
1/10

Guide to improving Polymorphic Engines
ivanlef0u.fr/repo/madchat/vxdevl/vdat/tumisc17.htm

Guide to improving Polymorphic Engines

by Rogue Warrior

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/tumisc17.htm

2/10

Table of contents :-

 1. Introduction
 2. Levels of Polymorphism
 3. Polymorphic Virus Detection Methods
 4. Combatting Detection Methods
 Anti-Scan String
 Cryptanalysis
 Generic Decryption
 5. Combatting Analysis of your virus by AV researchers
 6. Conclusion

==

Introduction :-

 This is a guide for those who already know how to make an engine
 but cannot work out why their viruses are still detectable.

 The single purpose of polymorphic viruses is to avoid detection -
 at the heart of the polymorphic virus is the engine. It can usually
 take from 30-80% of the virus code size so is a very important
 component of the virus to have working properly.

 This guide will tell you how polymorphic detectors work in
 order to help you design/make a better engine to defeat scanners.

 Making a good engine takes a good amount of time. If you don't
 make it correctly you might as well leave it out completely
 because it's main purpose (avoiding detection) will not work!.

==

Levels of Polymorphism :-

 Polymorphism covers has many levels of skill.

 According to Vesselin Bontchev (AV) these are :-

 1. Fixed set of constant decryptors (a.k.a Oligomorphic).
 2. Variable instructions for single instruction.
 3. Garbage code insertion.
 4. Instruction swapping.
 5. 2+3+4

 6. Permuting

 #6 is not considered higher than #5 it's simply considered a
 different classing.

 I think there is now a 7th class. Highly advanced polymorphism
 which is designed to be better than #5. These ones have the
 following attributes:

 * Heuristic counter-measures

3/10

 * Goat counter-measures
 * Emulator counter-measures

 All these attributes are not part of the virus but instead part
 of the _polymorphic code produced by the virus_.

==

Polymorphic Virus Detection Methods :-

 There are many methods for detecting polymorphic viruses here are some
 popular methods:

 - Scan Strings
 - Variable Scan Strings
 - Cryptanalysis
 - Generic Decryptor
 - Heuristics

 Scan Strings ::-
 Works by searching for a pattern of bytes in FIXED positions and a
 FIXED sequence.

 e.g.,

 scan string: aa ?? bb ?? cc
 virus text: aa xx bb xx cc

 Variable Scan Strings ::-
 Work by searching for a pattern of bytes in VARIABLE positions
 but in a FIXED sequence.

 e.g.,

 scan string: aa * bb * cc
 virus text: 1. aa xx xx bb xx xx xx xx cc
 2. aa bb xx xx xx cc
 3. and so on...

 Cryptanalysis ::-
 Works by finding part of the VIRUS BODY and then performing some
 very basic cryptanalysis on it and then decrypting it (if possible).

 This method according to many AV is not used anymore (due to the
 effectiveness of Generic Decryptor) but I will tell you how to
 defeat it anyway just to be sure ;-) -- its not hard to defeat.

 Generic Decryptor (a.k.a. Emulation) ::-
 Works by emulating instructions in the polymorphic decryptor in order
 to make the virus decrypt itself and then it detects the virus by a
 standard scan string.

 Heuristics ::-
 This has undeservedly been a virus buzz word for a long time. It
 has been the target of polymorph engine creators to beat the heuristics

4/10

 which shows how little they know of polymorphic detection.

 This method involves searching for inconsistencies between the code
 being analysed and normal everyday code found in programs.

 While it is important - it is not THAT important and will not help you
 stop being detected by anti virus software.

 It is important to note that heuristics is not used very much (they
 do use a bit) in the most popular AV programs (F-PROT, McAfee and AVP)
 these are the programs you should target. Do not target programs which
 only hard core virus people use. Most of the hard core AV software
 could spot a virus anyway. -- in other words: _target the less
 intelligent software users_

==

Combatting Virus Detection Methods :-

--

 - Anti Scan String methods

 This is really easy - avoid the use of code common to every decryptor
 just because some code isn't in the same position doesn't mean it cannot
 be scanned though. For example:

 xx=garbage code.

