
1/16

October 21, 2024

Latrodectus: A year in the making
vmray.com/latrodectus-a-year-in-the-making/

VIEW VMRAY’S ANALYSIS REPORT

Overview

Latrodectus was first discovered by researchers in October 2023 and has been in heavy development
ever since. The malware works mainly as a loader/downloader. Latrodectus has strong ties with the
former, infamous loader IcedID, which was taken down in May 2024, thanks to the efforts of an
international operation led by Europol and EC3. Since Operation Endgame, IcedID went under and
Latrodectus is seen slowly taking its place in the cybercriminal ecosystem. Interestingly, Latrodectus
also includes a specific C2 command, which can download a sample of IcedID loader.

Recently, the developers of this malware family have started on an iteration rampage, where multiple
new versions were released in a relatively short time, perhaps in an effort to get ahead of the evergreen
“cat-and-mouse” game between defenders and threat actors. These new versions only consist of small
changes, even removal of existing features. The previous pace of development would suggest that
Latrodectus will keep on iterating with new versions. Due to the prevalence of the malware family, we
felt that adding malware configuration extraction support for all the recent versions was the best move
forward for producing high-quality IoCs for our customers.

Furthermore, in this short blogpost, we would like to go over some of the most important features of the
malware.

You can read our analysis report here (see Figure 1 for an overview).

https://www.vmray.com/latrodectus-a-year-in-the-making/
https://www.vmray.com/analyses/_vt/5cecb26a3f33/report/overview.html
https://www.vmray.com/analyses/_vt/5cecb26a3f33/report/overview.html

2/16

Figure 1: VMRay Platform’s dynamic analysis reveals the malicious behavior of Latrodectus

Watch Video At:

https://youtu.be/qjyq3Cb2ioQ

Distribution and evolution

Latrodectus is distributed in a chain of JavaScript → MSI droppers, finally ending in the core DLL
payload. The DLL payload usually has 4 unique-looking exports, utilizing the same export address,
eventually running the same core logic when one decides to try all 4 exports.

Figure 2: Latrodectus exhibiting 4 exports with the same export address

https://www.vmray.com/wp-content/uploads/2024/10/01-vmray-report-latrodectus.png
https://youtu.be/qjyq3Cb2ioQ

3/16

The loader has gone through several iterations: at the time of writing this post, the most up-to-date
version is v1.8. Early versions have started to surface at the end of September 2023, while samples of
the most recent version were just compiled at the end of September 2024. Effectively, we are talking
about an evolution spanning over a year now.

We have tracked each version’s earliest PE compiled time to give a rough estimation over its timeline of
creation:

Versions Compiled time for first samples of respective versions

v1.1a 29 Sep 2023 13:29:13 UTC

v1.1b 15 Feb 2024 10:10:37 UTC

v1.2 21 Mar 2024 16:27:39 UTC

v1.3 09 May 2024 11:08:17 UTC

v1.4 29 Jul 2024 10:07:54 UTC

v1.5 30 Jul 2024 17:16:02 UTC

v1.7 16 Sep 2024 08:44:51 UTC

v1.8 25 Sep 2024 11:20:43 UTC

A few major changes worth highlighting across the versions:

Initially the family used a PRNG seed with XOR algorithm for string decryption (v1.1a)
Then Latrodectus developers decided to degrade it, and use a simpler rolling XOR method (v1.1b)
From v1.4 on, the loader switched to AES-256 (CTR) string decryption with a hardcoded key and
variable IV for each string
Additional command IDs introduced for the command handler in v1.4, like the possibility of
downloading an arbitrary file to %APPDATA%
Some features that were previously incorporated are now removed from recent versions of
samples, like the ADS self-deletion technique

Evasion techniques

Overall, Latrodectus utilized 4 different anti-debugging and sandbox evasion techniques, these are as
follows:

Process count check

This sanity process count check is most likely aimed at evading sandboxes as virtualized environments
may not display the same number of installed and running applications as a real desktop environment
would do.

Latrodectus simply enumerates the Windows OS version via the API call RtlGetVersion or via
GetVersionExW, if the Rtl version does not return data. If the routine detects Windows 10 or Windows
11 as the host OS, Latrodectus needs at least 75 active processes to launch, otherwise it simply

4/16

terminates. The other condition does the same check, just for Windows versions v6.3 or less (which
would constitute Windows 8.1, Windows 8, Windows 7 and anything below). In this case, the loader
needs at least 50 active processes to launch. This is to account for baseline levels for different versions
of Windows OS.

