displacements, the register encoding, or sign extension; encoding fields
vary depending on the class of operation.

 Most instructions that can refer to an operand in memory have an
addressing form byte following the primary opcode byte(s). This byte, called
the ModR/M byte, specifies the address form to be used. Certain encodings of
the ModR/M byte indicate a second addressing byte, the SIB (Scale Index
Base) byte, which follows the ModR/M byte and is required to fully specify
the addressing form.

 Addressing forms can include a displacement immediately following
either the ModR/M or SIB byte. If a displacement is present, it can be 8-,
16- or 32-bits.

 If the instruction specifies an immediate operand, the immediate
operand always follows any displacement bytes. The immediate operand, if
specified, is always the last field of the instruction.

The following are the allowable instruction prefix codes:

 F3H REP prefix (used only with string instructions)
 F3H REPE/REPZ prefix (used only with string instructions

5/34

 F2H REPNE/REPNZ prefix (used only with string instructions)
 F0H LOCK prefix

The following are the segment override prefixes:

 2EH CS segment override prefix
 36H SS segment override prefix
 3EH DS segment override prefix
 26H ES segment override prefix
 64H FS segment override prefix
 65H GS segment override prefix
 66H Operand-size override
 67H Address-size override

 80386 Instruction Format

 P .---.
 R | INSTRUCTION | ADDRESS- | OPERAND- | SEGMENT |
 E | PREFIX | SIZE PREFIX | SIZE PREFIX | OVERRIDE |
 F |---|
 I | 0 OR 1 0 OR 1 0 OR 1 0 OR 1 |
 X |- -|
 E | NUMBER OF BYTES |
 S '---'

 R .---.
 E | OPCODE | MODR/M | SIB | DISPLACEMENT | IMMEDIATE |
 Q | | | | | |
 U |---|
 I | 1 OR 2 0 OR 1 0 OR 1 0,1,2 OR 4 0,1,2 OR 4 |
 R |- -|
 E | NUMBER OF BYTES |
 D '---'

 This being said, we may have instructions with minimum one byte
length and maximum 16 bytes length.

<-- ModR/M and SIB Bytes

 The ModR/M and SIB bytes follow the opcode byte(s) in many of the
80386 instructions. They contain the following information:

 * The indexing type or register number to be used in the instruction
 * The register to be used, or more information to select the instruction
 * The base, index, and scale information

The ModR/M byte contains three fields of information:

 * The mod field, which occupies the two most significant bits of the
 byte, combines with the r/m field to form 32 possible values: eight
 registers and 24 indexing modes

 * The reg field, which occupies the next three bits following the mod

6/34

 field, specifies either a register number or three more bits of opcode
 information. The meaning of the reg field is determined by the first
 (opcode) byte of the instruction.

 * The r/m field, which occupies the three least significant bits of the
 byte, can specify a register as the location of an operand, or can form
 part of the addressing-mode encoding in combination with the field as
 described above

 The based indexed and scaled indexed forms of 32-bit addressing
require the SIB byte. The presence of the SIB byte is indicated by certain
encodings of the ModR/M byte. The SIB byte then includes the following
fields:

 * The ss field, which occupies the two most significant bits of the
 byte, specifies the scale factor

 * The index field, which occupies the next three bits following the ss
 field and specifies the register number of the index register

 * The base field, which occupies the three least significant bits of the
 byte, specifies the register number of the base register

 ModR/M and SIB Byte Formats

 MODR/M BYTE

 7 6 5 4 3 2 1 0
 .------------------------------------.
 | MOD | REG/OPCODE | R/M |
 '------------------------------------'

 SIB (SCALE INDEX BASE) BYTE

 7 6 5 4 3 2 1 0
 .------------------------------------.
 | SS | INDEX | BASE |
 '------------------------------------'

 Let's get down to real bussiness now. Here below you have 2 tables.
Using these tables will allow you to create ANY kind of instructions. The
first row gives you the used register. If you have 8 bit addressing you will
use the 8 bit registers, with 16 bit addressing you will use the 16 bit
registers, and 32 bit with 32 bit registers. Actualy not you, you use the
same codification, but it's the processor that interprets it accordingly.
Following this you have 4 parts with 8 possible codification for the
addressing mode. The first two number columns contain the MOD and the R/M
field and after that the hexadecimal encoding you would obtain if next to
the MOD and R/M fields you would put the REG field. As normal as possible,
this will create a matrix of 8 types * 4 parts * 8 registers = 256 variants.

16-Bit Addressing Forms with the ModR/M Byte

7/34

.--.
r8(/r)	AL	CL	DL	BL	AH	CH	DH	BH
r16(/r)	AX	CX	DX	BX	SP	BP	SI	DI
r32(/r)	EAX	ECX	EDX	EBX	ESP	EBP	ESI	EDI
/digit (Opcode)	0	1	2	3	4	5	6	7
REG =	000	001	010	011	100	101	110	111
--------------------------+---								
	Mod R/M	ModR/M Values in Hexadecimal						
----------------+---------+---								
[BX + SI]	00 000	00	08	10	18	20	28	30
[BX + DI]	00 001	01	09	11	19	21	29	31
[BP + SI]	00 010	02	0A	12	1A	22	2A	32
[BP + DI]	00 011	03	0B	13	1B	23	2B	33
[SI]	00 100	04	0C	14	1C	24	2C	34
[DI]	00 101	05	0D	15	1D	25	2D	35
disp16	00 110	06	0E	16	1E	26	2E	36
[BX]	00 111	07	0F	17	1F	27	2F	37
----------------+---------+-----+-----+-----+-----+-----+-----+-----+-----								
[BX+SI]+disp8	01 000	40	48	50	58	60	68	70
[BX+DI]+disp8	01 001	41	49	51	59	61	69	71
[BP+SI]+disp8	01 010	42	4A	52	5A	62	6A	72
[BP+DI]+disp8	01 011	43	4B	53	5B	63	6B	73
[SI]+disp8	01 100	44	4C	54	5C	64	6C	74
[DI]+disp8	01 101	45	4D	55	5D	65	6D	75
[BP]+disp8	01 110	46	4E	56	5E	66	6E	76
[BX]+disp8	01 111	47	4F	57	5F	67	6F	77
----------------+---------+-----+-----+-----+-----+-----+-----+-----+-----								
[BX+SI]+disp16	10 000	80	88	90	98	A0	A8	B0
[BX+DI]+disp16	10 001	81	89	91	99	A1	A9	B1
[BP+SI]+disp16	10 010	82	8A	92	9A	A2	AA	B2
[BP+DI]+disp16	10 011	83	8B	93	9B	A3	AB	B3
[SI]+disp16	10 100	84	8C	94	9C	A4	AC	B4
[DI]+disp16	10 101	85	8D	95	9D	A5	AD	B5
[BP]+disp16	10 110	86	8E	96	9E	A6	AE	B6
[BX]+disp16	10 111	87	8F	97	9F	A7	AF	B7
----------------+---------+-----+-----+-----+-----+-----+-----+-----+-----								
EAX/AX/AL	11 000	C0	C8	D0	D8	E0	E8	F0
ECX/CX/CL	11 001	C1	C9	D1	D9	E1	E9	F1
EDX/DX/DL	11 010	C2	CA	D2	DA	E2	EA	F2
EBX/BX/BL	11 011	C3	CB	D3	DB	E3	EB	F3
ESP/SP/AH	11 100	C4	CC	D4	DC	E4	EC	F4
EBP/BP/CH	11 101	C5	CD	D5	DD	E5	ED	F5
ESI/SI/DH	11 110	C6	CE	D6	DE	E6	EE	F6
EDI/DI/BH	11 111	C7	CF	D7	DF	E7	EF	F7
'--'

 Ok, let's see some examples:

 MOV BX, [BX+DI+1234h]

 1111h tells us we have a disp16, so we will look in the MOD=10 part;
 [BX+DI] puts us on the second row of that part;
 BX makes us look on the fourth REG row;
 MOV opcode is 8B (you will learn this later)

8/34

 this all coming to: 99h

 So, MOV BX, [BX+DI+1111h] will be encoded like this:

 8Bh 99h 34h 12h,

 1234h immediately follows the ModR/M byte, as it is an immediate
value.

