
1/14

Incident Response: Analysis of recent version of BRC4
protect.airbus.com/blog/incident-response-analysis-of-recent-version-of-brc4/

Introduction

During our latest incident response case we have discovered a recent sample of
Brute Ratel C4 packed with Themida. BRC4 is a powerful Command and
Control (C2) tool which allows to control targeted workstations through an
executable agent. The objective of Themida is to protect code against reverse
engineering.

Currently, C2 tools are used by attackers as much as pentesters. So, it’s always
interesting to analyse and to fully understand them in order to find a way to
detect them effectively and enrich the threat hunting phase.

This sample is a DLL from an archive that has been brought to the targeted
machine. It was executed with the command line present into the following
event:

The difficulties behind this sample were:

• Unpack Themida

• Defeat obfuscations and anti-debug techniques

• Understand the different stages to reach configuration and data sent

Here you’ll find a short explanation of the different stages:

https://www.protect.airbus.com/blog/incident-response-analysis-of-recent-version-of-brc4/

2/14

This article solely focuses on obfuscation techniques, configuration extraction
and how data are encrypted before they are sent to the server.

To briefly summarize, to pass the first stage, we used ScyllaHide plug-in on
xDBG and we jumped in a specific area with read/execution rights at the time
the DLL was loaded. In this area, we found symbols that allowed us to find the
loader of BRC4.

The second stage is just a loader of shellcode where
ZwAllocateVirtualMemory, ZwProtectVirtualMemory, ZwCreateThreadEx
and NtWaitForSingleObject functions are used for self-injection. We save the
shellcode with system informer to get a new starting point for the analysis.

The third stage focuses on the first part of the shellcode with obfuscations and
anti-debug techniques. It introduces the last stage by self-injection with
NtQueueApcThread.

The last stage is the most interesting part of the shellcode because it focuses on
configuration and communication.

In the following article, I will use a first part to describe what obfuscation
techniques were used in stages 2, 3 and 4 and unpacking process of Themida. I
will then describe how stage 4 retrieves the configuration, uses it to cypher
outgoing data, and how we can automate retrieval of this configuration.
Unpack of Themida

For the unpacking part we used ScyllaHide plug-in on x64DBG with Themida
x86/x64 profile.

We found two different results for two types of execution: normal execution on
the left and

execution with ScyllaHide on the right:
Name Win.dll

SHA-256 4400750cbc597b7e0cec813dcaf66d00e83955a034591a5a6ba40547a045721b

File type PE64

Packer Themida 3.x

For the unpacking part we used ScyllaHide plug-in on x64DBG with Themida
x86/x64 profile.

We found two different results for two types of execution: normal execution on
the left and execution with ScyllaHide on the right:

3/14

After the execution with ScyllaHide plugin, we found a memory area with
execution right and we jumped on it:

During the analysis of this memory area, we finally found a main function, this
function is our second stage:

Obfuscation & Anti-debug

During our analysis we found obfuscations based on scraping, PEB parsing and
API hashing on stage 2, 3 and 4.

Here, a part of code of stage 3:

4/14

We can find multiple functions, their role is:

Introducing anti-debug techniques
Load modules with PEB Parsing
Load pointers of functions with PEB parsing and API hashing
Build syscall routine
Resolve syscall ID with scraping

Anti-debug

An anti-debug technique involving PEB parsing is used to compare the value at
PEB+0xbc with 0x70. This code is encountered two times in the stage 3, it’s not
evident to spot it, so we must analyse the code step by step.

Load modules with PEB Parsing

The pointer to the base address of each module is found with PEB parsing. In
this case the program makes a loop in the _PEB_LDR_DATA structure to
scrape these bytes: 0x5A4D. This technique is used to avoid calling direct
functions such as LoadLibraryA which allows to load DLL.
Load pointers of functions with PEB parsing and API hashing

5/14

To resolve the pointers of the functions, the program parses the PEB structure
and then makes a loop in the name pointer table in
IMAGE_EXPORT_DIRECTORY structure. A call on the hashing function is
operated for each name in the table to find the correct function for the requested
hash. Once the correct function is found, its pointer is obtained using the
address table. You’ll find an article describing the process in a more detailed
way here.
Build syscall routine

To be stealthier than its previous version, the program builds its own function to
make a syscall. In an older version, there were obfuscation techniques for the
loading function and ID resolution, but at the end there was a direct syscall
advising us for an incoming self-injection.

In the capture below, the program builds a pointer to a custom code section to
execute a syscall.

