
1/5

Polymorphic Generators
ivanlef0u.fr/repo/madchat/vxdevl/vdat/polyinvr.htm

Polymorphic Generators

Polymorphic viruses

The rise of polymorphic viruses can be seen as virus writers' response to the increasing

expertise of virus scanners. Since properly built scanners can recognise viruses by their

characteristic code, the obvious way to try to beat scanners was to design viruses that change

their code, thus rendering recognition with search strings impossible.

Polymorphic viruses employ code alteration and encryption to hide themselves from

scanners. Their usual tactic is to encrypt the main part of their code with a variable key and

leave only the decryption executor unencrypted. The decryption code is altered during every

infection to prevent detection with a search string.

However, it takes considerable skill to design a polymorphic virus. This kept the number of

true polymorphic viruses quite small for a relatively long time. Of course, this couldn't last

forever: At some stage, the heavyweights of the virus trade took notice and came to rescue

their less skilled brethren by writing and distributing polymorphic generators.

Polymorphic generators

Polymorphic generators are routines which can be linked to existing viruses. The generators

are not viruses per se; their purpose is to hide actual viruses under the cloak of

polymorphism.

The first all-purpose polymorphic generator was the Mutation Engine, or MtE. Published in

1991, capable of billions of different permutations, linkable to any virus, it heralded the age of

instant polymorphism. Today, there are 33 different viruses which are known to use the MtE.

Other polymorphic generators followed in MtE's wake. The next two appeared late in the year

1992. They were the TridenT Polymorphic Engine (TPE) and NuKE Encryption Device

(NED).

TPE was written in the Netherlands. In principle it is capable of producing smaller number of

different permutations than the MtE. However, it created detection problems for antivirus

products because the decryptors it creates are more generic than those produced by MtE.

NuKE's generator wasn't quite as advanced, but unlike most other polymorphic generators, it

was distributed as readable source code instead of an object module.

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/polyinvr.htm
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine1.htm#MTE
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine2.htm#TPE
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine2.htm#NED


2/5

Other known polymorphic generators are Dark Angel's Multiple Encryptor (DAME),

Darwinian Genetic Mutation Engine (DGME), Dark Slayer Mutation Engine (DSME),

MutaGen, Guns'n'Roses Polymorphic Engine (GPE) and Dark Slayer Confusion Engine

(DSCE).

These generators are typically distributed via underground networks, virus exchange BBSs

and private areas in the internet.

Operating Principles

Polymorphic generators are code modules which a programmer can incorporate into a

program. After this, the program can use the functions the code module contains. This

process is called linking. Once a generator is linked to a virus, it becomes an intrinsic part of

the said virus. The virus will thereafter carry the engine along while spreading itself.

It should be noted that the generator itself does not care in which kind of a program it is

linked to. The known polymorphic generators are clearly written to be linked to viruses, but

in principle they could be used in other kinds of programs as well.

When a virus that employs a polymorphic generator is infecting a program file (or some other

object), it requests the generator to create an encrypted copy of the virus code and the

generator itself. Besides performing the encryption, the generators also create a decryptor - a

routine which is able to undo the encryption applied to the actual virus code.

The generators often use relatively simple encryption techniques. However, they do change

the encryption key during every execution. This alone makes the detection of such a virus

difficult, but encrypted viruses retain one Achilles heel: the decryption routine, which must

remain unencrypted if it is to be executable. Thus, the true effectiveness of a polymorphic

generator is measured by its ability to mutate the decryption routine.

All polymorphic generators need some kind of a randomisation routine in order to create

different algorithms each time. Some of the generators allow the virus programmer to

substitute his own randomisation routines instead of the original one.

Polymorphic generators are able to create completely different encryption methods and a

wide variety of different decryption routines for them. They modify their decryption routines

by such means as shifting the commands inside the routine around, adding ineffectual

commands in random places and using different processor registers and opcodes.

The basic idea is to make the binary image of the decryption routine totally different between

different infections. All this makes it impossible to search for the decryption routine with

fixed search strings - there is no search string that could always be found in infections made

by a polymorphic virus.

How does a virus using a polymorphic generator infect a file?

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine1.htm#DAME
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine1.htm#DGME
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine1.htm#DSME
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine1.htm#MGEN
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine1.htm#GPE
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine1.htm#DSCE


3/5

1. A clean file before the infection. We'll call this the victim file.

2. The virus starts the infection process by modifying the victim file's first commands. It

replaces them with a command to jump to the end of the file. The original first bytes of

the file are stored in the virus's body.

3. Next, the virus calls the polymorphic generator to create an encrypted copy of the

virus code and the generator itself. The generator also creates a decryption routine,

which is added to the end of the victim file.

