
1/5

A Discussion Of Methodology And Implementation /
Buz[FS]

ivanlef0u.fr/repo/madchat/vxdevl/vdat/eppoldis.htm

Polymorphism

 
A discussion of metodology and implementation

 
by Buz [FS]

 
from *Zine #2 

 

This article deals with a viral technology that has been widely documented, discussed and

implemented. However, it is aimed at explaining certain design flaws in current polymorphic

engines and proposing solutions for these flaws, as well as suggesting improvements to

current technology. 

 
The discussion will present an overview of the history of polymorphism pertinent to our

subject, anti-virus detection methods, and will present concepts needed for properly

designing polymorphic engines with a view to their survival in the wild. It will also include a

section on structuring and writing polymorphic engines.

The Evolution Of Polymorphic Engines And Their Significance.

The history of polymorphism began with experimentation. Virus authors recognised the

susceptibility of their viruses to scan strings and encrypted their code. Even then, the

decryptors were fixed, so anti-virus software generally had little trouble with a virus that was

analysed and for which a scan string was extracted. A number of authors would rewrite their

viruses to create strains which weren't scanned for at the time. A select few, however, started

experimenting with new technology. A German programmer going by the handle of ~knzyvo}

implemented dynamic encryption into his Fish family. The Whale virus, however was a more

notable event. 30 different encryptors were used for this virus, which meant the anti-virus

researchers had to include multiple scan strings. Dark Avenger's Phoenix family would

modify bytes of their own decryptors, thus forcing anti-virus software to use wildcard scan

strings. An American anti-virus researcher named Mark Washburn wrote a family of viruses

that would generate a different decryptor altogether for every time the virus would replicate.

The real breakthrough in polymorphism was, though, the release of Dark Avenger's Mutation

Engine, or MtE. This engine was distributed in a form of an object linkable to a file, and was

what started the revolution in the way viruses were written. Anti-virus researchers were at a

loss. The traditional methods of detection were obsolete, since this engine would have needed

4.2 billion signatures, many of which might be present in legitimate programs. Instead, most

anti-virus researchers opted for methods like algorithmic scanning - checking whether or not

code in question could be produced by a polymorphic engine. Several months later, anti-virus

software couldn't reliably detect MtE-generated decryptors.

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/eppoldis.htm
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine1.htm#MTE


2/5

A second blow came to the anti-virus industry with the release of Trident Polymorphic

Engine, written by Masud Khafir. A more complex algorithm was used for producing

encryptors, and again, anti-virus researchers were left with the task of reliably detecting TPE.

While the decryptors themselves weren't particularly sophisticated, they could easily be

mistaken for encryption used in commercial software, and later, several other engines would

be mistaken for TPE samples.

A new concept was introduced in 1993. Neurobasher's new Tremor virus spread widely in

Germany. It seemed to researchers that a suitable algorithm was devised for its detection,

yet, the virus continued to elude scannes in the wild. After thorough analysis of the virus's

code, it was found that instead of generating random numbers, Tremor would use relatively

immutable data to create its permutations. New strains would be generated every, say, full

moon or on infecting a new system. This meant that the anti-virus researchers would need to

spend even more time and effort on analysing a polymorphic virus lest they release an

incomplete algorithm.

Meanwhile, across the channel, a British virus writer known as the Black Baron released his

polymorphic viruses built around an engine called SMEG. This engine introduced the

concept of generating decryptors with large amounts of junk instructions present in the

decryptors. Once again, scanners had difficulty when confronted by a new polymorphic beast.

It took a much longer time to analyse a piece of code and determine whether or not it was

encrypted by SMEG by picking out the decryptor from the junk. 

[MGL's note: If you take closer look on SMEG, you will get the point - generated decryptors

are huuuuge ]

From 1992 to 1994, an unknown researcher in Uruguay busily created a family of 10 viruses,

each more polymorphic than the last. The novelty of his approach rested in tracking the code

that was generated, and producing decryptors that looked even more like the real thing. It

became difficult to distinguish polymorphic decryptors from real code.

Another 1994 engine that made a significant impact on the anti-virus industry was DSCE.

Dark Slayer stated that his decryptors contained no loop, key, or start-up values. In a way, he

was correct. However, it's an exaggeration of what the engine really did - these structures

were concealed in a massive (at the time) decryptor by point-encrypting the opcodes that

resembled a decryptor loop. Once again, scanners were slowed down by having to analyse the

decryptor in depth.

While there are several other polymorphic engines just as technically advanced as those

mentioned above and the authors of which deserve just as much recognition, these are the

ones that we need to illustrate the design of a solidly built polymorphic engine.

Polymorphic Virus Detection Methods.

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine2.htm#TPE
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine2.htm#SMEG
https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine1.htm#DSCE


3/5

So, what methods are used to detect polymorphic viruses in the wild? And what weaknesses

of the polymorphic engine design do they exploit? These are questions particularly

interesting to any aspiring writer of a polymorphic engine. It must be understood that anti-

virus software developers often implement the lowest-grade working solutions. For instance,

when Whale appeared, multiple scan strings were used instead of an algorithm. When MtE

appeared, an algorithm was used instead of more sophisticated methods of analysis such as

single-stepping through the decryptor or emulation of the decryptor code. So, a virus

sufficiently advanced to defeat currently available methods of detection would instantly get a

time window that would give it a chance to spread in the wild. Well, let's take a look at what

we're up against.