NOTES: disp8 denotes an 8-bit displacement following the ModR/M byte, to be
sign-extended and added to the index. disp16 denotes a 16-bit displacement
following the ModR/M byte, to be added to the index. Default segment
register is SS for the effective addresses containing a BP index, DS for
other effective addresses.

 Let's take a peak now to 32 bit addressing codes:

32-Bit Addressing Forms with the ModR/M Byte

.--.
r8(/r)	AL	CL	DL	BL	AH	CH	DH	BH
r16(/r)	AX	CX	DX	BX	SP	BP	SI	DI
r32(/r)	EAX	ECX	EDX	EBX	ESP	EBP	ESI	EDI
/digit (Opcode)	0	1	2	3	4	5	6	7
REG =	000	001	010	011	100	101	110	111
--------------------------+---								
	Mod R/M	ModR/M Values in Hexadecimal						
----------------+---------+---								
[EAX]	00 000	00	08	10	18	20	28	30
[ECX]	00 001	01	09	11	19	21	29	31
[EDX]	00 010	02	0A	12	1A	22	2A	32
[EBX]	00 011	03	0B	13	1B	23	2B	33
[--] [--]	00 100	04	0C	14	1C	24	2C	34
disp32	00 101	05	0D	15	1D	25	2D	35
[ESI]	00 110	06	0E	16	1E	26	2E	36
[EDI]	00 111	07	0F	17	1F	27	2F	37
----------------+---------+-----+-----+-----+-----+-----+-----+-----+-----								
disp8[EAX]	01 000	40	48	50	58	60	68	70
disp8[ECX]	01 001	41	49	51	59	61	69	71
disp8[EDX]	01 010	42	4A	52	5A	62	6A	72
disp8[EPX];	01 011	43	4B	53	5B	63	6B	73
disp8[--] [--]	01 100	44	4C	54	5C	64	6C	74
disp8[ebp]	01 101	45	4D	55	5D	65	6D	75
disp8[ESI]	01 110	46	4E	56	5E	66	6E	76
disp8[EDI]	01 111	47	4F	57	5F	67	6F	77
----------------+---------+-----+-----+-----+-----+-----+-----+-----+-----								
disp32[EAX]	10 000	80	88	90	98	A0	A8	B0
disp32[ECX]	10 001	81	89	91	99	A1	A9	B1
disp32[EDX]	10 010	82	8A	92	9A	A2	AA	B2
disp32[EBX]	10 011	83	8B	93	9B	A3	AB	B3
disp32[--] [--]	10 100	84	8C	94	9C	A4	AC	B4
disp32[EBP]	10 101	85	8D	95	9D	A5	AD	B5

9/34

| disp32[ESI] | 10 110 | 86 | 8E | 96 | 9E | A6 | AE | B6 | BE |
| disp32[EDI] | 10 111 | 87 | 8F | 97 | 9F | A7 | AF | B7 | BF |
|----------------+---------+-----+-----+-----+-----+-----+-----+-----+-----|
EAX/AX/AL	11 000	C0	C8	D0	D8	E0	E8	F0	F8
ECX/CX/CL	11 001	C1	C9	D1	D9	E1	E9	F1	F9
EDX/DX/DL	11 010	C2	CA	D2	DA	E2	EA	F2	FA
EBX/BX/BL	11 011	C3	CB	D3	DB	E3	EB	F3	FB
ESP/SP/AH	11 100	C4	CC	D4	DC	E4	EC	F4	FC
EBP/BP/CH	11 101	C5	CD	D5	DD	E5	ED	F5	FD
ESI/SI/DH	11 110	C6	CE	D6	DE	E6	EE	F6	FE
EDI/DI/BH	11 111	C7	CF	D7	DF	E7	EF	F7	FF
'--'

 Let's take an example:

 MOV EBX, [EBP+12345678h]

 12345678h = disp32 -> part 3
 EBP+disp32 -> line 6 of part 3
 EBX -> REG row 4

 ==> instruction codification = 8Bh 9Dh 78h 56h 34h 12h

NOTES: [--] [--] means a SIB follows the ModR/M byte. disp8 denotes an 8-bit
displacement following the SIB byte, to be sign-extended and added to the
index. disp32 denotes a 32-bit displacement following the ModR/M byte, to be
added to the index.

32-Bit Addressing Forms with the SIB Byte

.--.
r32	EAX	ECX	EDX	EBX	ESP	[*]	ESI	EDI
Base =	0	1	2	3	4	5	6	7
Base =	000	001	010	011	100	101	110	111
--------------------------+---								
	SS Index	ModR/M Values in Hexadecimal						
-------------+------------+---								
[EAX]	00 000	00	01	02	03	04	05	06
[ECX]	00 001	08	09	0A	0B	0C	0D	0E
[EDX]	00 010	10	11	12	13	14	15	16
[EBX]	00 011	18	19	1A	1B	1C	1D	1E
none	00 100	20	21	22	23	24	25	26
[EBP]	00 101	28	29	2A	2B	2C	2D	2E
[ESI]	00 110	30	31	32	33	34	35	36
[EDI]	00 111	38	39	3A	3B	3C	3D	3E
-------------+------------+-----+-----+-----+-----+-----+-----+-----+-----								
[EAX*2]	01 000	40	41	42	43	44	45	46
[ECX*2]	01 001	48	49	4A	4B	4C	4D	4E
[ECX*2]	01 010	50	51	52	53	54	55	56
[EBX*2]	01 011	58	59	5A	5B	5C	5D	5E
none	01 100	60	61	62	63	64	65	66
[EBP*2]	01 101	68	69	6A	6B	6C	6D	6E

10/34

| [ESI*2] | 01 110 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 |
| [EDI*2] | 01 111 | 78 | 79 | 7A | 7B | 7C | 7D | 7E | 7F |
|-------------+------------+-----+-----+-----+-----+-----+-----+-----+-----|
[EAX*4]	10 000	80	81	82	83	84	85	86	87
[ECX*4]	10 001	88	89	8A	8B	8C	8D	8E	8F
[EDX*4]	10 010	90	91	92	93	94	95	96	97
[EBX*4]	10 011	98	89	9A	9B	9C	9D	9E	9F
none	10 100	A0	A1	A2	A3	A4	A5	A6	A7
[EBP*4]	10 101	A8	A9	AA	AB	AC	AD	AE	AF
[ESI*4]	10 110	B0	B1	B2	B3	B4	B5	B6	B7
[EDI*4]	10 111	B8	B9	BA	BB	BC	BD	BE	BF
-------------+------------+-----+-----+-----+-----+-----+-----+-----+-----									
[EAX*8]	11 000	C0	C1	C2	C3	C4	C5	C6	C7
[ECX*8]	11 001	C8	C9	CA	CB	CC	CD	CE	CF
[EDX*8]	11 010	D0	D1	D2	D3	D4	D5	D6	D7
[EBX*8]	11 011	D8	D9	DA	DB	DC	DD	DE	DF
none	11 100	E0	E1	E2	E3	E4	E5	E6	E7
[EBP*8]	11 101	E8	E9	EA	EB	EC	ED	EE	EF
[ESI*8]	11 110	F0	F1	F2	F3	F4	F5	F6	F7
[EDI*8]	11 111	F8	F9	FA	FB	FC	FD	FE	FF
'--'

 Example:

 MOV ECX, [EBX*4 + EAX + 12345678h]

 [EBX*4] and ECX gives us 89h (from the SIB table)
 disp32[EAX] gives us 80h (from 32bit addressing table)

 So, we encode: 8Bh 80h 89h 78h 56h 34h 12h
 | | | | | | |
 | | | '----------------> immediate value
 | | '--------------------> SIB
 | '------------------------> ModR/M byte
 '----------------------------> Opcode

 NOTE: You should notice that immediate values are stored in inverse
mode, first less signifiant word, then most signifiant word.