Resolve syscall ID with scraping

The code doesn’t use a direct syscall ID to be able to target enough
workstations regardless of their version. The ID of a syscall depends on the
version and build number of the Operating System: with this technique, it’s not
necessary to obtain the OS version of the targeted workstations. All ID are
presented on j00ru website. On the screen below, we can see the specific
section which resolved a syscall ID. The code scrapes a specific sequence of
bytes to find out the correct position of the ID. This process depends on the
function previously loaded with PEB parsing & API hashing:

https://sealkisnotklaes.fr/articles/technique-API-hashing
https://j00ru.vexillium.org/syscalls/nt/64/

6/14

For a better understanding, on the screen above we have the function used to
find syscall ID thanks to bytes sequence on the left. On the right, we have the
code of NtAllocateVirtualMemory which allows us to understand why these
following bytes are targeted: 0x4C, 0x8B, 0xD1 and 0xB8. The bytes 0x4C,
0x8B and 0xD1 are respectively:
MOV R10, RCX

The byte just after 0xB8 is the syscall ID, in normal execution this value is
moved into EAX like that:
MOV EAX, [SYSCALL ID]

To resume this part, the malware uses these techniques to be stealthier that
allows it to evade detection against security software.

These techniques allow to the malware to:

Hide functions into Import Address Table (IAT) to evade detection
Counter dynamic analysis by stopping the program
Counter userland detection by IAT hooking by using direct syscall

Last stage

The last stage focuses on configuration extraction and encryption of data before
they are sent to the C2 server. In addition, we can find obfuscation functions
which loads DLL and function with symbols to communicate with C2 server. In
our case, the BRC4 shellcode uses ws2_32.dll library, the HttpSendRequest
function to send data and the InternetReadFile function to read

data.

During this stage, we can retrieve all BRC4 principal functions using the NOP
value (0x90), because each function is separated from the other by NOP
instructions. The number of NOP depends on the size of the functions, since the
purpose of the NOP instructions is to correctly align the stack.

7/14

Before continuing, here a diagram explaining the process between the
configuration and the encryption of data:

Configuration extraction

Like its previous version, the configuration is encrypted in RC4. The key and the
encrypted configuration are found at this precise moment during the last stage:

Shortly afterward, we can retrieve the configuration in clear text. Because it
takes a lot of time to reverse all the code until this moment, we prepared a
configuration extractor based on specific patterns in the program’s memory. The
conditions to fulfil to be able to use our extractor program are:

8/14

Get the BRC4 shellcode in the loader stage (real first stage, because
Themida packer is an added stage by our adversary in this instance).
Get this shellcode loader here for our configuration extraction process.
Get the configuration extractor on Airbus Protect GitHub.

The configuration extractor is a python program which uses the Ctypes library to
execute our shellcode through a loader. The handle of the new process is used
to obtain memory areas with VirtualQueryEx. Here, we focus on memory areas
with these specific conditions:
if mbi.State == MEM_COMMIT and (

mbi.Protect == PAGE_READWRITE or

mbi.Protect == PAGE_READONLY):

Each matched memory area is saved in the same dump file. At the end of this
function, the dump is used to extract the key and the configuration by using
these regexes:
regex_sequences_forKey = [

r"(00){16}([1-9A-Fa-f]{1}[0-9A-Fa-f]{1}){8}([0-9A-Faf]{2}){8}(00){8}(..0001......)(00..)",

r"(00){16}([1-9A-Fa-f]{1}[0-9A-Fa-f]{1}){8}([0-9A-Fa-f]{2}){8}(00){8}([0-9A-Faf]{2}){6}(0001)",

r"(00){16}([1-9A-Fa-f]{1}[0-9A-Fa-f]{1}){8}([0-9A-Fa-f]{2}){8}(00){8}([0-9A-Faf]{2}){6}(0010)"

]
regex_sequences_forConfig = r"(4883e4f04831c0505468)"

We performed some tests on samples discovered on Virus Total with Yara rules
created for this specific version of BRC4. These Yara rules are available in the
Yara section of this article. Here, the results of our extractor on five samples
(each test is operated on the shellcode extracted from a DLL file):

Case sample –
4400750cbc597b7e0cec813dcaf66d00e83955a034591a5a6ba40547a045721b

sample 1 –
780b2b715aa33e8910479a671469ad27cc88a7ed513b83e43cf7a6a16f613013

https://github.com/kl43s/shellcodeLoader
https://github.com/AirbusProtect/analysis-recent-version-BRC4/

9/14

sample 2 –
04b47b5492f5b2086e4a6b3f2bef73eb15a51140a86bcd05417d00bf6875ffb6

sample 3 –
9ec67f1914603e729a3b6bafe3a96cdc660717ca7dfb457290f68fc56dd0a5e2

sample 4 –
bd32cbb6c08eff7fc6aa0bfe2fd81ec467f70d9b726015859da39744271bbcb0

10/14

Encryption of data

Before sending data to the C2 server, the program uses RC4 to encrypt them.
The first request is just a simple JSON containing data about the victim, like a
profile. The first request before encryption looks like this:
{

