DarkVision RAT | ThreatLabz

€ zscaler.com/blogs/security-research/technical-analysis-darkvision-rat

Muhammed Irfan V A

Zscaler Blog

Get the latest Zscaler blog updates in your inbox

Subscribe

Security Research

Introduction

DarkVision RAT is a highly customizable remote access trojan (RAT) that first surfaced in 2020, offered
on Hack Forums and their website for as little as $60. Written in C/C++, and assembly, DarkVision RAT
has gained popularity due to its affordability and extensive feature set, making it accessible even to low-
skilled cybercriminals. The RAT’s capabilities include keylogging, taking screenshots, file manipulation,
process injection, remote code execution, and password theft. In July 2024, Zscaler ThreatLabz
observed attackers using DarkVision RAT alongside PureCrypter. In this blog, we will break down the
attack chain behind these DarkVision RAT infections, and provide an in-depth analysis of the RAT’s
functionality, including its core features, network communication protocol, commands, and plugins.

Key Takeaways

In July 2024, ThreatLabz uncovered a new malware campaign distributing DarkVision RAT.

The campaign used PureCrypter as a loader to deploy DarkVision RAT.

DarkVision RAT communicates with its command-and-control (C2) server using a custom network
protocol via sockets.

DarkVision RAT employs various evasion and privilege escalation techniques, including DLL
hijacking, auto-elevation, and process injection.

DarkVision RAT supports a wide range of commands and plugins that enable additional
capabilities such as keylogging, remote access, password theft, audio recording, and screen
captures.

Technical Analysis

1/14

https://www.zscaler.com/blogs/security-research/technical-analysis-darkvision-rat
https://www.zscaler.com/blogs?type=security-research
https://www.zscaler.com/author/mirfanva
https://www.zscaler.com/blogs/security-research/technical-analysis-purecrypter

The following sections offer a technical analysis of an attack chain used to deploy DarkVision RAT, as
well as an in-depth examination of the RAT itself.

The figure below illustrates the attack chain for the DarkVision RAT campaign discussed in this blog.

Donut loader shellcode PureCrypter DLL DarkVision RAT

AN Decrypts and — Network communication -_—
executes Decrypts and executes Decrypts and executes with custom protocol -'E

First Stage Second Stage Third Stage Fourth Stage DarkvVision RAT C2

@>zscoler | ThreatLabz

Figure 1: An example attack chain distributing DarkVision RAT as the payload in the final stage.

First stage: Shellcode decryption in DarkVision RAT attack

The initial stage in this attack chain is a .NET executable file, protected using .NET Reactor. Upon
execution of the .NET file, the first stage runs the following command:

cmd /c timeout 10

After the brief 10-second delay, the .NET file moves on to its next phase, where it decrypts the second
stage shellcode.

The .NET executable uses Triple Data Encryption Standard (3DES) to decrypt the second stage
shellcode. The key and IV are encoded in Base64 format. The Base64-encoded strings

are xwmyVxHV39B5ns41HJtzRQ== for the key and szD5abwvrRk= for the IV. The .NET executable file
decodes these strings back into their original binary form. The decoded key and IV are then fed into the
3DES algorithm to decrypt the shellcode.

The decrypted shellcode is written to a block of memory that is made executable using virtualAlloc
and virtualProtect. The .NET executable then uses the API EnumCalendarInfo’s callback function to
execute the shellcode leading to the second stage.

Second stage: Donut loader

The decrypted second stage shellcode is the open source Donut loader. This x86 position-independent
shellcode is designed to load .NET assembilies directly into memory. Donut loader uses the Chaskey
block cipher to encrypt its modules.

We won'’t be covering the specifics of Donut’s loading process, as several excellent write-ups already
exist on the topic. Instead, to proceed with our analysis, we used Donut Decryptor to extract the third
stage payload.

