
1/6

Polymorphic Viruses: Implementation, Detection and
Protection

ivanlef0u.fr/repo/madchat/vxdevl/vdat/pviripd.htm

Polymorphic Viruses:

Implementation, Detection and Protection.

by Tarkan Yetiser

virus entry point:
Polymorphic Decryptor

** encrypted ****************
** main virus body **********

This paper discusses the subject of polymorphic engines and viruses. It looks at general

characteristics of polymorphism as currently implemented. It tries to maintain a practical

presentation of the subject matter rather than an academic and abstract approach that would

confuse many people. Basic knowledge of the Intel 80x86 instruction set will be highly useful

in understanding the material presented. A very detailed discussion is avoided not to have

the side effect of "teaching" how to create polymorphic engines or viruses. The purpose is to

help computer professionals understand this trend of virus development and the threats it

poses. It should serve as a starting point for individuals who would like to get an idea about

the polymorphic viruses and how they are implemented. Long gone are the days of

innocence, when any schoolboy could write a virus scanner using a few signatures extracted

from captured virus samples.

The subject of polymorphism can be extended to other areas such as anti-reverse-engineering

or anti-direct-attacks, and it can be argued to be useful in that context. This paper only looks

at the use of polymorphism in PC viruses to avoid simple detection techniques.

1. Introduction

In the Spring of 1992, we analyzed a polymorphic engine called MtE, and provided a report to

satisfy the curiosity of the public. We also provided a freeware program called CatchMtE. At

the end of 1992, we received reports of a new polymorphic engine, called TridenT

Polymorphic Engine, or TPE for short. It was released in Europe by someone who calls

himself Masud Khafir.

Both MtE and TPE are distributed as object modules that can be linked to programs allowing

them to create different-looking decryptors. One notorious use of such a module is for

writing so-called "polymorphic" viruses. Prior to the appearance of TPE, several viruses using

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/pviripd.htm
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine1.htm#MTE
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine2.htm#TPE

2/6

MtE (Mutation Engine) have been seen. The claimed author of TPE pays tribute to the author

of MtE in the documentation that comes with TPE.

MtE is about 2.4 kilobytes in size. It can generate decyptors using based or indexed

addressing modes with word-size displacement. The decryptor steps through the code a word

at a time. It uses 4 variations of the based or indexed addressing modes. The structure of the

decryptors is constant.

TPE is about 1.5 kilobytes in size. It can generate decryptors using based or indexed

addressing modes with or without displacement. Unlike MtE, TPE can also create byte-at-a-

time decryptors, as well as word-at-a-time. It also uses more addressing modes available on

the 80x86; 6 variations of the based or indexed addressing modes are used. Its more general

nature makes TPE less predictable, and complicates the task of recognizing TPE-based

viruses. Many encryptive viruses can be considered a subset of TPE-based decryptors, and

may be flagged as such. To overcome this problem, one has to check for other viruses before

performing check for the presence of a TPE decryptor.

2. Polymorphism and Its Common Use

We will now present some preliminary information on polymorphism in general, and discuss

certain features of the Intel 80x86 instruction set.

Although polymorphism is independent of encryption, it is easier to use encryption to hide

the main body of the virus and implement a polymorphic decryptor. Viruses aim to keep their

size as small as possible and it is impractical to make the main virus body polymorphic. One

could attempt to rearrange the instructions in the main virus body or even use different

instructions (to defy recognition techniques based on checksumming). Such an effort would

not be as helpful or as easy as the common approach of using encryption in combination with

polymorphism. In summary, current polymorphic viruses keep the main virus body

encrypted, and implement a polymorphic decryption routine in plaintext. Since the decryptor

is comparatively small, and performs one specific task, the amount of time and effort needed

to craft a polymorphic virus is significantly reduced. Pictorially, a generic polymorphic virus

would be structured as follows:

3. Implementation of Polymorphism on the Intel 80x86

In almost every case we have examined, the polymorphic engine exploits the fact that certain

computations can be performed using different registers and instructions. To step through

encrypted portion of code, for example, one can use DI, SI, or BX registers. To increment or

to decrement the index value, one can ADD to the index register, INC it, or use an implicit

instruction that increments it (CMPSB is used in TPE for example).

3/6

Polymorphic engines can also rely on the availability of instructions that are coded using the

same opcodes. On the 80x86, there are 11 opcodes used for several different instructions: 80,

81, 83, D0, D1, D2, D3, F6, F7, FE, and FF. When it is necessary to encode information about

one operand, the middle three bits of the ModRM byte are used to distinguish operations.

The ModRM byte follows some opcodes and can either extend the opcode or contain

information about the operand and addressing modes of an instruction. It contains three

fields: Mod (2 bits), Reg (3 bits), and R/M (3 bits). For example, for the opcode 80, the

middle three bits of the ModRM byte, which make up the Reg field, have the following

meanings:

The second operand of each instruction with an opcode of 80 is an immediate byte, so the

ModRM fields in the second byte of machine code encode the first register or memory

operand.

By flipping a few bits, it is possible to generate code achieving many different operations

easily. Combined with a rich set of addressing modes, and a good random number generator,

one can create very different-looking decryptors.

4. Common Characteristics of Polymorphic Viruses

Polymorphic viruses of varying degrees of complexity have appeared in the past. In the anti-

virus community, polymorphism is still an active area of discussion and much disagreement.

Most researchers would agree that certain viruses are simply encryptive with a variable key.

We do not consider such beasts polymorphic since they can be recognized using simple wild

card scan strings. The number of such viruses significantly increased over the past few years

as a reaction to the worldwide availability of good signature-based virus scanners. Similarly,

scanners also evolved to handle such beasts using more flexible signatures that can include

wild card or don't-care values to accommodate the variable parts of the decryptors.