 Your Decryptor #1 (as hexidecimal):

 45 34 xx xx xx 54 80 xx xx xx 12 xx xx xx 34 32 xx xx xx 43 xx xx xx xx

 Your Decryptor #2:

 xx xx xx 45 30 xx xx xx xx xx 54 81 xx xx xx xx xx 12 xx xx 34 32 xx 43

 Looking at this code you can see an obvious pattern it can be scanned using
 this string:

 45 3? * 54 8? * 12 * 34 32 * 43

 Legend:
 ? - match 1 positions only
 * - match up to N bytes but low as 0 bytes

 This will identify this decryptor (not the virus) by looking for code common
 to each decryptor. So how do you combat it? Well try making sure that you
 always have at LEAST 1 alternative to every instruction your engine can
 generate.

 NOTE: Make enough alternatives that it makes multiple variable scan strings
 not an option to AV!

5/10

--
Cryptanalysis :-

 This is very easy to defeat - simple add multiple encryption
 operations for example:

 A loop using a single XOR with byte/word is very easy to cryptanalyse
 but a loop using XOR b/w, ADD b/w, SUB b/w, ROL b/w in one loop is
 VERY hard to cryptanalyse.

 The only problem with this is applying the encryptions in reverse
 order to that of your virus decryptor so that when the virus
 decryptor is run it will do it in the correct ordering.

 There is an easy way to do this! -- There isn't really I was just
 joking there is no easy way =)

 You can leave bit out anyway because AV's are using all using Generic
 Decryption as far as I know.

--

Generic Decryption :-

 This method is very popular amongst AV and requires the cooperation
 of the virus to work. If a virus can detect it is being emulated
 and then throw an emulator off by some method then it will defeat
 this method.

 Products known to be using this technique are: F-PROT AVP TBAV DSAV
 (and I would guess McAfee?).

 How does generic decryption work? well the AV products each have in
 them a little Intel software CPU emulator which does not allow
 instructions to actually execute but simulates them enough in certain
 controlled ways in order to make the virus decrypt itself in a safe
 environment - this way all they need is a scan string for a very
 complex polymorphic virus!

 These controlled conditions avoid endless loops and other similar
 bugs in normal programs from making the emulator hang. I
 experimented and found that making a 10 KB decryptor on a virus will
 dramatically slow down scanning in DSAV and AVP because the emulator
 is actually simulating the code. I made 10 x 10KB samples and these
 took over 3 minutes to be examined by DSAV and AVP however each of
 these took only milliseconds to run normally.

 This shows that the emulators in DSAV and AVP are really quite good and
 don't give up easily when trying to decrypt a virus (I used the /ANALYSE
 option on DSAV). F-PROT and TBSCAN did not emulate these samples
 correctly even with maximum heuristics enabled or if they did they must
 have discovered how to simulate INCREDIBLY quickly (even TBSCAN being
 written in assembly language cannot run them that fast).

 So how do we stop this emulation taking place? or better put: How do we

6/10

 detect ourselves being emulated and throw the emulator off?

 e.g., Imagine we know that the PSP contains a certain constant value at
 ALL times - but we also know the emulator doesn't emulate the PSP.
 With this knowledge we can construct some code in our polymorphic
 DECRYPTOR to detect this and throw the emulator off:

 mov ax,[0000]
 sub ax,20CDh
 jz ok
 mov ah,4Ch
 int 21
 ok:

 Note: This code must be in the decryptor because it's goal is to stop
 decrypting BEFORE we reach the virus body. This code must be
 generated with the same principles of variability that all other poly
 code requires - if you don't make this code variable also then you risk
 having the code used against you to detect the virus!!!

 Possible methods to exploit for detecting and terminating emulation:

 - Inability of DOS call return values to be predicted by the emulator
 without actually calling them. i.e., we can make a DOS call in the
 poly code and check the return values. If they are not consistent with
 a REAL call to that function then it can be assumed we are being
 emulated and then take evasive action.