"cds": {

"auth":"[C2_PASSWORD]"

},

"mtdt": {

"h_name":"[VICTIM_MACHINE_NAME]",

"wver":"x64/100",

"ip":"[VICTIM_MACHINE_IP], 0.0.0.0, 0.0.0.0",

"arch":"x64",

"bld":"17763",

"p_name":"[PATH_OF_EXECUTABLE_IN_BASE64]",

"uid":"[VICTIM_USERNAME]",

"pid":"6992",

"tid":"5448"

}
}

Explanation of data fields:

C2_PASSWORD: password for C2 authentication
VICTIME_MACHINE_NAME: the name of the victim machine
VICTIME_MACHINE_IP: the IP address of the victim machine
PATH_OF_EXECUTABLE_IN_BASE64: the path to the base64-encoded
executable
VICTIM_USERNAME: the session username of the victim machine

RC4 encryption is operated by SystemFunction033 from cryptsp.dll:

This function is an alias of SystemFunction032 because both point to the same
relative address:

11/14

Based on ReactOS documentation, this function operates an RC4 encryption
routine:
NTSTATUS

WINAPI SystemFunction032(struct ustring *data, const struct ustring *key)

{

RC4_CONTEXT a4i;

rc4_init(&a4i, key->Buffer, key->Length);

rc4_crypt(&a4i, data->Buffer, data->Length);

return STATUS_SUCCESS;

}

To remind you, here the decrypted configuration for our case:
[+] Config txt ->

||2|1|0|100|||||||eyJjb29raWUiOiI=|In0=|eyJibG9iIjoi|In0=|eyJIVFRQIjoiU1VDQ0VTUyJ9|1|1|

206.166.251.128|8081|Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/90.0.4430.93

Safari/537.36|password|MJSBLHLU6B8VG7JP|/test.asp|Y29udGVudC10eXBlOiBhcHBsaWNhdGlvbi9vY

3RldA==,cmVmZXJyZXI6IGdvb2dsZS5jb20=|d0cf9d2be1473579e729382f5c2e22c6453a93478a733b2f28

f86078cec0889b

In this table you will find the elements that interest us and that will allow us to
understand in a little more detail how the data will be processed:
C2 IP 206.166.251[.]128

C2 PORT 8081

HEADER PARAMETER 1 (user-agent)

Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/90.0.4430.93 Safari/537.36

HEADER PARAMETER 2 (content-type)
content-type: application/octet

(Y29udGVudC10eXBlOiBhcHBsaWNhdGlvbi9vY3RldA==)

HEADER PARAMETER 3 (referrer)
referrer: google.com

(cmVmZXJyZXI6IGdvb2dsZS5jb20=)

PASSWORD FOR AUTHENTICATION password

PASSWORD TO ENCRYPT DATA TO SEND MJSBLHLU6B8VG7JP

PAGE TO COMMUNICATE /test.asp

In this context, we know that the first request will be send to
http[:]//206.166.251[.]128:8081/test.asp with the header parameters provided
in the table above. Before sending to the C2 server, the program will encrypt the
data with the password

(MJSBLHLU6B8VG7JP) in the table and it will make this request with encrypted
data:

12/14

Conclusion

Our in-depth analysis of Brute Ratel allows us to highlight the complexity behind
all techniques seen in this article.

We explored various obfuscation techniques that complicate analysis for experts
and detection by security software. We also covered the importance of
configuration, a key element of the program. This not only enables the retrieval
of agent configuration data, including the IP address and port of the command
and control (C2) server, but also the passwords used for authentication and
encryption of data to be communicated to the server.

Finally, we’ve set up a configuration extractor that allows us to quickly retrieve
the agent’s key elements.