NOTES: [*] means a disp32 with no base if MOD is 00, [ESP] otherwise. This
provides the following addressing modes:

 disp32[index] (MOD=00)
 disp8[EBP][index] (MOD=01)
 disp32[EBP][index] (MOD=10)

 It is necesary that you understand these tables, as they will be
very necesarry when you will create the garbage between the real
instructions. Actually, you don't even need to define any table, but just
know how they are made up and only with a few calculations you can figure
out what Mod/Rm and SIB to use when you want to reach a certain result...
It's easy, the tables and examples speak for themselves.

11/34

<-- Opcode

 In the Opcode Maps that will follow soon, you will find some
abbreviations that you will probably find confusing... In order to lift up
the confusion, firstly I will quote the original Intel(c) abbreviations:

 The "Opcode" column gives the complete object code produced for each
form of the instruction. When possible, the codes are given as hexadecimal
bytes, in the same order in which they appear in memory. Definitions of
entries other than hexadecimal bytes are as follows:

 /digit: (digit is between 0 and 7) indicates that the ModR/M byte of
the instruction uses only the r/m (register or memory) operand. The reg
field contains the digit that provides an extension to the instruction's
opcode.

 /r: indicates that the ModR/M byte of the instruction contains both a
register operand and an r/m operand.

 cb, cw, cd, cp: a 1-byte (cb), 2-byte (cw), 4-byte (cd) or 6-byte
(cp) value following the opcode that is used to specify a code offset and
possibly a new value for the code segment register.

 ib, iw, id: a 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate
operand to the instruction that follows the opcode, ModR/M bytes or
scale-indexing bytes. The opcode determines if the operand is a signed
value. All words and doublewords are given with the low-order byte first.

 +rb, +rw, +rd: a register code, from 0 through 7, added to the
hexadecimal byte given at the left of the plus sign to form a single opcode
byte. The codes are:

 rb rw rd
 AL = 0 AX = 0 EAX = 0
 CL = 1 CX = 1 ECX = 1
 DL = 2 DX = 2 EDX = 2
 BL = 3 BX = 3 EBX = 3
 AH = 4 SP = 4 ESP = 4
 CH = 5 BP = 5 EBP = 5
 DH = 6 SI = 6 ESI = 6
 BH = 7 DI = 7 EDI = 7

<--- Instruction

 The "Instruction" column gives the syntax of the instruction
statement as it would appear in an ASM386 program. The following is a list
of the symbols used to represent operands in the instruction statements:

 rel8: a relative address in the range from 128 bytes before the end
of the instruction to 127 bytes after the end of the instruction.

 rel16, rel32: a relative address within the same code segment as the

12/34

instruction assembled. rel16 applies to instructions with an operand-size
attribute of 16 bits; rel32 applies to instructions with an operand-size
attribute of 32 bits.

 ptr16:16, ptr16:32: a FAR pointer, typically in a code segment
different from that of the instruction. The notation 16:16 indicates that
the value of the pointer has two parts. The value to the right of the colon
is a 16-bit selector or value destined for the code segment register. The
value to the left corresponds to the offset within the destination segment.
ptr16:16 is used when the instruction's operand-size attribute is 16 bits;
ptr16:32 is used with the 32-bit attribute.

 r8: one of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH.

 r16: one of the word registers AX, CX, DX, BX, SP, BP, SI, or DI.

 r32: one of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP,
ESI, or EDI.

 imm8: an immediate byte value. imm8 is a signed number between -128
and +127 inclusive. For instructions in which imm8 is combined with a word
or doubleword operand, the immediate value is sign-extended to form a word
or doubleword. The upper byte of the word is filled with the topmost bit of
the immediate value.

 imm16: an immediate word value used for instructions whose
operand-size attribute is 16 bits. This is a number between -32768 and
+32767 inclusive.

 imm32: an immediate doubleword value used for instructions whose
operand-size attribute is 32-bits. It allows the use of a number between
+2147483647 and -2147483648.

 r/m8: a one-byte operand that is either the contents of a byte
register (AL, BL, CL, DL, AH, BH, CH, DH), or a byte from memory.

 r/m16: a word register or memory operand used for instructions whose
operand-size attribute is 16 bits. The word registers are: AX, BX, CX, DX,
SP, BP, SI, DI. The contents of memory are found at the address provided by
the effective address computation.

 r/m32: a doubleword register or memory operand used for instructions
whose operand-size attribute is 32-bits. The doubleword registers are: EAX,
EBX, ECX, EDX, ESP, EBP, ESI, EDI. The contents of memory are found at the
address provided by the effective address computation.

 m8: a memory byte addressed by DS:SI or ES:DI (used only by string
instructions).

 m16: a memory word addressed by DS:SI or ES:DI (used only by string
instructions).

 m32: a memory doubleword addressed by DS:SI or ES:DI (used only by
string instructions).

13/34

 m16:16, M16:32: a memory operand containing a far pointer composed of
two numbers. The number to the left of the colon corresponds to the
pointer's segment selector. The number to the right corresponds to its
offset.

 m16 & 32, m16 & 16, m32 & 32: a memory operand consisting of data
item pairs whose sizes are indicated on the left and the right side of the
ampersand. All memory addressing modes are allowed. m16 & 16 and m32 & 32
operands are used by the BOUND instruction to provide an operand containing
an upper and lower bounds for array indices. m16 & 32 is used by LIDT and
LGDT to provide a word with which to load the limit field, and a doubleword
with which to load the base field of the corresponding Global and Interrupt
Descriptor Table Registers.

 moffs8, moffs16, moffs32: (memory offset) a simple memory variable of
type BYTE, WORD, or DWORD used by some variants of the MOV instruction. The
actual address is given by a simple offset relative to the segment base. No
ModR/M byte is used in the instruction. The number shown with moffs
indicates its size, which is determined by the address-size attribute of the
instruction.

 Sreg: a segment register. The segment register bit assignments are
ES=0, CS=1, SS=2, DS=3, FS=4, and GS=5.

<--- Opcode Map

 The next three tables represent the original Intel codification for
the 80386 instruction set, formated by me so it can fit the page. You will
see the following tables:

 1. The One-byte Opcode table. This is a 16*16 table. The row followed
by the column gives the opcode, like this:

 0 1 2 3 4
 .---........
 | ADD
 0|---........
 | Eb,Gb | Ev,Gv | Gb,Eb | Gv,Ev | AL,Ib
 |---........
 | :
 : :

 03h means ADD Gv,Ev
 00h means ADD Eb,Gb

 (reffer to abbreviations below)

 2. The Two-Byte Opcode table. This table looks exactly like the
precedent, but the opcode for the instruction is formed from two bytes: the
first one is 0Fh (escape), and the second is formed from the row and the
column.

 3. The Groups. This is a 8*8 table filled with instructions that have
the actual opcode on the second byte in the place where normally the REG

14/34

field is in the ModR/M byte.