The VMRay Platform allows customers to directly specify the amount of background processes during
analysis time, successfully countering such sandbox evasion techniques.

Figure 3: Latrodectus enumerating Windows OS version

MAC address validity

The second evasion check enumerates the _IP_ADAPTER_INFO structure via the GetAdaptersInfo API
function, then all hardware addresses of present network adapters are examined against the argument
of 6. In the event, it does not equal to 6 bytes, the program will simply terminate. While MAC addresses
have been standardized to 6 bytes for a long time now, some older networking technologies used
different address lengths and certain specialized or proprietary systems might use non-standard MAC
address formats. This same evasion check was present in the BumbleBee loader as well.

https://www.vmray.com/sandbox-evasion-techniques/
https://www.vmray.com/understanding-bumblebee-the-malicious-behavior-of-bumblebee/

5/16

Figure 4: A rare network card check to verify validity of MAC addresses

BeingDebugged

A third evasion check is simply walking the Process Environment Block (PEB) data structure to query
the BeingDebugged flag to detect any debugging attempts: this is a smarter way without calling the
actual Windows API IsDebuggerPresent(), which may trigger some AV/EDR systems.

Figure 5: BeingDebugged flag being checked by walking the PEB

WOW64 process check

The next check is a validation of the current process, whether it is running under WOW64 on Windows,
which simply ascertains whether the malware process is running as a 32-bit process on the 64-bit OS.
In this case, the malware will simply exit. Since all Latrodectus DLLs so far have been 64-bit DLLs, it is
not fully clear what the intention of the threat actors was with this condition, since it will not return 32-bit
in normal circumstances. This might be an attempt to detect certain emulation scenarios.

6/16

Figure 6: Checking the running process against IsWow64Process

Encrypted strings

In order to make reverse engineering process harder, Latrodectus employs string encryption. The
internal strings hold a significant amount of information on how the malware operates, what behavior it
resembles. These internal strings often serve as the base for malware configuration extraction as well.
In early versions of samples, the malware family utilized a unique pseudo random generator (PRNG)
for seeding. Later, Latrodectus downgraded this functionality and simply opted to use an increment-
based seed variable, which in essence turned the encryption process into a rolling XOR method. As of
the most recent versions, the loader is now using AES-256 encryption with a hardcoded key inside the
sample and with a variable IV for each of encrypted strings.

Although, the encryption algorithm went through several changes as described previously, the storage
of the encrypted strings remained almost similar. The prototype for these structures are simple: the
encrypted strings are stored in the .data section of the DLL. In early versions of the loader, the first 4
bytes noted the XOR key and the delimiter bytes as well, the length of each strings are stored in the 5.
and 6. bytes, and the remaining bytes are the actual encrypted data.

The recent versions, due to introducing the AES algorithm, a hardcoded key is burnt-in into the .text
section of the samples. The data length still resides in the .data section in the first two bytes for each
chunk, which is followed by the IV, taking up 16 bytes. The remaining data of each chunk is again the
actual encrypted data.

String encryption

Versions Algorithm Key
Data
length IV Data Seed

v1.1a XOR chunk[:4] chunk[4:6] Not
applicable

chunk[6:6+data_length] PRNG

v1.1b Rolling
XOR

chunk[:4] chunk[4:6] Not
applicable

chunk[6:6+data_length] Incrementer

v1.2 Rolling
XOR

chunk[:4] chunk[4:6] Not
applicable

chunk[6:6+data_length] Incrementer

v1.3 Rolling
XOR

chunk[:4] chunk[4:6] Not
applicable

chunk[6:6+data_length] Incrementer

v1.4 AES-256
(CTR
mode)

hardcoded chunk[:2] chunk[2:18] chunk[18:18+data_length] Not
applicable

v1.5 AES-256
(CTR
mode)

hardcoded chunk[:2] chunk[2:18] chunk[18:18+data_length] Not
applicable

v1.7 AES-256
(CTR
mode)

hardcoded chunk[:2] chunk[2:18] chunk[18:18+data_length] Not
applicable

7/16

String encryption

v1.8 AES-256
(CTR
mode)

hardcoded chunk[:2] chunk[2:18] chunk[18:18+data_length] Not
applicable

Figure 7: Encryption changes across versions

Runtime API resolving and API hashing

The loader again utilizes the Process Environment Block (PEB) structure to find the base addresses of
kernel32.dll and ntdll.dll. Then Latrodectus continues to resolve other libraries, like user32.dll,
wininet.dll, iphlpapi.dll via finding the files inside the \Windows\System32 folder, calculating the CRC32
checksums of the filenames and then comparing them with the hardcoded hashed values in the sample.
The last step is then to call the LoadLibraryW function to finally load the library.

