
1/5

An Introduction to Encryption, Part I
ivanlef0u.fr/repo/madchat/vxdevl/vdat/tuencrp1.htm

Introduction.

Encryption can be as simple or complicated as you need it to be and there are many

advantages and disadvantages to each system. The trick to encryption (IMHO) is to use the

type and complexity of encryption that best suits your needs, and not just the strongest

encryption you can manage. First, a brief description of some of the principles involved in

encryption that you should know before we start. After the principles follows a brief

discussion of a few more important topics, then examples of the encryption types mentioned

here. Part II will discuss these principles in more detail, and then some more advanced

techniques.

Substitution (Simple) Encryption.

The original form of encryption, which is just a substitution cipher. Each character has a

value added (or deducted, rotated etc) to it to make a new character, ie, A becomes B, B

becomes C, C becomes D etc. To decrypt this, you need only save the key (the value added)

and then reverse the encryption, ie, subtract instead of add. This encryption is only really

effective against the casual reader. When talking in computer terms, XOR is generally used,

as it is reversible (ie, value XOR valueII = valueIII, then valueIII XOR value II = value). This

means you can use the same routine to decrypt as to encrypt.

Sliding Key Encryption.

A sliding key is a key that changes after each character is encrypted (for example just

increased by one), ie, XXYZ is the code and the key starts with A. The first X is encrypted

with A, second X with B, Y with C, Z with D etc. You'll notice that the two X's that were next

to each other were encrypted with different values, meaning that the encrypted values of

these two characters will be different. If somebody looks at this encrypted code, they won't be

able to tell that the two characters are the same when unencrypted.

Long Key Encryption.

This is slightly more complex, using a key that is longer than the piece of code that is

encrypted in each step. The key's values are used one after another to encrypt the code, ie, if

the key was ABC and the code was VWXXZ then V would be encrypted with A, W with B, first

X with C, second X with A and Z with B. This has two advantages. First, the key is much

harder to guess or brute force. (given each value has a range of 255, a key of one character

has (obviously) got 255 possible values, a key of only three characters has 16,581,375 (255 x

255 x 255) and a key of five characters has over 1,000,000,000,000 (255 x 255 x 255 x 255 x

255)). Secondly, this method also has the advantage of a sliding key.

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/tuencrp1.htm

2/5

Transposition (Order) Encryption.

This is normally used in conjunction with another method, as by itself it is pretty weak. All

you do is basically scramble the order of all the characters in the target code. There are

several methods to do this, but most require a lot of data or code to reconstruct the original if

they are to be very random.

Multiple Encryption.

This is simply encrypting a piece of code, then encrypting the code again (usually with a

different method and/or key). This drastically improves the strength of the encryption, as

any patterns that show through the original encryption (see cryptanalysis below) will be

obscured by the next level.

Cryptanalysis.

This only really applies to encrypted text, but it is possible that it could be applied to code in

the hands of an experienced cryptographer who has assembly language knowledge. I'm only

mentioning it so that you know that it may be possible. Cryptanalysis is basically the study of

encrypted code for clues, and with the right sample and experience, it is possible to 'guess'

the decryption method. For example, if simple encryption was used, you could count all the

instances of each encrypted character, then rank them in numerical order. The list of

encrypted characters would probably then read 'e,t,a,o,n,i,s,r,h,d'... etc, because this is the

most common order of instances in the English language (I'm assuming you're decrypting

English text) ie, if the most common letter you had in the encrypted example was Y, this

would more than likely be the letter E when decrypted. Also some pairs of characters appear

more often than others, for example 'th' or 'er'. After you have this information, it may be

possible to guess some words. Once you start guessing words, the rest comes quite quickly.

There are also other rules such as most three letter words will be 'the', which help speed

things up. Of course, stronger (or more) encryption means less of these patterns show

through. For example, if you also encrypt the space character, you make it ten times harder to

decrypt encrypted text with cryptanalysis. All the word boundaries are lost, which means half

the rules are of no use. A space is also more common than the letter 'e' which means you have

to add this to your frequency chart. Simply adding another type of encryption will render

most of these rules useless, as they are only really applicable to substitution encryption.

Encryption strength.

This is a common cause of mis-understanding when talking in the context of computers.

Encrypted code is very vulnarable to deciphering if it is encrypted simply. Increasing the

complexity of the encryption increases the strength of the encryption. However, even the

strongest of encryption can easily be broken when used on a computer with an algorythm to

decrypt and run the code included in the program. For the encrypted code to be able to run,

you must include step by step instructions on how to decode it along with the code (the

3/5

decryption routine) and the key required. Anyone who knows machine code can read this like

a book. This is where armouring comes in. When you talk about encryption strength in the

context of self- decrypting code, it is generally assumed to mean how well armoured the code

is as opposed to the strength of the encryption method used.