 Note: both tables 1 and 2 are 'broke' in two so they can fit the
page. A good idea is to print out the tables and stick the pages to make a
big table. This will allow you to create your own personal codification.

 Let's check the abreviations and the tables first:

Key to Abbreviations
====================

 Operands are identified by a two-character code of the form Zz. The
first character, an uppercase letter, specifies the addressing method; the
second character, a lowercase letter, specifies the type of operand.

Codes for Addressing Method
===========================

 A Direct address; the instruction has no modR/M byte; the address of
 the operand is encoded in the instruction; no base register, index
 register, or scaling factor can be applied; e.g., far JMP (EA).

 C The reg field of the modR/M byte selects a control register; e.g.,
 MOV (0F20, 0F22).

 D The reg field of the modR/M byte selects a debug register; e.g.,
 MOV (0F21,0F23).

 E A modR/M byte follows the opcode and specifies the operand. The
 operand is either a general register or a memory address. If it is
 a memory address, the address is computed from a segment register
 and any of the following values: a base register, an index
 register, a scaling factor, a displacement.

 F Flags Register.

 G The reg field of the modR/M byte selects a general register; e.g.,
 ADD (00).

 I Immediate data. The value of the operand is encoded in subsequent
 bytes of the instruction.

 J The instruction contains a relative offset to be added to the
 instruction pointer register; e.g., JMP short, LOOP.

 M The modR/M byte may refer only to memory; e.g., BOUND, LES, LDS,
 LSS, LFS, LGS.

 O The instruction has no modR/M byte; the offset of the operand is
 coded as a word or double word (depending on address size
 attribute) in the instruction. No base register, index register,
 or scaling factor can be applied; e.g., MOV (A0-A3).

 R The mod field of the modR/M byte may refer only to a general

15/34

 register; e.g., MOV (0F20-0F24, 0F26).

 S The reg field of the modR/M byte selects a segment register; e.g.,
 MOV (8C,8E).

 T The reg field of the modR/M byte selects a test register; e.g., MOV
 (0F24,0F26).

 X Memory addressed by DS:SI; e.g., MOVS, COMPS, OUTS, LODS, SCAS.

 Y Memory addressed by ES:DI; e.g., MOVS, CMPS, INS, STOS.

Codes for Operant Type
======================

 a Two one-word operands in memory or two double-word operands in
 memory, depending on operand size attribute (used only by BOUND).

 b Byte (regardless of operand size attribute)

 c Byte or word, depending on operand size attribute.

 d Double word (regardless of operand size attribute)

 p 32-bit or 48-bit pointer, depending on operand size attribute.

 s Six-byte pseudo-descriptor

 v Word or double word, depending on operand size attribute.

 w Word (regardless of operand size attribute)

Register Codes
==============

 When an operand is a specific register encoded in the opcode, the
register is identified by its name; e.g., AX, CL, or ESI. The name of the
register indicates whether the register is 32-, 16-, or 8-bits wide. A
register identifier of the form eXX is used when the width of the register
depends on the operand size attribute; for example, eAX indicates that the
AX register is used when the operand size attribute is 16 and the EAX
register is used when the operand size attribute is 32.

One-Byte Opcode Map
===================

 0 1 2 3 4 5 6 7
.---.
| ADD | PUSH | POP |
0|---| | |
| Eb,Gb | Ev,Gv | Gb,Eb | Gv,Ev | AL,Ib | eAX,Iv | ES | ES |
|---+--------+--------|

16/34

| ADC | PUSH | POP |
1|---| | |
| Eb,Gb | Ev,Gv | Gb,Eb | Gv,Ev | AL,Ib | eAX,Iv | SS | SS |
|---+--------+--------|
| AND | SEG | |
2|---| | DAA |
| Eb,Gb | Ev,Gv | Gb,Eb | Gv,Ev | AL,Ib | eAX,Iv | =ES | |
|---+--------+--------|
| XOR | SEG | |
3|---| | AAA |
| Eb,Gb | Ev,Gv | Gb,Eb | Gv,Ev | AL,Ib | eAX,Iv | =SS | |
|---|
| INC general register |
4|---|
| eAX | eCX | eDX | eBX | eSP | eBP | eSI | eDI |
|---|
| PUSH general register |
5|---|
| eAX | eCX | eDX | eBX | eSP | eBP | eSI | eDI |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | BOUND | ARPL | SEG | SEG | Operand| Address|
6| PUSHA | POPA | | | | | | |
| | | Gv,Ma | Ew,Rw | =FS | =GS | Size | Size |
|---|
| Short displacement jump of condition (Jb) |
7|---|
| JO | JNO | JB | JNB | JZ | JNZ | JBE | JNBE |
|-----------------+---------+---------+-------------------+-----------------|
| Immediate Grp1 | | Grp1 | TEST | XCHG |
8|-----------------| | |-------------------+-----------------|
| Eb,Ib | Ev,Iv | | Ev,Iv | Eb,Gb | Ev,Gv | Eb,Gb | Ev,Gv |
|--------+--|
| | XCHG word or double-word register with eAX |
9| NOP |--|
| | eCX | eDX | eBX | eSP | eBP | eSI | eDI |
|-------------------------------------+---------+---------+--------+--------|
| MOV | MOVSB | MOVSW/D | CMPSB |CMPSW/D |
A|-------------------------------------| | | | |
| AL,Ob | eAX,Ov | Ob,AL | Ov,eAX | Xb,Yb | Xv,Yv | Xb,Yb | Xv,Yv |
|---|
| MOV immediate byte into byte register |
B|---|
| AL | CL | DL | BL | AH | CH | DH | BH |
|-----------------+-------------------+---------+---------+-----------------|
| Shift Grp2 | RET near | LES | LDS | MOV |
C|-----------------+-------------------| | |-----------------|
| Eb,Ib | Ev,Iv | Iw | | Gv,Mp | Gv,Mp | Eb,Ib | Ev,Iv |
|-------------------------------------+---------+---------+--------+--------|
| Shift Grp2 | | | | |
D|-------------------------------------| AAM | AAD | | XLAT |
| Eb,1 | Ev,1 | Eb,CL | Ev,CL | | | | |
|--------+--------+---------+---------+-------------------+-----------------|
| LOOPNE | LOOPE | LOOP | JCXZ | IN | OUT |
E| | | | |-------------------+-----------------|
| Jb | Jb | Jb | Jb | AL,Ib | eAX,Ib | Ib,AL | Ib,eAX |

17/34

|--------+--------+---------+---------+---------+---------+-----------------|
| | | | REP | | | Unary Grp3 |
F| LOCK | | REPNE | | HLT | CMC |-----------------|
| | | | REPE | | | Eb | Ev |
'---'