Third stage

Loading DarkVision RAT with PureCrypter

2/14

https://github.com/TheWover/donut
https://thewover.github.io/Introducing-Donut/
https://github.com/volexity/donut-decryptor

The third stage of the attack chain is a .NET assembly, identified as PureCrypter, which has been
previously analyzed by ThreatLabz. The main function of the PureCrypter injector starts by
decompressing (gunzip) and deserializing an object into a protobuf structure, as shown in the figure
below.

alize returned

ZTPd.JebuXIV1...

Kolmhn

tic members
Static members

Static members
uTZting

PWc014NVO4m

&> zscaler | ThreatLabz

Figure 2: PureCrypter protobuf structure.

One of the key members in this protobuf structure is gr2pwb82LI which contains an element

named Uoepndv4TW. This particular element holds the DarkVision RAT payload portable executable (PE)
content, which is encrypted using Advanced Encryption Standard (AES) in Cipher Block Chaining (CBC)
mode.

Another important part of the protobuf structure is a member named 1UQ99bXImz, which contains the
startup settings for DarkVision RAT.

Windows Defender exclusion and persistence tactics in PureCrypter

PureCrypter executes a PowerShell command that has been encoded in Base64 format. When
decoded, this command tells PowerShell to add malicious file paths and process names used by the
RAT to the list of exclusions in Windows Defender. The example below shows the PowerShell
commands used to add Windows Defender exclusions for malicious file paths and process names used
by DarkVision RAT.

3/14

https://www.zscaler.com/blogs/security-research/technical-analysis-purecrypter

Add-MpPreference -ExclusionPath C:\yknoahdrv.exe;

Add-MpPreference -ExclusionProcess yknoahdrv.exe;

Add-MpPreference -ExclusionPath C:\Users\REDACTED\AppData\Roaming\Siguhl.exe; Add-MpPreference -
ExclusionProcess Siguhl.exe

PureCrypter doesn't stop at evading detection as it also helps DarkVision RAT achieve persistence.
PureCrypter writes the current file to %APPDATA%\Sighul.exe and adds persistence for this file as per the
protobuf struct by using the Auto-run registry key
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run with the name set to sighul. Then,
according to the values in the protobuf struct, the decrypted DarkVision RAT file is injected into itself
(current process), and execution is transferred to the entry point of DarkVision RAT, leading to the fourth
stage.

Fourth stage: Persistence and C&C protocol

DarkVision RAT first dynamically resolves APIs using GetProcAddress and LoadLibrary. The RAT
always reloads the libraries again using LoadLibrary to avoid userlands hooks placed by antivirus and
endpoint detection and response (EDR) software. The APl names used by the malware are stored in
XOR-encoded form and are decoded using the XOR key [19 72 19 72]. DarkVision RAT also uses
XOR encoding to store important strings. From here, DarkVision RAT starts to parse the command-line
arguments.

Command-line parsing in DarkVision RAT

After decoding the necessary strings, DarkVision RAT starts to parse any command-line arguments. The
command-line arguments used by the DarkVision RAT are Globally Unique Identifiers (GUIDs). These
GUIDs serve as names in various places such as registry keys, folder names, and file names. When
investigating other samples of DarkVision RAT, we noticed that these GUIDs differ from one sample to
another, indicating a level of randomness in each instance of the RAT ensuring these cannot be used to
create detection logic for DarkVision RAT.

Here are two GUIDs and how they were used in this sample:

{B8B1DC5F-E2FC-41FF-A2D1-DB3800909230}:

Conditions: The action below is carried out if the user is not a local administrator and the Windows
version is greater or equal to 10.

Action: Under these conditions, DarkVision RAT attempts to gain elevated privileges using a technique
called DLL hijacking. DarkVision targets winSAT.exe, a legitimate Windows process, and DXGI.DLL, a
dynamic link library file to attempt auto elevation.

{14C43BB8-A5DF-4F5D-A77A-E8BB32DEE41F}:

Conditions: The Actions below are carried out if the user is a local administrator and the Windows
version is greater or equal to 10.