Once Latrodectus loaded all DLLs necessary, it continues to resolve the APIs by comparing the CRC32
checksums of the exported functions with the target values. The open-source project HashDB can help
and save work here, as its Lookup Service can reverse the hash values and recreate the API names
within an analysis. Reference: https://github.com/OALabs/hashdb

Figure 8: CRC32-based API hashing in Latrodectus

Setting up persistence

Using a simple condition, the malware verifies if it is running from under the %APPDATA% folder: if
that’s not the case, it will copy itself to the location of either:

%APPDATA%\Custom_update\Update_XXXXXXXX.dll (older versions)
%APPDATA%\falsify_steward\confrontation_XXXXXXXX.dll (newer versions)

The part of the filename noted with XXXXXXXX gets filled up with the hardware ID, generated from the
system’s volume serial number and a hardcoded constant described in the Hardware ID section of the
blogpost.

https://github.com/OALabs/hashdb

8/16

The creativity of developers is again revealed at the next stage of persistence: instead of calling
conventional APIs or scheduler commands, that would simply create a scheduled task, Latrodectus
uses the Component Object Model (COM) interface to achieve persistence. Our function log clearly
describes the behavior and it is easy to follow the chain of events. In the past, we have also taken a
deep-dive into how the use of COM objects can blind malware analysis.

First, the sample calls the CoCreateInstance API to create and initialize an object, then connects to the
ITaskService object. A new task is created inside the root of the scheduler and the job is set to execute
whenever the user logs on. The name of the scheduled task is changing between “Updater” or “anxiety”
between different versions of Latrodectus samples.

The task will point to the file previously dropped inside the %APPDATA% folder.

Figure 9: VMRay Platform’s Function Log reveals the setup of the scheduled task via the Component Object Model
(COM) interface

Mutex

Latrodectus also tracks previously successful infections by creating a mutex on the target system. The
hardcoded string “runnung” has been consistent across all Latrodectus versions and it is checked
before execution to prevent re-infecting already corrupted systems.

Figure 10: VMRay Platform’s Function log showing the hardcoded mutex “runnung”

Group ID generation

Enumerating the campaign name

So far, we have seen that each new version of the loader also introduces a new group ID. We suspect
this may change in the future and there will be unique group IDs per versions, if Latrodectus decides to
switch to a “Malware-as-a-Service” model.

The group IDs are present in the initial C2 check-in traffic as &group= parameter and are represented
as decimal numbers. They are also present in the malware sample as a string in an encrypted form.
Since, we have already discovered that a Fowler–Noll–Vo (FNV1a) hash is created based off of the
IDs, we can easily brute-force a reasonable amount of potential group names if we don’t have the
decrypted campaign name string. Our approach was to create a word-list of all possible combinations of

https://www.vmray.com/blinding-malware-analysis-with-com-objects/

9/16

the English alphabet (26 letters) and try and simply brute-force it. With a high-computing machine, it is
also reasonable to try mixed lowercase and uppercase variations, but for this short experiment, we
stuck with just capitalizing the first letters.

Keep in mind that – since this is FNV-1a 32-bit space – there could be multiple strings appearing under
the same hash due to hash collisions. So in rare cases, there might be a slight chance that the script
cannot find the original campaign name.

def generate_words(length):
alphabet = 'abcdefghijklmnopqrstuvwxyz'
words = []
for combination in itertools.product(alphabet, repeat=length - 1):
word = ''.join(combination).capitalize()
words.append(word)
return words
def write_words(words, file_path):
with open(file_path, 'a') as f:
for word in words:
f.write(word + '\n')