 - Inability of emulator to write to ALL of memory. By writing to safe
 areas in RAM we can test if that area has ACTUALLY been written
 to by the virus or just emulated. If it has not been written to
 then we assume emulation in progress.

e.g., long winded version:

 cli ;disable ints
 cld ;set data string copy direction
 push 6000h
 pop ds ;any segment which AV and virus don't own.
 push ds
 pop es ;es=ds=6000h
 sub si,si
 mov di,0002
 lodsw ;save in ax, si=di=2
 xor ds:[0000],1234h ;write
 mov cx,0f000h ;some large amount
L1: rep movsw ;write to memory (a large amount is better)
 cmp ds:[0000],ax ;did the AV forget about the write?
 mov ds:[0000],ax ;set it back to normal regardless
 jz not_emulated ;seems they messed up remembering where we
 ;wrote.
 mov ah,4Ch
 int 21h ;bye Mr Emulator.

not_emulated:

7/10

 - Inability of emulator to emulate all control structures (PSP, MCB,
SFT, etc).

 Most emulators can emulate the PSP, MCB and so on but every single
 structure would take too much memory and processing so trying to
 exploit this possible weakness is a good idea.

 TbClean a program which emulates viruses to disinfect programs
 only emulates certain small parts of the PSP leaving other parts to
 be exploited by emulation trapping. In fact one can trick TbClean
 into converting the virus infected file into an infected Trojan horse
 program for the person who runs it next.

 NOTE: TbClean is good fun for testing your polymorphic decryptors
 it shows you how the emulator is going to go through your code like
 a hot knife through butter. Make sure to crack the registration on
 TbClean so you can use it properly <grin>.

 - Limited resources of an emulator.

 Remember that many AV programs are built to be fast so by making your
 virus take a very long time (in AV program terms) to analyse your
 virus might make it quit thinking that it has encountered an endless
 loop.

 However! running a time consuming decryptor normally takes next to
 no time. So we can see that resources of time, memory, processing
 power all contribute to methods for killing off an AV scanner
 emulator.

 *** You must think how to detect and force the emulator to quit ***

==

Stopping analysis of your virus by AV researchers

 AV researchers are the ones responsible for making your virus detectable
 so having some ways to hinder AV researchers doing analysis of your
 polymorphic virus and engine is always good to throw in.

 The most common way to analyse a new polymorphic virus is to generate
 1000's of samples of your virus. This involves activating the virus on a
 test computer and executing 1000's of goat programs.

 The goal in generating these 1000's of copies is to get a good sampling of
 what the engine can generate and then test the detection method against
 it.

 If your virus chooses only to show a certain sample then their detector
 may work in the Lab but not when it comes to "in the wild" situations.

 Of course it is best to not make it obvious to AV that you are trying
 to do this or they might catch on and alter their methods.

8/10

==

Planning your engine features

 It's always good idea to have plan of the engine structure.

 Many coders spend their time byte-fiddling trying to optimise
 their code - this method of planning enables to you block-fiddle
 - each of these blocks can be shuffled and optimised meaning
 every change for the better is saving you lots of bytes instead
 of 1-2 bytes.

 NOTE: NEVER place ANY code in a CALL/RET routine unless it
 is used more than once!

 A polymorphic engine is very similar to the code generation
 phase of a compiler - most compiler writers use the word "emit" [1]
 as the word to say they're outputting code. So try to use
 the same because it's good to follow this standard when
 planning your engine.

 [1]: Means "output" or "give off" for those bad at English.

 e.g., Here is a very basic model of an engine plan
 (you may want to add more detail than this
 to any plan you make):

 Engine:
 EmitDecryptor

 EmitDecryptor:
 repeat EmitGarbage & EmitAntiEmulation, random(5) times
 EmitSetupRegs
 repeat EmitGarbage & EmitAntiEmulation, random(5) times
 MarkLoopStart
 repeat EmitDecryptionCode, random(5) times
 repeat EmitGarbage & EmitAntiEmulation, random(5) times
 EmitEndLoop
 repeat EmitGarbage & EmitAntiEmulation, random(5) times
 End-EmitDecryptor