Year after year, malware grows in complexity, and we must continue our
research to help the community to detect effectively. We hope that the findings
and tools presented in our research will help you.
Detection

Yara

13/14

import "pe"

rule stage_Loader {

meta:

author = "Adams KONE"

company = "Airbus PROTECT"

sharing = "TLP:CLEAR"

category = "MALWARE"

description = "Loader’s stage"

strings:

//Obfuscation technique

//API hashing function

$HashingFunction = {

31 D2 0F BE 01 84 C0 74 14 01 D0 48 FF C1 69 C0

01 04 00 00 89 C2 C1 EA 06 31 C2 EB E5 8D 04 D2

89 C2 C1 EA 0B 31 D0 69 C0 01 80 00 00 C3

}
//Obfuscation technique

//Function to resolve syscall ID

$getIdForSyscall = {

80 79 FF CC 74 58 45 85 C0 75 04 48 83 E9 20 44

8A 09 41 80 F9 E9 74 0A 44 8A 41 03 41 80 F8 E9

75 07 FF C2 45 31 C0 EB D7 31 C0 41 80 F9 4C 75

2F 80 79 01 8B 75 29 80 79 02 D1 75 21 41 80 F8

B8 75 1B 80 79 06 00 75 17 0F B6 41 05 C1 E0 08

41 89 C0 0F B6 41 04 44 09 C0 01 D0 EB 02 31 C0

C3

}
//Obfuscation technique

//Function to forge a pointer to syscall, ret instructions.

$getAddrToJumpToSyscallAndRetInstruction = {

48 89 C8 48 8D 51 14 80 38 0F 75 0C 80 78 01 05

75 06 80 78 02 C3 74 0A 48 FF C0 48 39 C2 75 E7

31 C0 C3

}
//Obfuscation technique

//Hash of functions

$ZwProtectVirtualMemory = { E0 0E BB 82 }

$ZwAllocateVirtualMemory = { BF 06 3A E3 }

$NtWaitForSingleObject = { 26 6E C2 E2 }

$NtCreateThreadEx = { AA 5D F1 E5 }

condition:

(uint16(0) == 0x5a4d and uint16(uint16(0x3c)) == 0x4550) and all of them

}

rule Stage_BRC4_Part1 {

meta:

author = "Adams KONE"

company = "Airbus PROTECT"

sharing = "TLP:CLEAR"

category = "MALWARE"

description = "First part of the shellcode’s stage"

strings:

//Obfuscation technique

//API hashing function

$HashingFunction = {

0F BE 01 84 C0 74 39 31 D2 0F 1F 80 00 00 00 00

01 D0 48 83 C1 01 89 C2 C1 E2 0A 01 D0 89 C2 C1

EA 06 31 C2 0F BE 01 84 C0 75 E5 8D 14 D2 89 D0

C1 E8 0B 31 D0 89 C2 C1 E2 0F 01 D0 C3 0F 1F 00

31 C0 C3

}
//Obfuscation technique

//Operation to check if the program is running in a debugger

$AntiDebugViaPEBParsing = {

65 48 8B 14 25 60 00 00

00 0F B6 82 BC 00 00 00

83 E0 70 3C 70

}
condition:

all of them

}

rule Stage_BRC4_Part2 {

meta:

author = "Adams KONE, Airbus PROTECT"

company = "Airbus PROTECT"

sharing = "TLP:CLEAR"

14/14

category = "MALWARE"

description = "Stage of second part of shellcode"

strings:

//Obfuscation technique

//API hashing function

$HashingFunction = {

31 D2 0F BE 01 84 C0 74 14 01 D0 48 FF C1 69 C0

01 04 00 00 89 C2 C1 EA 06 31 C2 EB E5 8D 04 D2

89 C2 C1 EA 0B 31 D0 69 C0 01 80 00 00 C3

}

//Obfuscation technique

//Function to forge a pointer to syscall, ret instructions.

$getAddrToJumpToSyscallAndRetInstruction = {

48 89 C8 48 8D 51 14 80 38 0F 75 0C 80 78 01 05

75 06 80 78 02 C3 74 0A 48 FF C0 48 39 C2 75 E7

31 C0 C3

}
//Obfuscation technique

//Hash of functions

$InternetOpenW = { 2E 8F 43 C1 }

$InternetConnectW = { E8 60 1F 7F }

$InternetCloseHandle = { 43 30 5C 03 }

$HttpOpenRequestW = { A9 2D 8A 74 }

$InternetSetOptionW = { 25 04 40 7A }

$HttpAddRequestHeadersW = { 35 25 AF A5 }

$HttpSendRequestW = { 80 7B 17 E8 }

$HttpSendRequestA = { 3A 79 F2 E6 }

$HttpQueryInfoA = { 27 AF D2 5D }

$InternetReadFile = { 46 CE FE BC }

$InternetQueryDataAvailable = { AE D7 26 30 }

condition:

all of them

}

IOCs

4400750cbc597b7e0cec813dcaf66d00e83955a034591a5a6ba40547a045721b
bd32cbb6c08eff7fc6aa0bfe2fd81ec467f70d9b726015859da39744271bbcb0
780b2b715aa33e8910479a671469ad27cc88a7ed513b83e43cf7a6a16f613013
206.166.251[.]128
179.43.144[.]250
213.215.163[.]51