Armouring. (in brief)

Armouring (AKA anti-debugging) is a method of trying to prevent the decryption routine

running in any circumstances that aren't acceptable to the decryptor (ie, in a debugger or

emulator). A simple armouring routine will try to detect the debugger/emulator and quit if

found. There are many ways to armour code, and more are being found all the time. It's an

ongoing battle. For instance, some emulators/debuggers will use the stack for their own

purposes (although they simulate the information going on and off the stack when pushed or

popped). If we set the stack pointer to a vital part of our code, any data pushed by the

debugger/emulator will overwrite this, causing an unpredictable change to the instructions in

our decryption routine. This will at the least cause the decryption to fail, thus protecting the

encrypted data. In the best case it will crash the computer entirely, wasting time for whoever

is trying to crack your encryption. There are many tutorials around on armouring etc, so i will

leave it to those more qualified to teach this subject. At least you know why it's important,

and that you are basically wasting your time with anything other than simple encryption if

your decryptor is not armoured. Anyone with debug (that's about 99% of all PC users) and a

bit of knowledge (no comment) will be able to watch as your precious secrets are displayed

on their screens, piece by piece. Remember, armouring is a completely different skill to

encryption, but you should know at least a little if you intend to have your code decrypt itself

and remain hidden to observers. There are also techniques that will defeat an emulator but

not a debugger, such as calling an obsolete or rare interrupt that returns a predictable value

and using this value as part of your key. In an emulated environment the value will be

different and ruin the decryption. You might want to research RDK (Random Decryption

Key) and RDA (Random Decryption Algorythm) techniques (aka throw-away key/algorithm).

This is a technique in which the virus is encrypted with a key/algorithm that it is not

recorded (ie, thrown away). to decrypt itself, the virus must therefor brute-force attack it's

own encrypted code looking for a piece of fixed data at a fixed point.

Some Examples.

(These examples are only code snippets to demonstrate certain principles, obviously you will

need to set up the sections within a program yourself. These routines can be used to both

encrypt and decrypt the code sections, as the operations chosen are reversable. If you

substitute a non- reversable operation, you will need to adjust/repeat the routines

accordingly. Please note these are very simple examples of each type of encryption, much

more can be done with these. All examples are shown in a clear manner, not necessarily the

most optimised. LOD and STO are used instead of indexing to help in readability. For further

examples, there are many articles and tutorials in VDAT.

4/5

Substitution (Simple) Encryption.

Sliding Key Encryption. (Pad encrypted area to an even number of bytes)

Long Key Encryption.

(Uses long key. Pad encrypted area to an even number of bytes)

setup:
 mov cx,(offset end_of_encryption - start_of_encryption) / 2
 ;length of encrypted code in words
 mov si,offset start_of_encryption ;source=start of encrypted code
 mov di,si ;destination=same as source
 mov bx,offset start_of_key ;bx=key indexing register
 mov dx,offset end_of_key - start_of_key ;length of key (even sized key)

start_loop:
 lodsw ;MOV's word from [si] to ax, and increases si by 2
 xor ax,[bx] ;the actual decryption
 add bx,2 ;moves key register to next word in the key
 cmp bx,dx ;compare current index to length of key
 jb next: ;skip next instruction if not yet reached
 mov bx,offset start_of_key ;bx=key indexing register

 next:
 stosw ;MOV's word from ax to [di], and increase di by 2
 loop start_loop ;DEC'c cx, and jumps to start_loop if CX > 0

done:

setup:
 mov cx,(offset end_of_encryption - offset start_of_encryption) / 2
 ;length of encrypted code in words
 mov si,offset start_of_encryption ;source=start of encrypted code
 mov di,si ;destination=same as source
 mov bx,02828h ;bx=decryption key

start_loop:
 lodsw ;MOV's word from [si] to ax, and increases si by 2
 xor ax,bx ;the actual decryption
 stosw ;MOV's word from ax to [di], and increases di by 2
 loop start_loop ;DEC'c cx, and jumps to start_loop if CX > 0

done:

5/5

setup:
 mov cx,(offset end_of_encryption - start_of_encryption) / 2
 ;length of encrypted code in words
 mov si,offset start_of_encryption ;source=start of encrypted code
 mov di,si ;destination=same as source
 mov bx,02828h ;bx=decryption key

start_loop:
 lodsw ;MOV's word from [si] to ax, and inreases si by 2
 xor ax,bx ;the actual decryption
 inc bx ;adds 1 to the key in each loop
 stosw ;MOV's word from ax to [di], and increase di by 2
 loop start_loop ;DEC'c cx, and jumps to start_loop if CX > 0

done:

setup:
 mov cx,(offset end_of_encryption - start_of_encryption) / 2
 ;length of encrypted code in words
 mov si,offset start_of_encryption ;source=start of encrypted code
 mov di,si ;destination=same as source

start_loop:
 lodsw ;loads first word from source
 mov bx,ax ;stores first word in bx
 lodsw ;loads second word from source
 stosw ;puts second word into first word's place in destination
 mov ax,bx ;restores first word from bx to ax
 stosw ;puts first word in second word's place in destination
 loop start_loop ;DEC'c cx, and jumps to start_loop if CX > 0

done:

Transposition (Order) Encryption.

(Swaps every pair of words. Encrypted area must be padded to a multiple of four bytes)

Conclusion.

As always, I welcome ANY feedback, good or bad, as long as it is reasonable.