 EmitGarbage:
 Randomly Select 1 of:
 EmitFakeINT21 - randomly select some int 21 functions
 EmitFakeINT10 - randomly select some int 10 functions
 EmitCMPbmemXX - cmp byte ptr [xxxx],xx
 EmitCMPwmemXXXX - cmp word ptr [xxxx],cccc
 EmitMOVbmemXX - mov byte ptr [xxxx],cc
 EmitMOVwmemXXXX - mov word ptr [xxxx],cccc
 EmitMOVbregXX - mov rb,cc
 EmitMOVwregXXXX - mov rx,cccc
 EmitMOVbregMEM - mov rb,byte ptr [xxx]
 EmitMOVwregMEM - mov rw,byte ptr [xxxx]
 EmitCALL - CALL xxxx/garb/jmp yyyy/garb/xxxx:/garb/ret/yyyy:
 EmitJMP - JMP xxxx/garb/xxxx:

9/10

 End-EmitGarbage

 EmitAntiEmulation:
 Randomly Select 1 of:
 EmitFarCALL - place RETF into mem/CALL yyyy:xxxx
 EmitFarJMP - place Far JMP into mem/JMP yyyy:xxxx
 EmitWriteAndTest - write to known RAM mem, test it changes, if not
 crash
 EmitFakeExit - set int 21 = virus_cs:virus_return and call
 ah=4c, int 21
 EmitPSPcheck - cmp ds:[0000],21CDh/jnz crash: use better check!
 just an example.
 EmitDOScheck - dos call/check return value is consistent.
 End-EmitAntiEmulation

 EmitSetupRegs:
 If Boolean Then
 LoopType = Counter or Pointer
 Select Count Register from [AX,BX,CX,DX,SI,DI]
 Select Pointer Register from [SI,DI,BP]
 Else
 LoopType = Pointer
 Select Pointer Register from [SI,DI,BP]
 End If
 End-EmitSetupRegs

 MarkLoopStart:
 Save output pointer (usually DI register) to remember loop location.
 End-MarkLoopStart

 EmitDecryptionCode:
 Randomly select 1 of:
 EmitXORptr
 EmitADDptr
 EmitSUBptr
 End-EmitDecryptionCode

 EmitEndLoop:
 If LoopType=Counter and Counter=CX and Boolean Then
 EmitLoop
 Else If LoopType=Counter and Boolean Then
 EmitDECJNZ
 Else If LoopType=Counter and Boolean Then
 EmitDECJZJMP
 Else If LoopType=Pointer and Boolean Then
 EmitDECCMPJNZ
 Else If LoopType=Pointer and Boolean Then
 EmitDECCMPJZJMP
 End
 End-EmitEndLoop

 This is just a simple example of a plan so you can see how to
 structure your engine - do not forget these parts:

 - encrypting the virus body in reverse order and

10/10

 reverse operation.

 - adjusting for execution location in memory:
 if the entry point of the virus is not at a zero
 offset then you must adjust all memory references
 and pointers by the relocation amount.

 This part is usually done while emitting.

==

Conclusion

 If you are going to go the trouble of making a polymorph engine then do
 it right and don't waste 1-3Kb of code on an engine which can be
 generically decrypted.

 If you are going to make a good engine remember the following points:
 - it must not have fixed bytes in fixed positions.
 - it must not have fixed bytes in variable positions.
 - it must not be able to be decrypted by generic decryption engines
 in AV software.
 - it helps if the code is heuristically "clean" but it is not the be
 all and end all of an engine to be this way.
 - make sure it is a bitch to analyse by AV.
 - make sure it is a bitch to remove if it does get caught.

The final pain in the ass

 Some AV are obsessed with EXACT detection - even if they are able to
 detect your decryptor like they do to many some TPE based viruses - in
 the end they always want exact detection. So try to make your engine
 such a hard ass that it might allow detection of the actual "decryptor"
 part but NOT the virus body - This will be a great annoyance to the AV
 (even though they may say otherwise).

 Remember inexact detection leads to inability to remove the virus and
 if you virus ever becomes common they will have to answer the customers
 question "why can't you remove it ?".