 8 9 A B C D E F
.---.
| OR | PUSH | 2-byte |
0|---| | |
| Eb,Gb | Ev,Gv | Gb,Eb | Gv,Ev | AL,Ib | eAX,Iv | CS | escape |
|---+--------+--------|
| SBB | PUSH | POP |
1|---| | |
| Eb,Gb | Ev,Gv | Gb,Eb | Gv,Ev | AL,Ib | eAX,Iv | DS | DS |
|---+--------+--------|
| SUB | SEG | |
2|---| | DAS |
| Eb,Gb | Ev,Gv | Gb,Eb | Gv,Ev | AL,Ib | eAX,Iv | =CS | |
|---+--------+--------|
| CMP | SEG | |
3|---| | AAS |
| Eb,Gb | Ev,Gv | Gb,Eb | Gv,Ev | AL,Ib | eAX,Iv | =CS | |
|---|
| DEC general register |
4|---|
| eAX | eCX | eDX | eBX | eSP | eBP | eSI | eDI |
|---|
| POP into general register |
5|---|
| eAX | eCX | eDX | eBX | eSP | eBP | eSI | eDI |
|-------+---------+---------+---------+---------+---------+--------+--------|
| PUSH | IMUL | PUSH | IMUL | INSB | INSW/D | OUTSB |OUTSW/D |
6| | | | | | | | |
| Ib | GvEvIv | Ib | GvEvIv | Yb,DX | Yb,DX | Dx,Xb | DX,Xv |
|---|
| Short-displacement jump on condition(Jb) |
7|---|
| JS | JNS | JP | JNP | JL | JNL | JLE | JNLE |
|-------------------------------------+---------+---------+--------+--------|
| MOV | MOV | LEA | MOV | POP |
8|-------------------------------------| | | | |
| Eb,Gb | Ev,Gv | Gb,Eb | Gv,Ev | Ew,Sw | Gv,M | Sw,Ew | Ev |
|-------+---------+---------+---------+---------+---------+--------+--------|
| | | CALL | | PUSHF | POPF | | |
9| CBW | CWD | | WAIT | | | SAHF | LAHF |
| | | Ap | | Fv | Fv | | |
|-----------------+---------+---------+---------+---------+--------+--------|
| TEST | STOSB | STOSW/D | LODSB | LODSW/D | SCASB |SCASW/D |
A|-----------------| | | | | | |
| AL,Ib | eAX,Iv | Yb,AL | Yv,eAX | AL,Xb | eAX,Xv | AL,Xb |eAX,Xv |
|---|
| MOV immediate word or double into word or double register |
B|---|

18/34

| eAX | eCX | eDX | eBX | eSP | eBP | eSI | eDI |
|-------+---------+-------------------+---------+---------+--------+--------|
| ENTER | | RET far | INT | INT | | |
C| | LEAVE |-------------------| | | INTO | IRET |
| Iw,Ib | | Iw | | 3 | Ib | | |
|---|
| |
D| ESC(Escape to coprocessor instruction set) |
CALL
E
Av
-------+---------+---------+---------+---------+---------+--------+--------
F
'---'

Two-Byte Opcode Map (first byte is 0FH)
=======================================

 0 1 2 3 4 5 6 7
.---.
| | | LAR | LSL | | | | |
0| Grp6 | Grp7 | | | | | CLTS | |
| | | Gw,Ew | Gv,Ew | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
1| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| MOV | MOV | MOV | MOV | MOV | | MOV | |
2| | | | | | | | |
| Cd,Rd | Dd,Rd | Rd,Cd | Rd,Dd | Td,Rd | | Rd,Td | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
3| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
4| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
5| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
6| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
7| | | | | | | | |

19/34

| | | | | | | | |
|---|
| Long-displacement jump on condition (Jv) |
8|---|
| JO | JNO | JB | JNB | JZ | JNZ | JBE | JNBE |
|---|
| Byte Set on condition (Eb) |
9|---|
| SETO | SETNO | SETB | SETNB | SETZ | SETNZ | SETBE | SETNBE |
|--------+--------+---------+---------+---------+---------+--------+--------|
| PUSH | POP | | BT | SHLD | SHLD | | |
A| | | | | | | | |
| FS | FS | | Ev,Gv | EvGvIb | EvGvCL | | |
|--------+--------+---------+---------+---------+---------+-----------------|
| | | LSS | BTR | LFS | LGS | MOVZX |
B| | | | | | |-----------------|
| | | Mp | Ev,Gv | Mp | Mp | Gv,Eb | Gv,Ew |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
C| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
D| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
E| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
F| | | | | | | | |
| | | | | | | | |
'---'

 8 9 A B C D E F
.---.
| | | | | | | | |
0| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
1| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
2| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
3| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
4| | | | | | | | |

20/34

| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
5| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
6| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
7| | | | | | | | |
| | | | | | | | |
|---|
| Long-displacement jump on condition (Jv) |
8|---|
| JS | JNS | JP | JNP | JL | JNL | JLE | JNLE |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
9| SETS | SETNS | SETP | SETNP | SETL | SETNL | SETLE | SETNLE |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| PUSH | POP | | BTS | SHRD | SHRD | | IMUL |
A| | | | | | | | |
| GS | GS | | Ev,Gv | EvGvIb | EvGvCL | | Gv,Ev |
|--------+--------+---------+---------+---------+---------+-----------------|
| | | Grp-8 | BTC | BSF | BSR | MOVSX |
B| | | | | | |-----------------|
| | | Ev,Ib | Ev,Gv | Gv,Ev | Gv,Ev | Gv,Eb Gv,Ew |
|--------+--------+---------+---------+---------+---------+-----------------|
| | | | | | | | |
C| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
D| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
E| | | | | | | | |
| | | | | | | | |
|--------+--------+---------+---------+---------+---------+--------+--------|
| | | | | | | | |
F| | | | | | | | |
| | | | | | | | |
'---'

Opcodes determined by bits 5,4,3 of modR/M byte:
==

 G .-----------------------.
 r | mod | nnn | R/M |
 o '-----------------------'
 u

21/34

 p 000 001 010 011 100 101 110 111
 .---.
 1| ADD | OR | ADC | SBB | AND | SUB | XOR | CMP |
 | | | | | | | | |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 2| ROL | ROR | RCL | RCR | SHL | SHR | | SAR |
 | | | | | | | | |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 3| TEST | | NOT | NEG | MUL | IMUL | DIV | IDIV |
 | Ib/Iv | | | |AL/eAX |AL/eAX |AL/eAX |AL/eAX |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 4| INC | DEC | | | | | | |
 | Eb | Eb | | | | | | |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 5| INC | DEC | CALL | CALL | JMP | JMP | PUSH | |
 | Ev | Ev | Ev | eP | Ev | Ep | Ev | |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 6| SLDT | STR | LLDT | LTR | VERR | VERW | | |
 | Ew | Ew | Ew | Ew | Ew | Ew | | |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 7| SGDT | SIDT | LGDT | LIDT | SMSW | | LMSW | |
 | Ms | Ms | Ms | Ms | Ew | | Ew | |
 |-------+-------+-------+-------+-------+-------+-------+-------|
 8| | | | | BT | BTS | BTR | BTC |
 | | | | | | | | |
 '---'

Definition of Conditions
========================

(For conditional instructions Jcond, and SETcond)
This table below may be usefull in generating conditions:

.--.
| | Instr. | Condition |
| Mnemonic Meaning | Subcode | Tested |
|------------------------------------+----------+--------------------------|
| O Overflow | 0000 | OF = 1 |
|------------------------------------+----------+--------------------------|
| NO No overflow | 0001 | OF = 0 |
|------------------------------------+----------+--------------------------|
| B Below | | |
| NAE Neither above nor equal | 0010 | CF = 1 |
|------------------------------------+----------+--------------------------|
| NB Not below | | |
| AE Above or equal | 0011 | CF = 0 |
|------------------------------------+----------+--------------------------|
| E Equal | | |
| Z Zero | 0100 | ZF = 1 |
|------------------------------------+----------+--------------------------|
| NE Not equal | | |
| NZ Not zero | 0101 | ZF = 0 |
|------------------------------------+----------+--------------------------|
| BE Below or equal | | |

22/34

| NA Not above | 0110 | (CF or ZF) = 1 |
|------------------------------------+----------+--------------------------|
| NBE Neither below nor equal | | |
| NA Above | 0111 | (CF or ZF) = 0 |
|------------------------------------+----------+--------------------------|
| S Sign | 1000 | SF = 1 |
|------------------------------------+----------+--------------------------|
| NS No sign | 1001 | SF = 0 |
|------------------------------------+----------+--------------------------|
| P Parity | | |
| PE Parity even | 1010 | PF = 1 |
|------------------------------------+----------+--------------------------|
| NP No parity | | |
| PO Parity odd | 1011 | PF = 0 |
|------------------------------------+----------+--------------------------|
| L Less | | |
| NGE Neither greater nor equal| 1100 | (SF xor OF) = 1 |
|------------------------------------+----------+--------------------------|
| NL Not less | | |
| GE Greater or equal | 1101 | (SF xor OF) = 0 |
|------------------------------------+----------+--------------------------|
| LE Less or equal | | |
| NG Not greater | 1110 | ((SF xor OF) or ZF) = 1 |
|------------------------------------+----------+--------------------------|
| NLE Neither less nor equal | | |
| G Greater | 1111 | ((SF xor OF) or ZF) = 0 |
'--'

Note: The terms "above" and "below" refer to the relation between two
unsigned values (neither SF nor OF is tested). The terms "greater" and
"less" refer to the relation between two signed values (SF and OF are
tested).