There are other viruses that exhibit some polymorphic behavior, though they remain

unsophisticated. Classification of such beasts is a gray area. For example, some viruses can

generate a limited number of different-looking decryptors. These do not implement a

polymorphic code generation engine, but rather pick from a pre-computed set of code

fragments that they carry along. Writing detection routines for such viruses is not too

difficult.

To aid in implementing polymorphism, a random-number generator is often used. A

random-number generator provides selection of a part of the decryptor. This selection could

be for "noise" instructions that are inserted in the decryptor to render signature-based

scanning ineffective. It could also be used to select a certain addressing mode and

appropriate registers. The obvious use of random number generators is to get a seed value for

encryption.

4/6

Another aspect of a polymorphic engine is the choice of instructions that actually perform the

decryption. XOR is a favorite choice. The chosen operation modifies the code to be decrypted

using an addressing mode that allows external memory access. By external, we mean outside

the processor registers. By using several instructions and many different addressing modes, a

polymorphic engine can achieve a large number of combinations of decryptors.

Usually, a loop construct is set up to step through the encrypted code. On the 80x86, many

instructions can be used to accomplish looping. The loop counter can be modified implicitly

using LOOP instruction. Or it could be more explicit using a DEC CX, JNZ ?? combination.

Several such possibilities exist. Again, availability of different approaches increases the

number of appearances a decryptor can have. In the MtE, the loop construct was very

predictable not only because it used a specific instruction but also because it had a

characteristic that made it very simple to recognize MtE-based decryptors. Although

"appearance-based" analysis on the MtE left many anti-virus developers in despair, a

structural analysis proved to be very effective. We doubt even the developer of MtE noticed

how predictable his polymorphic engine is.

The goal of a polymorphic engine is not to leave any predictable sequence of instructions that

a virus scanner can use to simplify or optimize an appropriate detection algorithm. For

example, using the same instruction to increment the index register is too predictable. A

mixture of instructions that achieve the same result explicitly or implicitly (as in TPE) would

make detection a lot harder.

5. Detection of Polymorphic Viruses

There are several problems that must be addressed to develop a reliable detection routine for

a given polymorphic engine. The most challenging one appears to be avoiding false positives.

Many programs include a run-time decompressor to reduce space requirements. When

loaded in memory, the decompressor takes charge and produces an expanded copy of the

code that can be run on the CPU. Furthermore, some programs are actually encrypted on

disk, and they are decrypted on the fly when they are loaded. The purpose of using such a

scheme is to make reverse-engineering efforts difficult. Such programs are more likely to

trigger a false positive.

To reduce false positive rate, one can limit the search to a small area of the suspect file. This

would be helpful in many cases; however, the compressed and encrypted files carry their

decompressor/decryptor at the entry point of the program, just where many viruses plant

their code. Another trick a few viruses employ is to hide the virus entry point where the

decryptor is located. Of course, scattering the virus code while keeping the host functional

complicates the virus.

A structural analysis of TPE reveals some information that can be used to recognize a TPE-

based decryptor, although it is not as useful as it is in the case of MtE. Note that structural

analysis does not rely on presence of specific byte sequences, and therefore offers a powerful

5/6

tool that can be used in developing recognition routine for many polymorphic engines.

6. Protection Mechanisms and Solutions

Anti-virus field is full of solutions to almost every existing virus problem, and sometimes

solutions to non-existing problems as well. Among other things, one solution prevailed as the

most popular: scanning. The inherent flaw in this solution is that it cannot cope with viruses

that it does not have signatures for. Therefore ugrades are issued frequently. Deployment of

such upgrades in large installations requires tremendous effort, and quickly translates into

having a very old version of a scanner installed; even then not necessarily used. Aside from

the false sense of security scanning gives, some companies make less-than-honest claims

about the capabilities of their scanners to promote their products. Testing such claims is

beyond the resources of most organizations. Those who could conduct such tests are not

always impartial.

Scanning has its place, and it is very useful when used properly. The best protection against

computer viruses is user awareness and education. Unfortunately, a well-written virus can be

so transparent that even the most observant user may not notice a thing. Even worse, many

users lack the technical knowledge to understand how their computers work. Most people

simply do not have the time or desire to learn more than how to use a mouse. The proof of

this is the proliferation of products that make excessive hardware demands without offering

improved functionality. The bulk of the code takes care of the user interface. This trend is

unlikely to change.

More powerful techniques such as integrity checking can deal with viruses of different kinds,

including polymorphic viruses. Even a simple integrity checker should be able to find if a

polymorphic virus is spreading all over your disk. In other words, solution to polymorphic

viral spread has been available for quite some time. Note that there are some viruses that

target integrity-based products and they must be dealt with accordingly. A detailed

discussion of such viral methods can be found in a paper written by anti-virus researcher Mr.

Vesselin Bontchev of Virus Test Center at the University of Hamburg. His paper is titled

Attacks Against Integrity Checkers, and it is available via anonymous FTP. Interested

individuals are encouraged to read his excellent paper.

The point is that an integrity-based anti-viral solution should be made part of your arsenal

against viruses. Such a solution could easily provide you with early detection of viruses before

they spread. Once the viral spread is controlled, viruses become nothing more than another

"computer glitch" that can haunt only those without timely backups.

We believe that neither harsh legislation nor emphasis on responsible computing can stop

virus development, although they may slow it down. It is necessary to take matters into your

own hands and protect your computers adequately.

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/epposatt.htm

6/6