Once we gave enough time to the script to generate a massive (~ 130MB) wordlist (we kept it up to 7
letters), we can simply call a FNV1a hash generator to iterate through the given words line by line:

fnv_prime_32 = 2**24 + 2**8 + 0x93
offset_basis_32 = 0x811c9dc5
def fnv1a_hash_32(bs):
r = offset_basis_32
for b in bs:
r = r ^ b
r = (r * fnv_prime_32) & 0xffffffff
return r
if __name__ == '__main__':
with open('wordlist.txt', 'rb') as file:
wordlist = file.readlines()
for words in wordlist:
print("Campaign: " + Fore.YELLOW, wordbytes.decode('ascii'),"| FNV1a: ",
hex(fnv1a_hash_32(wordbytes)),"| Dec: ",int(hex(fnv1a_hash_32(wordbytes)), 16))

Figure 11: Successfully brute-forcing the campaign name based on the decimal value of the campaign ID

Hardware ID generation

The loader also generates a unique hardware ID for each target host. This ID is based off of the victim’s
Serial Volume ID and simply multiplied with a hardcoded constant. This constant is consistent so far in
all observed Latrodectus versions: 0x19660D. The generated GUID is present in the initial C2 check-in
request as &guid= parameter.

10/16

Figure 12: Generating the hardware ID, using the Volume Serial Number and the hardcoded constant (0x19660Dh)

Self-deletion

The loader uses a rather fascinating self-deletion technique: besides Latrodectus, we have previously
observed this technique in both DarkSide, Dark Power, HelloXD and other malware families. Ultimately,
this method can delete a locked, or a currently running executable from disk. It uses the
SetFileInformationByHandle Windows API to rename the executable’s primary data stream and then
facilitates the DeleteFile flag in the FileDispositionInfo class to trigger the disposition. There is a publicly
available proof-of-concept code for this method on GitHub: https://github.com/LloydLabs/delete-self-poc

We have – uniquely in the industry – tried creating a future-proof detection coverage specifically for this
technique, which is now observable as a VMRay Threat Identifier (VTI).

https://github.com/LloydLabs/delete-self-poc

11/16

Figure 13: The VMRay Platform triggering on ADS self-deletion technique via VTIs

Network C2

Upon successful infection, Latrodectus sends an initial check-in POST request with a hardcoded User-
Agent string: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Tob 1.1). This User-Agent header is
consistent across all Latrodectus versions so far.

Figure 14: VMRay Platform’s network capture displays POST requests to the C2 server

The POST request data includes parameter values collected from the system and also consists of a few
hardcoded values, stored in the sample that identifies the campaign and the sample version. These
parameters are originally sent towards the C2 server RC4 encrypted and then base64 encoded, but the
VMRay Platform easily captures the decrypted values in the function logs.

Figure 15: VMRay Platform’s Function Log revealing the parameters being filled with values

Each of these parameters serve a specific purpose:

Parameter Value description

counter C2 request throttling for evasion, (default = 0)

type Type of the request (check-in = 1)

guid Hardware ID, seeded by the volume serial number, multiplied by the hardcoded
value of 0x19660D

os Windows OS version

arch Windows architecture version

12/16

Parameter Value description

username Username of the infected host

group Campaign ID in decimal representation

version Sample version

up Potential sub-version number/update package

direction C2 server

mac Network card MAC address

computername Hostname of infected host

domain Host domain

C2 command handler

Once an infection took place, the malicious process can receive further commands from the C2 server,
4 different commands are available:

Directives Description

CLEARURL Clears the C2 table

URLS Sends a new C2 URL to be stored in the C2 table

COMMAND The command handler to other functionalities

ERROR Sends an error message to the host

The COMMAND handler is the most interesting one as it can receive the following further sub-
commands from the C2:

Figure 16: Command handler IDs for more functionalities

Command ID Description

2 Grabs filelist from the Desktop folder

3 Gets host process list

13/16

Command ID Description

4 Collects sysinfo

12 Downloads and executes a next-stage PE

13 Downloads and executes a next-stage DLL

14 Downloads and executes a next-stage shellcode

15 Updates and restarts the bot

17 Terminates itself

18 Downloads IcedID loader and execute

19 Increases timeout

20 Resets the counter value

21 Executes a stealer module

22 Downloads and executes shellcode via base64 function

25 Downloads a file to %APPDATA%

YARA coverage

We have introduced several forward-looking YARA signatures to detect all versions of the family. We
also provide version-based signatures to aid customers with up-to-date information on the exact version
of Latrodectus in question.