 .-------------------------.
-------------------------| PART II |--------------------------
 '-------------------------'

-------------------------[creating instructions]--------------------------

 Ok, I know what you are feeling right now... Probably nausea... And
probably your thought is to format the drive this tutorial is on. But the
wolf is not that bad! (not that I ever met a wolf for that matter...;-). I
know these tables look like shit and probably besides the instruction names
nothing makes much sense... but, as I said, you should have these tables on
a big paper along with the abbreviations legenda. Then, start looking over
it. Soon you'll start too see patterns... And that is the time you start to
make your own encodings.

 First let's set the goals and check the depth of the analisis we must
obtain:

 1. Complexity: -----> bigger ----> more instruction types
 | |---> privileged instructions
 | |---> FPU instructions

23/34

 | '---> larger decryptors
 '----> smaller ----> less instruction types
 |---> less privileged instructions
 |---> no FPU instructions
 '---> shorter decryptors

 2. Quickness: -----> bigger ----> shorter decryptors
 | |---> no FPU instructions
 | '---> Less loops and cycles
 '----> smaller ----> huge decryptors
 |---> many FPU instructions
 '---> many loops and cycles

 Here the choice is for the author and it depends on how much amount
of work is he willing to give, the time he has, etc. Personally, I prefer
the most complex decryptor and the most slow one. This creates an "already
there" armour agains disasembling freaks, string scanners and code
emulators. This let's you leave the real armour in the second protection
layer (in a second level decryptor), because armours tend to be easily
string scannable as they represent sets of well defined instructions. That's
why I like the decryptors armoured by themselves, not using easy to find
tricks.

 Which brings me finaly to the word that really means polymorphism:

 G A R B A G E

 As much disgusting as it sounds, the garbage (sometimes called junk)
is the heart of the polymorphic decryptor. The simplest decryptor and the
crappiest encryption can be hidden like an elephant in a cherry tree...
cause the elephant got red little eyes, you know...;-) We will mainly speak
about the garbage as it's presence is very important in the polymorphic
decryptor.

 Anyhow, before starting to do garbage (;-), let us take a look at a
common skeleton of a poly engine:

 .------------.
 | Poly entry |
 '------------'
 .-v----------------------------.
 | Choosing random registers |
 |------------------------------|
 | Choosing random values |
 |------------------------------|
 | Generate garbage >-+------------------------.
 |---------------------------------------. |
 | Mainloop | |
 | .------------------------------| |
 .----+--------+-< Generate real instruction | |
 | | |------------------------------| |
 | | | Generate garbage >-+---------------|
 | | '------------------------------| |
 | | Loop Mainloop | |

24/34

 | |---------------------------------------' |
 | | Generate garbage >-+------------------------|
 | '------------------------------' |
 | .-v---------. |
 | | Poly exit | |
 | '-----------' |
 | .------------------------------. |
 '--->| Instruction generator | |
 '------------------------------' |
 .------------------------------. |
 | Garbage generator |<-----------------------'
 '------------------------------'

 So, basically we have the following routines:

 * random register chooser
 * random values chooser
 * instruction generator
 * garbage generator

<--- Random register chooser

 Ok, so your poly engine's goal is to create a decryptor before
everything. This general decryptor can be shown by this diagram:

 .---.
 | Load Key Register with key value |
 I | Load Pointer Register with an address to the code to decrypt |
Load Length Register with the code length
Decrypt_Loop:
Load Code Register with byte/word/dword to decrypt
Apply Decrypt Operation over Code Register with Key Register
Store Code Register at the pointer held by Pointer Register
II
Increment Pointer Register
Loop decrementing Length Register until it equals 0 to Decrypt_Loop
Jump to decrypted code
 '---'

 You see I divided the decryptor in 2 parts:

 (I) The loading of the used register. It is very important for a
poly engine to properly fill the instructions here and to make them as small
as possible; you should avoid the use of a delta handle register or any
other tricks; the addressing should be direct (e.g. mov preg, 1234h).

 (II) The decryptor loop

 So, mainly we need to operate with 4 registers:

25/34

 � Key register (kreg)
 � Pointer register (preg)
 � Code register (creg)
 � Length register (lreg)

 NOTE: you may choose not to use registers instead of the key register
and pointer register. Instead you may use an immediate value for the key and
an immediate addressing mode for the pointer, incrementing directly the
immediate values. Also, the code register may be skipped, by applying the
decryption math operation directly on the code. However in this tute I will
make use of all the registers.

 As I said I will try to explain the 32 bit poly ways, I will consider
a poly engine generating 32 bit code. In this way we can use any register to
address code: [EAX], [ECX], etc., not like in 16 bit where you had less
possibilities, like [DI], [BX+DI], etc.

 Let's check a way to choose random registers.
 NOTE: I will call "brandom32" a procedure that expects a value in EAX
and returns a random value between 0 and original EAX-1.

 The idea behind this procedure is to put the codes for the registers,
first being the really used registers and the rest, the junk (garbage)
registers. After that, the procedure should scramble them by exchanging 2
between them several times:

 used_registers:
 kreg db 0
 preg db 1
 creg db 2
 lreg db 3
 jrg1 db 5
 jrg2 db 6
 jrg3 db 7

 Choose_random_regs proc near ;
 lea edi, used_registers ; point to registers
 lea esi, used_registers ; point to registers
 mov edx, esi ; save position
 mov ecx, 50h ; scramble 50h times
 mangle: ;
 mov eax, 8 ;
 call brandom32 ; choose a random nr. between 0-7
 mov ebx, eax ; in EBX
 mov eax, 8 ;
 call brandom32 ; choose a random nr. between 0-7
 cmp ebx, eax ; in EAX
 je mangle ; if EAX=EBX choose again
 add edi, eax ; increment first pointer
 add esi, ebx ; increment second pointer
 mov al, byte ptr [edi] ; and exchange the values
 xchg byte ptr [esi], al ; between them
 mov byte ptr [edi], al ;
 mov edi, edx ; restore position
 mov esi, edx ;

26/34

 loop mangle ; and do it 50h times
 ret ;
 Choose_random_regs endp ;

 After this we can use the registers being sure that they were
randomly choosed. Taking into account that the codes are aligned like this:
xxxxxNNN, to fill the proper ModR/M register you need to clear the ModR/M
byte. Look below at the 'instruction generator'.

<--- Random values chooser

 It is very important for the poly engine to choose many random values
and fill the real instructions with them.