Action: In this scenario, DarkVision RAT adds an exclusion rule to Windows Defender to avoid
detection. The RAT achieves this by running the command cmd.exe /c powershell.exe Add-
MpPreference -ExclusionPath, which tells Windows Defender to ignore the RAT file path.

a/14

Adding DarkVision RAT data to the Windows registry

DarkVision RAT creates a registry key under HKEY_CURRENT_USER\SOFTWARE\ and adds three
values, each named using a hardcoded GUID. The values stored are the following:

1. RAT file content: The command opcodes 0x2BD and 0x2BE (discussed later) use this value to

write the RAT file to disk.
2. RAT file path: Based on a flag, the RAT deletes the file stored in this file path. This flag is related

to deleting artifacts.
3. Current system time stored in a FILETIME structure: This value is stored in

a FINGERPRINT_INFO1 struct (discussed later) which is sent to the C2 server.

The figure below shows the data being added to the Windows registry.

ab] (Default) REG_SZ (value not set)
f;'_&]{12?0(7?(-6989-4394-BdOE-BCSBFSASFFFA} REG_BIMARY Ad 5a 90 00 03 00 00 00 04 00 00 00 ff £f 00 00 b& 00 00 00 00 00 00 00 40 00 00 00 00... RAT file content
3_‘_']{3383?605-3881-4AEB-92CA-C648??6?5E6D} REG_SZ C:\Users\-\}\ppData\Roaming\photos\System.ace RAT file path

4 {BD1CTE2D-E141-46AA-8EC5- BFSEA94814ET} REG_BINARY 90af d33c 731 da01 00000000 System time > zscaler | ThreatLabz

Figure 3: DarkVision RAT data added to the Windows registry.

Persistence mechanisms leveraged by DarkVision RAT

DarkVision RAT employs three different methods to ensure persistence on an infected system. Like
most of the features in DarkVision RAT, there are flags for each persistence technique, which store a
boolean value that decides which persistence mechanism should be used in the sample. Since these
flags are hardcoded into the binary, we concluded that they are configurable options available to the
attacker when a DarkVision RAT sample is created using a builder.

The three persistence methods are as follows:

o Startup folder - In this method, DarkVision RAT creates a batch script that contains a command to
execute the RAT executable. After creating this script, DarkVision RAT then creates a shortcut to
the batch script and places this shortcut in the Windows startup folder.

¢ Autorun keys - Another method DarkVision RAT leverages is autorun keys. DarkVision RAT adds
an entry that points to its executable file in one of the autorun keys located
at Software\Microsoft\Windows\CurrentVersion\Run. The exact location of this key can be under
either HKEY_CURRENT_USER (for the current user) or HKEY_LOCAL_MACHINE (for the
system), depending on the flags set within the RAT.

e Task Scheduler - DarkVision RAT uses the ITaskService COM interface to schedule a task to
execute the malware.

After setting up persistence mechanisms, DarkVision RAT checks if it is currently running from a specific
location, namely %APPDATA%\photos\System.exe (we refer to %APPDATA%\photos as the RAT folder and
the full path as the RAT file path moving forward as this path varies across samples).

If DarkVision RAT is not running from this designated folder, it copies itself to this path and then uses the
newly copied file to create a child process. This ensures that the RAT is running from a consistent and

expected location.

5/14

Next, the RAT creates a new folder in c:\Programbata, which we refer to as the plugin parent folder.
This folder is used to store additional encrypted plugins in its subdirectories (discussed later).

Process injection techniques employed by DarkVision RAT

DarkVision RAT uses the NtCreateSection and NtMapVviewOfSection APIls to perform process injection,
which is used in multiple places to perform RAT functionalities. DarkVision RAT creates a remote
process in a suspended state. The RAT then creates a new memory section, mapping one view of this
section to the local process and another view to the remote target process. The view mapped in the
local process is populated with a function that the RAT needs to execute. This process is repeated to fill
the structure used by the function in another mapped view. The thread context of the remote process is
then modified: the Instruction Pointer (RIP/EIP) is set to the function's address, and the first parameter
(RCX/ESP+4) is set to the address of the structure. Finally, the thread is resumed, leading to the
execution of the function.

