
1/8

Anish Bogati November 7, 2024

Hiding in Plain Sight: The Subtle Art of Loki Malware’s
Obfuscation

logpoint.com/en/blog/hiding-in-plain-sight-the-subtle-art-of-loki-malwares-obfuscation/

With the surge of cyberattacks, sharing threat intelligence in the form of insights, trends, and
samples is crucial to combat new and old threats effectively. Independent security
researchers worldwide contribute to different repositories, which play a key role in enabling
other security researchers and analysts to develop detection rules and response tactics to
stay ahead of emerging threats. One of them to be aware is the malware named Loki.

Anish Bogati
Global Services and Security Research

Background

https://www.logpoint.com/en/blog/hiding-in-plain-sight-the-subtle-art-of-loki-malwares-obfuscation/
https://www.logpoint.com/en/author/anish/


2/8

While browsing through recent uploads in MalwareBazaar — a comprehensive database of
known malware samples — we discovered a Loki malware sample belonging to a previously
unexamined malware family.

Loki is a type of information-stealing malware known for exfiltrating sensitive data, such as
credentials, cryptocurrency wallets, and other personal information, often targeting Windows
systems. It typically employs various techniques for persistence, obfuscation, and
communication with its command-and-control (C2) servers, making it a significant threat in
the cyber landscape.

Intrigued by its potential uniqueness, we selected it for further analysis. In this blog, we will
focus exclusively on the initial stages of the infection.

image-20241106-083707
MalwareBazaar Sample

Sample Analysis

During dynamic analysis, the sample exhibited several familiar behaviors often observed in
other malware we've encountered regularly. However, as we dug deeper, we noticed a range
of underlying functions that set it apart. Interestingly, at the time of this analysis, the initial
delivery sites for this malware were still active.

Downloading the payload from the site

With the sample downloaded, let's dive into the analysis. The initial HTA file contains multiple
layers of URL encoding. After decoding, we found the payload was further obfuscated using
Base64 encoding and a character substitution technique.

https://bazaar.abuse.ch/
https://attack.mitre.org/software/S0447/
https://malpedia.caad.fkie.fraunhofer.de/details/win.lokipws
https://bazaar.abuse.ch/sample/706e2d312d3693ccd38e6b489e13e12db863b723865f7f05580bcdc1c779a342/


3/8

Decoding the HTA payload in CyberChef
We obtained a PowerShell command that, once decoded, revealed the following.

This is the decoded code:

The payload uses PowerShell to execute additional actions. Specifically, it loads urlmon.dll
and leverages its functions to download a payload from the URL
hxxp://104[.]168[.]7[.]52/35/picturewithattitudeeventforallthings.tif. Once
downloaded, this file is saved as picturewithattitudeeventforallthings.vbs under
%user%\AppData\Roaming\ directory.

After the VBS file was executed with wscript.exe, the following command was executed:

Once again, Base64 encoding and junk character insertion were used to obfuscate the
command. The purpose of this command is to download an image from Google Drive at the
URL hxxps://drive[.]google[.]com/uc?
export=download&id=1UyHqwrnXClKBJ3j63Ll1t2StVgGxbSt0.

Steganography has been applied to the image to conceal additional Base64-encoded
instructions.

https://attack.mitre.org/techniques/T1027/003/


4/8

Google Drive hosted image

The script retrieves the hidden obfuscated, reversed Base64 payload from the Google Drive
image, decodes it, loads it as a .NET assembly, and then invokes a method within that
assembly. Each step includes layers of obfuscation—such as string concatenation, junk
insertion, Base64 reversal, and dynamic replacements—to hinder analysis and evade
detection. This technique, commonly used in malware, allows malicious code to be loaded
dynamically without being directly written to disk.

Here is the Base64-encoded payload, which was embedded in reverse order within the
image.



5/8

In summary, the VBS payload instructs the system to visit an image hosted on Google Drive,
where it retrieves a hidden, Base64-encoded payload. This encoded portion is then
reversed, decoded, and the code is injected into the aspnet_regbrowsers.exe process as
seen in the Process Tree below.