4. The encrypted code is added to the end of the victim file. This encrypted section

contains three parts: a copy of the actual virus code, the original first bytes of the victim

file, and the code of the polymorphic generator.

Limitations

When the first polymorphic generators were found, it was feared that there would be a huge

rise in the number of polymorphic viruses. However, these generators have not proved as

popular as was originally thought - only about one hundred viruses are known to use a

generator.

One of the reasons for this is that a generator must be linked to the program to be encrypted,

and since the operation requires changes to the program itself, some programming

experience is necessary. This alone places the generators out of the reach of the run-of-the-

mill virus enthusiasts. Unfortunately, the generators usually come with detailed instructions

on their use, so that virus aficionados with even limited experience of assembly programming

can easily use them.

Another limitation is the generators' size. Although the generators are quite small in

themselves, they do increase the size of viruses by some amount. This makes it difficult to

link them to boot sector viruses, which have limited code space. No generator-masked boot

sector viruses have been found. With the exception of V-Sign (a mildly polymorphic boot

sector virus), polymorphic capabilities seem to be the privilege of file viruses.

Of course, the advantage that viruses get from polymorphic generators is somewhat

questionable. If an anti-virus program is able to recognise the presence of a particular

generator, it is usually able to detect all viruses masked by it.

Detection

Despite the cunning nature of polymorphic generators, viruses masked by them can be

detected by using proper tools. Antivirus programs often employ algorithmic means to

recognise files infected by polymorphically hidden viruses. Another way to find such viruses

is to use checksumming. It is also possible to try to solve the encryption and search for the

virus underneath the encryption layer.



4/5

Algorithmic methods

Algorithmic methods are based on the fact that however much a generator mutates the

decryption routine, it must still contain certain programming structures which make the

decryption possible. If a program file contains such structures, the antivirus program can say

with sufficient certainty that the file is infected by a polymorphically cloaked virus.

As polymorphic generators vary a lot, a different algorithm is needed for each generator - and

in order to build such algorithm, the generator will have to be studied closely.

However, the algorithmic methods have a certain weakness: they are prone to false positives.

The program structures employed by polymorphic generators can be very random. This

means that similar structures sometimes occur inside legitimate program code. False alarms

may crop up especially if data files are also included in the search, because they typically

contain data similar to the random 'garbage-code' which the generators produce. It is

relatively easy to create an algorithm that will find all infections created with a polymorphic

engine, but if the algorithm would also flag a large amount of clean programs as infected, it is

useless.

Checksumming

Checksums are comparison values calculated from the executables in a system. These values

are stored in a database. When a checksum search is made, the checksums are re-calculated

and compared with the original values in the database. Since this method detects all changes

to a system, the mutability of polymorphically hidden viruses does them no good; a change is

a change, and thus detectable.

Checksumming has its drawbacks, too: checksummers suspect all changes that happen inside

a system, and occasionally give warnings of ordinary programs which alter their own code.

Nowadays, checksummers are usually equipped with an exclude-list and a heuristic faculty to

prevent this from happening.

Although theoretically able to detect all changes to a system, checksummers are vulnerable to

stealth viruses. If such a virus is active in a computer's memory, it is able to hide all the

changes it has made. When stealth viruses are involved, checksummers base their

calculations on false data, and will consequently find everything to be in order. It should be

noted that polymorphic viruses which also stealth their presence are very rare, simply

because they are technically difficult to create.

Decryption-based detection

The decryption-based detection of polymorphic viruses work by first reasoning whether the

examined object is encrypted. If the object seems to warrant suspicion, generic decryption

methods are applied to it, and a string-based search is done to the code found underneath the

encryption.



5/5

This method works against some polymorphic generators with great success, but is difficult

to implement for others.

What is the best solution?

Checksumming is the strongest method against polymorphic viruses - as long as the machine

is clean when the checksummer is installed, and the virus is not falsifying the information

received by the checksummer. Checksummers will also detect those polymorphic (and

normal) viruses that have not yet been analysed.

The algorithm-based detection mechanisms against polymorphic viruses tend to have

problems with false alarms, but these can be overcome by designing the detection engine

carefully. One advantage of algorithm- based detection is that, once a detection engine is able

to detect a certain polymorphic generator, it will probably detect all viruses utilising it.

A decryption-based detection mechanism can only detect those polymorphic viruses that

have been analysed by the creator of the antivirus product, but it is very unlikely to produce

false alarms. Furthermore, such a mechanism is also able to detect the exact variant of the

virus in question - this is something that most algorithm-based detection methods are unable

to do.

 

 