 The most common random value used is the encryption key. In order to
have a strong key you must follow some rules, like:

 * Don't have a key zero padded at the beginning (like 00158A45h)
 * Don't have simetric keys (like ABCDDCBAh)

 Also, another common random value is the key 'increment'. I quote
increment because you mustn't always use the increasing/decreasing of the
key. You may choose any kind of reversible math operation. In my MOF32 the
key changes every iteration with any of the XOR, ADD and SUB operations.

 The last but not the least important random value is the encryption
operation. My 32bit poly engine uses 3 encryption operations:

 1) the no key operation: applys a ROR/ROL over the code
 2) two code operation: applys XOR/ADD/SUB over the code with the next
 code (dword)
 3) key operation: applys XOR/ADD/SUB over the code with the key

 The many math operation you make, the stronger the encryption is.
However you mustn't raise the complexity of the decryptor itself. Other
interesting operations to apply are NOT, NEG, XCHG.

<--- Instruction generator

 Ok, now it's the time to generate our decryptor's instructions. This
is a procedure which is called in the mainloop and so, we need to keep the
counter. The counter shows us which instruction must we generate in this
iteration. Let's see how do I propose to declare the decryptor:

 decryptor:
 i1: <instruction 1>
 db 0FEh
 i2 <instruction 2>
 db 0FEh
 ...
 ...
 in <instruction n>
 db 0FEh

27/34

 So, we have each instruction of the decryptor declared, of course
with a simple set of registers, but BEWARE: don't use EAX or AX when
declaring the decryptor because for those the opcodes are different. For
example:

 we define | will actually become
 -------------------------+--------------------------
 mov ebx, [ebx] | mov creg, [preg]
 mov ebx, 0 | mov kreg, keyvalue
 etc... |

 So, you understand: you define the instructions and the compiler
actually computes the correct opcodes for you and puts them there.
Nowallyou have to do is copy each instruction and fill in the proper values
or registers.

 You have two choices here: one is to fill the decryptor there where
it's declared and then copy it to the destination, or you may copy byte by
byte and fill directly to the destination. I think the first method is
quicker. You need to have a pointer, let's say ESI pointing the decryptor
bytes. In order to have things really simple, if your decryptor has few
instructions (MOF32 uses a 12 instructions decryptor), you may choose to
make a "case" in your instructions generator routine and take each
instruction by hand, like this:

 cmp ecx, 1
 je ins1
 cmp ecx, 2
 je ins2
 ...
 jmp over

ins1: ...
 jmp over
ins2: ...
 jmp over
 ...
over:
 ret

 You understood that ecx was the counter. So if we must generate
instruction nr.3 we jump to ins3. Not it is very easy for you to fill in
each instruction, and that's because you know exactly what kind of
instruction that is and where you have to fill. Let us imagine that your
third instruction looks like this as it's declared:

 mov ebx, 0

 and you must turn it into:

 mov kreg, keyvalue

 knowing that your kreg is EDX and the key value is 12345678h.

28/34

 The opcode for MOV EBX, 0 is: BBh 00h 00h 00h 00h
 The opcode for MOV EDX, 12345678h is: BAh 78h 56h 34h 12h

 The REG field is on the last three bits of the opcode (read part I),
so, first we clear it (ESI points to the instruction start):

 and byte ptr [esi], 00000111b

 and after that we fill the proper register:

 or byte ptr [esi], kreg

 And now we fill the value for the key:

 or dword ptr [esi+1], keyvalue

 DONE! We have our polymorphic instruction. All we have to do now is
to copy it to the destination using lodsb/stosb or any other method.

 When writing a poly engine I recomend that you firstly write it
without any kind of garbage involved. Once you managed to generate your
decryptor and it works ok, then you procede in writing the garbage
generator.

 As for your help, here is the general decryptor used by MOF32:

 decryptor:
 i01: mov ebx, 0 ; mov preg, code_start
 db 0feh ;
 i02: mov ebx, 0 ; mov kreg, key
 db 0feh ;
 i03: mov ebx, 0 ; mov lreg, code_length/8
 db 0feh ;
 i04: mov ebx, dword ptr [ebx] ; mov creg, [preg] (mainloop)
 db 0feh ;
 i05: add ebx, ecx ; <op1> creg, kreg
 db 0feh ;
 i06: ror ebx, 0 ; <op2> creg, key2
 db 0feh ;
 i07: add ebx, dword ptr [ebx+4] ; <op3> creg, [preg+4]
 db 0feh ;
 i08: mov dword ptr [ebx], ebx ; mov [preg], creg
 db 0feh ;
 i09: add ebx, keyvalue ; <op4> kreg, keyvalue
 db 0feh ;
 i10: add ebx, 4 ; add ebx, 4
 db 0feh ;
 i11: sub ebx, 1 ; sub lreg, 1
 db 0feh ;
 i12: jnz $; jnz mainloop
 db 0feh, 0ffh ;

 I hope this is all clear as we are moving towards the real armour of

29/34

the poly decryptor: the garbage...

<--- Garbage generator

 As I explained in the poly engine figure, the garbage generator is
called before generating the first real instruction and then after each real
instruction. Here are the main types of instructions that the garbage should
include:

 - <math op> jreg, <reg>/<mem>/<imm>
 - <logical op> jreg, <reg>/<mem>/<imm>
 - <test op> jreg, <reg>/<mem>/<imm>
 - <shift op>
 - jmps and conditional jumps
 - calls
 - unary operations (inc,dec,...)
 - pushad/popad
 - FPU instructions
 - priviledged instructions (smsw, sidt, etc...)

 Note: between a pushad and a popad any register may be destroyed...

 Ok, now we called the garbgage routine. Firstly, how many junk
instruction are we going to create? Here is a question of philosophy. In my
opinion, as to be an easy customizable, upgradable polymorphic engine, I
propose to you to create as many junk instructions as the decryptor has real
instructions. So, if your decryptor has 10 real instructions, you should
create at least 10 junk instructions between them. I want you to understand
that when I say junk instruction, I also mean groups of instructions, like
for example: pushad/mov eax, ebx/popad... When generating the garbage
instructions you will have a loop decreasing a counter towards 0. If you
create more than one instruction once (for example a call/jump combination)
you should decrease the counter by two, otherwise you will get too
many garbage instructions.

 Anyway, in my opinion, the garbage generator should look like this:

 .-----------------.
 | Garbage routine |
 '-----------------'
 |
 .----+--.
 | .--v--. |
 | | Choose random number of junk instructions | |
 | '---' |
 | | |
 | .--v-----------------------. |
 | | Garbage generator loop | |
 | '-^------------------------' |
	.--v--------------------------------. .-------------------.			
		Choose random garbage type	-> Choose addressing	
	'--+-+-+-+-+-+----------------------' '----------+-+-+----'			

30/34

						'--> Type 1 ---->-<------ mem2reg <-'				
					'----> Type 2 ---->	<------ reg2reg <---'				
				'------> Type 3 ---->	<------ etc... <-----'					
			'--------> Type 4 ---->							
		'----------> Type 5 ---->								
	'------------> Type 6 ---->									
	.-----------------------------v---------------------------.									
		Generate the garbage instruction(s)								
	'---'									
	.--v--.									
		Save addresses if needed								
	'---'									
.------------v-------------.										
	Decr. counter until 0									
'--------------------------'										
 '----+--'
 .-v--------------------.
 | Garbage routine exit |
 '----------------------'

 Let's take them piece by piece...
 I already spoke about the garbage instructions number, but you may
have your own opinion on this, so I won't push it too much... My MOF32 uses
a random number of junk instructions (4-15).

 Your poly engine must have a very well defined set of junk
instructions type. Let me give you an example:

 1 - mathematical operations
 2 - logical instructions
 3 - unary instructions
 4 - jump
 5 - call
 6 - back call
 7 - pushad/popad
 etc...