Process tree of infection chain

Then the injected process further starts to communicate with C2, and attempts to drop other
payloads into the system which at the moment of testing was already down so were not able
to observe further activities.

Network Connection to C2

Detection of Loki with Logpoint SIEM

As demonstrated in the Loki sample analyzed above, the techniques employed are
commonly utilized by other initial loaders and droppers to evade detection. Detecting these
techniques is critical, as they reflect an increasing trend among malware to bypass
conventional defenses.

https://docs.logpoint.com/docs/process-tree/en/latest/index.html


6/8

To effectively detect these behaviors, having proper auditing configurations in place is crucial
to ensure the generation of relevant logs. Specific log sources are fundamental for effective
threat detection and hunting. Below is a list of key sources required for our detection strategy
with Logpoint SIEM:

1. Windows

Process creation with command-line auditing should be enabled.

2. Windows Sysmon

To get started, you can use our sysmon baseline configuration.

3. Network Logs

Firewall, IDS/IPS logs

Below is a list of vendor alerts that can help detect the aforementioned techniques used by
malware.

1. Suspicious MSHTA Process Pattern

The initial payload execution of .vbs was done with mshta.exe a Windows internal binary.
This alert can detect such behavior as it looks for the execution of mshta.exe from
suspicious locations or the execution of file from a non-standard path.

2. Suspicious PowerShell Parameter Substring Detected
 Given that many of the attack steps utilized PowerShell and its cmdlets, this alert detects the

use of suspicious PowerShell commandlets commonly linked to malicious activities, such as
executing Base64-encoded payloads or downloading remote files through PowerShell
cmdlets.

https://www.logpoint.com/en/product/siem/
https://docs.logpoint.com/docs/windows/en/latest/NXLog_Sample_Configuration.html#sysmon-configuration


7/8

3. Usage of Web Request Command
 Multiple stages of payloads were downloaded, so this alert can be used to detect such

events where Windows binary and powershell commandlets have been used to download
files.

4. Suspicious File Execution Using Wscript or Cscript

The VBS payload was executed using wscript.exe, making this alert effective for detecting
the execution of scripting files such vbs files via wscript.exe or cscript.exe.

Note: Alerts may generate false positives, so it's important to thoroughly test them within
your environment before deploying them broadly. Conducting tests will help identify and filter
out any false positives, as certain applications or specific legitimate use cases could trigger
these alerts inadvertently.

Recommendations



8/8

Block Execution of Suspicious File Types and Windows Binaries:
 Block potentially exploited file types such as .vbs, .hta , and .msi , which are

commonly used by threat actors for payload distribution. Allow exceptions only for
trusted system processes or specific users to avoid disrupting legitimate use cases. 

Restrict User Permissions and Software Installation:
 Limit users' ability to install and run unauthorized software.

Regular Software Updates:
 Ensure devices, browsers, and other software applications are regularly updated to

protect against known vulnerabilities and cyber threats.

Implement Endpoint Detection and Response (EDR) Solutions:
 Deploy advanced EDR tools to monitor suspicious activity, especially around script

execution and binary downloads. This helps detect malware behaviors early,
particularly when unconventional techniques, like those seen in the Loki malware
analysis, are used.

Monitor and Restrict Web Browsing:
 Monitor users’ web browsing habits and restrict access to potentially harmful websites

or content that could lead to malware downloads.

Enhance System Monitoring and Logging:
 Proper logging, asset visibility, and system monitoring are critical for cybersecurity.

Implement regular auditing to track user activity and identify anomalies.
Comprehensive log collection across all systems is essential for effective threat
detection and analysis

Ensure Proper Log Retention and Visibility:
 Establish a log retention policy to store system and network logs for at least six

months. This will provide sufficient data to trace the origin and timeline of any security
incident, ensuring a comprehensive response.