Figure 17: VMRay Platform’s report showing YARA detection signatures on Latrodectus samples

Malware configuration extraction

The VMRay Platform currently extracts all important malware configuration information from the
samples. These would include the C2 URLs, the exact version, mission ID, and any potential encryption
keys that are used for the string encryption or C2 communication: namely the RC4 key and the AES key
(from v1.4 up to v1.8).

14/16

Figure 18: VMRay Platform’s successful malware configuration extraction for Latrodectus v1.8

Conclusion

The threat actors behind the malware family seem to iterate versions in a speedy fashion, perhaps to
wear defenders out or potentially to prepare for a substantial major change. We suspect the prevalent
loader will enter into version 2.0 soon, as the previous pace of development seems to indicate even
more updates incoming. Interestingly, we have seen that subversions even removed certain features
from the loader, perhaps in an attempt to refactor some of the internal structures. As this threat is still
prevalent today, we will make sure to follow-up on future changes to aid customers with proper
detection coverage and precise malware configuration extraction.

The VMRay Platform currently detects all Latrodectus versions up to v1.8 and can acquire malware
configuration from all working samples.

References

IoCs

15/16

C2 URLs hxxps://antyparkov[.]site/live/
 hxxps://aytobusesre[.]com/live/

 hxxps://carflotyup[.]com/live/
 hxxps://drifajizo[.]fun/live/

 hxxps://coolarition[.]com/live/
 hxxps://finjuiceer[.]com/live/

 hxxps://grebiunti[.]top/live/
 hxxps://grunzalom[.]fun/live/

 hxxps://illoskanawer[.]com/live/
 hxxps://jertacco[.]com/live/

 hxxps://saicetyapy[.]space/live/
 hxxps://scifimond[.]com/live/

 hxxps://skinnyjeanso[.]com/live/
 hxxps://stratimasesstr[.]com/live/
 hxxps://stripplasst[.]com/live/

 hxxps://titnovacrion[.]top/live/
 hxxps://trymeakafr[.]com/live/
 hxxps://winarkamaps[.]com/live/

 hxxps://workspacin[.]cloud/live/
 hxxps://worlpquano[.]com/live/

 hxxps://zumkoshapsret[.]com/live/
 hxxps://minrezviko[.]com/test/

 hxxps://pomaspoteraka[.]com/test/
 hxxps://finilamedima[.]com/test/

 hxxps://restoreviner[.]com/test/
 hxxps://peronikilinfer[.]com/test/
 hxxps://rilomenifis[.]com/test/

 hxxps://isomicrotich[.]com/test/

Mutex runnung

Scheduled task
name

Updater
 anxiety

Persistence
location

%APPDATA%\falsify_steward\confrontation_XXXXXXXX.dll
 %APPDATA%\Custom_update\Update_XXXXXXXX.dll

RC4 keys 12345
 2sDbsEUXvhgLOO4Irt8AF6el3jJ0M1MowXyao00Nn6ZUjtjXwb

 u9X7Ogp3IECwtHNBFGa0uMc0fDXhjVnV9SiAiVzqdkoleTZy16
 eNIHaXC815vAqddR21qsuD35eJFL7CnSOLI9vUBdcb5RPcS0h6

 EhAyPSHvva9CvL6OIddDJvDXHJjoMsqXyjraKyYmXFqDGdAYyO
 9edoY7pK6eQfntcLBNU1WSkauwf1sHj4I8vTuAddXvPwYbJPeP

 v9JrWM4aDsviWsTfSCgX5Ed98pH6kMpQr1VWWj5LTMiC5C5Lna
 k2C0I3yY0ZDMCy4zFZDFnCD3mzc4fFdEMw5uF1n6u59eGG2NDN

 xkxp7pKhnkQxUokR2dl00qsRa6Hx0xvQ31jTD7EwUqj4RXWtHwELbZFbOoqCnXl8

16/16

Group/Campaign
IDs

Alpha (v1.8)
 Alpha (v1.7)
 Ceres

 Compati
 Delta (v1.5)

 Electrol
Facial

 Jupiter
 Liniska
 Littlehw
 Mars

 Mercury
 Neptun

 Novik
 Olimp
 Supted

 Trusted
 Venus

 Wiski (v1.4)

Versions v1.1a
 v1.1b
 v1.2

 v1.3
 v1.4
 v1.5
 v1.7
 v1.8