 You will need to have a little routine for handling each of these.

 When choosing the addressing type you must choose:

 1 - operand size (16 or 32 bit)
 2 - address size (16 or 32 bit)

 Knowing these, you know which addressing table to use (check out the
addressing tables in the first part). After locating the table, you choose
the real addressing type (whether you have register to register, or register
to memory, and here whether you have index or not, displacement or not; all
choices must be done randomly)... After the choice was done, you have the
Mod/RM byte, the SIB byte and eventualy the immediate value. Also you

31/34

may have operand and address size prefixes if needed. After this you must
turn towards the Opcode Map array...

 Here again you can choose to use the entire Intel(c) 386 table or you
can only define a few opcodes. For a best poly engine I think it's better
to use the entire table. To do that you need to have a few indexes defined.
Let's see how:

 type1:
 row1, col1, len
 row2, col2, len
 ...
 type2:
 row1, col1, len
 roe2, col2, len
 ...

 For example, you have the type one as being the math operations (add,
sub). You define the row and column of the add instruction first and how
many cells it occupies (check the opcode table). Your poly engine will
choose a random set of row/col and a random place on that row... After this,
you must make the corections. The corrections imply choosing the corect
memory to register opcode, instead of register to memory, or the immediate
to register opcode.

 Here, eachone must make his own way of encoding the opcodes, as smart
as possible.

 After having the opcode, all you have to do is put the prefixes, the
opcode, the Mod/Rm and SIB bytes and the immediate value one after another
and store the instruction... There you are! You have a garbage instruction!

 Let me explain something else: you need to have a specific procedure
which generates ONE random garbag instruction. That's because, for example
when creating a PUSHAD/POPAD structure, you must generate more junks between
the push and pop.

 I my first polymorphism tutorial I explained how you can make the 2
types of calls combined with a jump. When creating the call I explained how
you must save the adress where the call will be done so that you can encode
the call. Well, a great thing is the back-call, as I call it... A back-call
has the ability of increasing the number of runned instructions. A back-call
looks like this:

 jmp do_call
 Routine:
 ...
 ret
 ...
 jmp over_call
 ...
 do_call: call Routine
 ...
 over_call:
 ...

32/34

 call Routine
 ...
 call Routine

 I guess you understood... You create a call/jmp structure and you
save the address of the call. Then you may generate no matter how many calls
to that routine, as the RET will return the execution accordingly. You
should beware however so that you don't make an infinite loop...

 For the FPU instructions, it is very easy to handle them (read my
Anti-Debugging and Anti-Emulator lair), but all you have to do is take care
to reset the FPU from time to time...

 .----------------.
------------------------------| EXTRA PART |------------------------------
 '----------------'

------------------------------[turning 32bit]------------------------------

 I promised that I will talk a little about the 32 bit specific
thingies.

 As I explained many times, I think that a polymorphic decryptor
should have everyting coming handy. When I say that I mean that the
polymorphic engine MUST correctly compute any value and address and fill the
instructions properly with them. One of the most important instruction is
this:

 mov preg, code_start

 This instruction loads the pointer register with the address from
where the decryptor starts to do it's job. It is necesary that this is the
final correct address (meaning you mustn't use any kind of EBP+ or anyshit
like this which attracts the eye).

 If you read some infos on the PE file you know that you have some
important areas in the PE header and also you know that among all the
sections of the PE file there exist one which is called .CODE or .TEXT which
contains the executable code. Here is where usually a virus appends (others
create a new section). The encrypted virus is to be found, let's say, at the
end of the .CODE section. Let's see what the poly engine must retrieve from
the PE file in order to properly align itself:

 Notes: newmapaddress = an address where the opened victim file is
 mapped.

 First we must locate the PE header:

 mov edi, dword ptr [newmapaddress] ;
 add edi, 03ch ; locate the PE header
 mov esi, dword ptr [edi] ; address
 add esi, dword ptr [newmapaddress] ;
 push esi ; save it

33/34

 ESI holds the address of the PE header; now we lcoate the initial entry
point:

 add esi, 028h ; locate EIP
 mov ebx, [esi] ; put it in EBX
 mov dword ptr [eip], ebx ; save it in EIP variable

 Now we must locate the imagebase (the address where the victim file
loads in memory when it is executing):

 add esi, 0Ch ; locate imagebase
 add ebx, [esi] ; add it it EBX
 mov dword ptr [deltahandle], ebx ; and save for alignment
 pop esi ; restore PE address

 Now we must locate the address of the .CODE section. Here I will give
the simplest and the less safe way; for better results you need to make a
search routine for the .code section:

 add esi, 10Ch ; locate the pointer to raw
 ; data for the .code section.
 mov edi, dword ptr [esi] ; address
 mov esi, dword ptr [esi-4] ; size of raw data
 add edi, esi ; point to end of code
 sub edi, virus_size ; go back to virus start

 In this way you have the EDI pointing to a relative address where the
encrypted virus part starts. When the file loads into memory, it is mapped
starting from the imagebase, which means that if you do:

 add edi, deltahandle

 You have EDI holding the exact address of the encrypted part of the
virus upon the execution of the victim file. This means that you must fill
the code_start with the value in EDI. In this way, when the decryptor starts
it'll need no more alignment as the PREG will point exactly to the start of
the code to be decrypted... Neat, huh?

 Another important thing: to have a well guarded engine, do not bother
to make the entry point at the beginning of your virus and there to have a
delta_handle getter and a jump to the decryptor. Instead, make the new EIP
to point directly to the poly decryptor as you need no Delta handle in it.
You will get the delta handle in the virus beginning after it is decrypted.

 Another good idea is this: the .code section, or whatever section
your virus lives in, has a raw size different, smaller than the virtual
size. This means that after the virus body you have an empty space... Rings
any bells? Usualy the poly engines have junk instructions that affect the
registers, but only the real instructions of the decryptor affect the
memory, by writing to it. This gives the AV dude an easy way of finding the
decryptor's instructions... However, upon creating the polymorphic decryptor
you can do something like this:

calculate the absolute end of the virus = .code section relative address +

34/34

 virus size +
 imagebase

 Save the value as a 'freemem' variable. Save another variable called
'freelength' which equals the virtual size minus freemem. Now, when you
create a junk instruction, you can do this:

 - decide to make a register to memory instruction
 - generate a random number N between freemem and freemem+freelength
 - generate a MOV [N], reg

 There you are!! You have a junk instruction that writes to memory...
As many as you have the better. You can also make something like this:

 mov jreg1, N
 ...
 mov [jreg1], reg

 Now this last instruction looks exactly like the real instruction of
the decryptor that reads MOV [preg], creg... Which brings chaos in the mind
of the one who wants to understand de decryptor...

 Another thing about the win32 is that you can use priviledged
instructions like smsw which are not emulated by any code emulator for now.

-------------------------------[final word]-------------------------------

 Here ends another tutorial. I hope this one was and will be useful to
you. If you find it useful you may drop me a line at:

 lordjulus@geocities.com

 I always answer the mail, and I always respect the opinions of other
people. So, don't be shy and write me your impressions...

 Hoping I did help you a little, I invite you to visit me on the WEB:

 http://members.tripod.com/~lordjulus
 http://members.xoom.com/Julus [MIRROR]

.--.
| LORD JULUS (c) 1998 [SLAM] | http://members.tripod.com/~lordjulus |
'--'

mailto:lordjulus@geocities.com
http://members.tripod.com/~lordjulus
http://members.xoom.com/Julus
http://members.tripod.com/~lordjulus

