
1/5

An Introduction to Encryption, Part III (Is an impenetrable
encryption possible?)

vxug.fakedoma.in/archive/VxHeaven/lib/vmn06.html

MidNyte

Coderz [1]

February 2000

A short (and over-simplified) history of the virus

Anti-debugging: more detail

Is an impenetrable encryption possible?

Conclusion

A short (and over-simplified) history of the virus

First of all came the un-encrypted virus. Then came virus scanners, which were basically just

hex searchers looking for strings of hex only found in certain viruses. Viruses retaliated by

coming up with encryption. Most of the virus is encrypted, and a small decryption engine at

the start of the virus decrypts the virus body. As the encryption changes each time, the virus

scanner is limited to searching for a much smaller section of code inside the constant

decryptor. This wasn't much of a problem for virus scanners though. Viruses fought back

again with polymorphism, this is essentially a way that a virus can change it's decryptor every

time it infects a new file. That way no constant strings appear in the virus. Virus scanners

came up with two ways to combat this, heuristics and emulation. Heuristics is simply looking

for code that looks 'virus-like' This can be something as simple as the string '*.exe'.

Emulation is the controlled running of the program instruction by instruction (not quite, but

close enough for this article). A virus, under emulation, will be allowed to run just enough to

decrypt itself and reveal it's code for either a straightforward scan or a generic (heuristic)

scan. Anti-emulation is the viruses way of defeating this, it is a basically a way to detect

emulation in progress and act accordingly. Some anti-emulation systems are incorporated

into the decryptor of a virus, so that if the virus is being emulated it will not decrypt properly

and hence not reveal it's code. Another defence the virus can use is anti-debugging, which is

designed to hinder people who try to debug (in this case unencrypt) your code. This is

different in that it doesn't defend the virus from antivirus programs, it defends it from the

antivirus companies, the people who will try and study the virus and work out a way to detect

it. Anti-debugging can be very simple, like turning off the keyboard interrupts at the start of

the code and back on again at the end or it can be quite complicated, with the actual anti-

debugging routine also being used as a key to decryption to protect against patching. This is

the focus of this article.

https://vxug.fakedoma.in/archive/VxHeaven/lib/vmn06.html
https://vxug.fakedoma.in/archive/VxHeaven/lib/index.html@lang=en&author=MidNyte.html
https://vxug.fakedoma.in/archive/VxHeaven/vx.php@fid=177.html#f177
https://vxug.fakedoma.in/archive/VxHeaven/lib/vmn06.html#p1
https://vxug.fakedoma.in/archive/VxHeaven/lib/vmn06.html#p2
https://vxug.fakedoma.in/archive/VxHeaven/lib/vmn06.html#p3
https://vxug.fakedoma.in/archive/VxHeaven/lib/vmn06.html#p4

2/5

Anti-debugging: more detail

Anti-debugging tricks are basically little pieces of code that have no overall effect on the

running of a virus when being run as normal, but that cause the virus to malfunction, crash

or worse when they are run under a debugging environment. The simple example above was

to turn of the keyboard interrupt at the start of the code, and turn it on again at the end of the

virus before control is passed back to the host program. This is simply achieved with:

 in al, 020h ; \
 or al, 002h ; }Disable Keyboard interrupt
 out 020h, al ; /

 ...at the start, and:

 in al, 020h ; \
 and al, 0FDh ; }Enable keyboard interrupt (FDh = NOT 2)
 out 020h, al ; /

...at the end. When the virus is run under normal conditions, the keyboard is only off for a

very small time, too small for people to notice. If the program is running under a debugger,

as soon as the first few instructions are run the keyboard will no longer work, leaving the

person at the debugger with no choice but to reset (at least it used to be in the good old days

:) The simple work around for the person debugging was too simply patch over the code that

turned off the keyboard with NOPs or other do-nothing instructions. Now the virus would

work as normal under a debugger, without disabling the keyboard. To retaliate from this, the

virus started to use it's anti-debugging routine as a key for decryption. The hex string to turn

off the keyboard is 'E4 20 0C 02 E6 20'. If this was one of the decryption keys, the person

debugging could not just replace the instructions with NOPs as this would change the key to

'90 90 90 90 90 90' and cause the virus to decrypt incorrectly. This seems like an ideal

solution, but unfortunately it is not. The whole point of this article is to point out the

following fact: Any decryption routine can have it's basic functionality copied by someone

determined to debug it. This means that your routine that uses an antidebugging routine and

also uses that routine as a key for further decryption could be useless. Let's go through it with

an example. The original virus looks like this:

3/5

start:
 in al, 020h ; \
 or al, 002h ; }Disable Keyboard interrupt
 out 020h, al ; /

 xor si,si

 lea bx, start_of_encrypted
 lea cx, end_of_encrypted
 sub cx, bx
 shr cx, 001h

decrypt:
 mov ax, word ptr [start+si]
 xor [bx],ax
 inc si
 cmp si, offset decrypt
 jne next_key_word
 xor si,si

next_key_word:
 loop decrypt

The pointer to the relevant word of the decryption key is kept in si, and means that the key is

all the code from 'start:' to 'decrypt:'. This works out as 'E4 20 0C 02 E6 20 33 F6 BB 19 01

B9 36 01 2B CB D1 E9'. If the keyboard part was nopped out the key would change to '90 90

90 90 90 90 33 F6 BB 19 01 B9 36 01 2B CB D1 E9', as we've already seen. What the person

doing the debugging could do though, is simply take the encrypted portion of the virus and

put it into his own program, only this time the key would be stored as data, not as an

executable part of the program, like this:

4/5

start:
 xor si,si

 lea bx, start_of_encrypted
 lea cx, end_of_encrypted
 sub cx, bx
 shr cx, 001h

decrypt:
 mov ax, word ptr [key+si]
 xor [bx],ax
 inc si
 cmp si, offset key_end
 jne next_key_word
 xor si,si

next_key_word:
 loop decrypt

key:
 db 'E4 20 0C 02 E6 20 33 F6 BB 19 01 B9 36 01 2B CB D1 E9'

key_end:

As you can see, the above will decrypt the encrypted section in exactly the same manner, only

because the key is stored as data we can change the code as much as we like.

Is an impenetrable encryption possible?

So then, is it possible to include enough current techniques, or to come up with a new

technique to completely eliminate the chance of the antivirus programmers being able to

decode it? Many people think that they have found a way to ensure that their program is

completely impenetrable to decryption unless it is running at the time. This is, unfortunately,

unachievable in theory. Because of the above demonstrated technique, any anti-debugging

technique can be overcome by someone with enough time to debug a program by hand. This

means that *any* anti-debug code you put into a virus can be got around eventually because

the person debugging can always read what is going on in a hex editor and make a new

routine to simulate it, hence the routine you write will not always be used to decrypt the code.

They will only see one layer of decryption at a time, however, and this is the key to making in

impenetrable encryption.

Conclusion

In the end then, we can never make it *impossible* for a researcher to decrypt a virus

through programming tricks, however we can make it *impractical* through the use of scale,

ie, we can use so many layers and different tricks that it is impractical to debug. If it takes a

5/5

week for a programmer to decrypt a virus with hundreds of layers of encryption, they may be

able to justify it. If they have ten viruses of this kind it gets harder to justify, and with a

hundred of them it starts to get impractical. The ball would be back in their court.

 - MidNyte

As always, I welcome ANY feedback, good or bad, as long as it is reasonable.