Polymorphic Virus Detection Countermeasures.

A properly designed engine should aim to generate code that is as obscure and difficult to

detect as possible. Here's a simple point-by-point guide to stopping most detection methods.

An example time-out attack could be orchestrated in the following fashion. The virus is

encrypted and written to disk, but the key is not saved. To derive the key, some sort of

checksum of the unencrypted code is saved. The virus is decrypted with a random key, the

checksum is calculated, and the two checksums are compared. If the two checksums do not

match, the virus is re-encrypted with the reverse operation and the process is looped back.

This makes for a larger, more sophisticated loop, which an emulator must go through

hundreds of times, magnifying the relative slowdown. Anti-virus emulators are built with

avoiding infinite loops in mind, so perhaps an emulator will skip such a structure. 

[MGL's note: For example Spanska's IDEA.6126 uses above described approach ]

Another time out strategy is building complex decryptors. This will be further explained in

the section dedicated to engine structure, but the premise is that the more code the emulator

has to execute, the slower it will be. Therefore, a decryptor containing a moderate number of

conditional jumps, calls to subroutines, and other such structures will be slower to emulate

than one that's purely linear.

Designing And Structuring A Polymorphic Engine.

A polymorphic engine is no trivial task to write. Much of the overhead can be reduced by

setting down an appropriate structure for the engine and organising it according to that.

The function of a polymorphic engine is to encrypt a piece of code and produce a decryptor

that will then decrypt the encrypted code. The decryptor that is produced must be as variable

as possible. To achieve this, and to make analysis more difficult, a polymorphic engine will

usually be written to produce:

Here, I would like to both compliment a virus writer for his achievement and expand on his

idea to suggest a new design standard for advanced polymorphic engines. Almost 4 years ago,

a virus was published in an underground virus exchange e-zine called 40Hex. The name of



4/5

this virus was Level-3, and the author was then-famous Vyvojar, who had by then firmly

established himself with the notable One_Half virus. 

[MGL's note: according the Vyvojar One_Half virus was written to demonstrate virus with

maximum spreading abilities while One_Half successor Level-3 was demonstrating use of

hardcore poly encryption. ]

The design of the engine was revolutionary - the engine would generate the decryptor code,

and then emulate it to determine the instruction flow. This concept is quite similar to the

ideas I was working on at thetime, which leads me into the design structure of an engine that

would be extremely resistant to most analysis methods.

First of all, all of the code the engine generates would have to be emulated by its own internal

emulator. This means the contents of the registers can be quite easily tracked by the emulator

and the levels of complexity will be increased to a great degree. For instance, when a value

like a key, start of the encrypted area, or any such area is required, the engine can quite

simply fix up the values already held in the registers. The values on the stack would be

emulated too. The possibilities here are really much bigger than the simple variation that can

be achieved by setting down sets of rules for generating code.

Secondly, all of the 8086 opcodes should be produced by the engine. However, they should

be produced in different frequencies - for instance, an average decryptor would usually

contain about 80% of the 8086 instruction set, with the remaining 20% generated in 1 out of

20 samples. The garbage generation can be handled by building tables which would be

accessed with different probabilities. Of course, producing 80386+ opcodes, or floating point

coprocessor instructions would increase both variability and make the engine harder to

emulate. Remember, no emulator is perfect, and most anti-virus emulators cannot handle

complex instruction sets in decryptors.

Thridly, the structure of the decryptor itself should be complicated by such things as calls and

conditional jumps. The reason for this is quite simple - it facilitates emulator slowdown. For

example, 3 calls to a 20-byte subroutine are equivalent to 69 bytes of code. Conditional

jumps are very useful for slowing down the process too. Emulators will attempt to emulate

every path that is available if it cannot be predict the direction of the jump - a technique

known as path emulation. One jump that cannot be predicted by an emulator means the

decryptor will have to be emulated twice. Two such jumps mean the decryptor will have to be

emulated four times. Structures like this ensure that a small decryptor may take as long to

emulate as a very large decryptor.

Finally, a word about layers. It seems that a lot of people believe a higher number of layers

will ensure adequate protection. This protection is only there in so far as the emulator will

simply take as long to emulate the layers as it would for a single decryptor of the collective

size of these layers. There is a restriction on the largest possible size or the largest number of

layers that has to be made, and it seems optimal to maintain only two layers, one to fool

heuristic scanners into thinking it's legitimate code and decrypt the second one, and the

second being a simple cyclical decryptor for the rest of the virus.



5/5

I hope that this has given you an insight, insiration or ideas to implement. Good luck with

designing your new super-polymorph. ;)

Special thanks to MGL, Pockets and Owl for their invaluable ideas and suggestions.

Greetings fly out to all my friends in the scene.

This document is © 1998 Buz [FS], and may be distributed so long as the correct copyright of

this document is stated, and it is not modified in any way. Any medium in which this

document is distributed in must be free.

 

 

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/groups1.htm#FS