DarkVision RAT communication protocol

Once executed, DarkVision RAT needs to connect to the C2 server to receive instructions and respond
with information. The C2 communications use a custom binary protocol. Based on the flags set, the C2
address is parsed in one of two different ways:

» Retrieve the C2 information: The RAT utilizes WinHTTP libraries to connect to a URL stored in
plain text. The returned data contains the C2 information in the format c2address:port.

¢ Hardcoded C2 Information: The C2 address and port are stored in plain text within the binary.
For example, the C2 address embedded in the binary analyzed by ThreatLabz
was severdops.ddns[.]net:8120.

Registration

The first action DarkVision RAT takes is to register itself with the C2 server by sending a unique Bot ID.
To create this Bot ID, the RAT generates a random GUID and combines it with an MD5 hash of the
Unicode string "P@55word! ". This string, "P@55werd! ", is stored in plain text within the RAT’s code and
varies across different samples.

Receiving the acknowledgment (ACK) packet

After sending its unique ID, DarkVision RAT waits for a response from the C2 server. The server replies
with a specific data packet { 01 00 00 00 }. The received data is compared to the value 1, and the
RAT will only proceed with sending the next data if this comparison is successful. This packet functions
similarly to an ACK packet in the TCP protocol, so we will refer to it as an “ACK packet” moving forward.
The RAT client then sends the data { 00 00 00 00 }, to which the server responds with an ACK
packet.

The figure below shows the network communication between a system infected with DarkVision RAT
and the C2 server.

6/14

00000000
00000010
00000020 35
00000030 2f

00000000
00000038 00

00000004

7b
32

46 37 46 38 30
42 45 2d 42 46
41 42 37 31 7d
05 53 f1 54 a2
01 60 00 00
00 00 00
01 00 00 00

35
32
00
8b

36
36
40
00

38
2d
dd

2d
31
od

=
46
e/

46
35
ef

39
32
fd

31
37
fb

2d
30
af

34
36
21

{F7F8056 8-5F91-4
2BE-BF26 -1F52706
SAB71}.@ !
/.S.T...

02 00 90 [...

00 01 90 41 00 70 9@ 70 00 6c 00 65 00O 58 00
00 00 PO 00 00 P2 G0 0O 0O 00O 00 00 00 00 00
00 00 00 00 00 0O 00 00 00 00 00 00 00 00 00
00 90 0O 00 00 PO 00 00 0O PO 00 00 00 00 00
00 00 0O 00 00 P2 OG0 0O 00 00 00 00 00 00 00
00 00 00 ©1 0 00 9@ 53 00 79 00 73 00 74 00
00 6d 90 2e¢ @0 65 G0 78 00 65 00 20 00 Sb 00 . .
00 34 00 32 00 30 90 5d 00 00 00 00 00 0@ 00 3.4.2.0.].......
00 00 00 00 00 PO OO 0O 0O PO 00 0O 00 00 00
00 00 00 00 00 PO 00 00 00 00 00 00 00 00 00
00 00 PO 00 00 PO 90 0O 00 00 00 00 00 00 00

0000003C 7c
eeeee0d40 17
00000050 00
00000060 ©0
00000070 ©0
00000080 00
00000090 00
000000AD 65
©00000BO 33
©00000CO ©0
©000000D0 ©0
000000ED 00

................

................

@>zscaler | ThreatLabz
Figure 4: Network communication between a system infected with DarkVision RAT and the C2 server.

Device fingerprinting

The RAT client then performs device fingerprinting and collects system information. This information is
sent in two packets. Before each packet, the size of the structure is sent, followed by the structure
containing the system information. After receiving the first structure, the server sends an ACK packet.
Upon receiving the second structure, the C2 server sends two ACK packets. The two structures sent are
shown below.

struct FINGERPRINT_INFO1{

uint32_t hardcoded_value; // set to 0x10017

wchar_t botnet_name[40]; // set to AppleX

int32_t is_localadmin; // TRUE = 1 , FALSE = 0

wchar_t pname_followedby pid[260]; // RAT process name followed by pid %s [%d]
uint32_t hardcoded_value2; // set to 0x40

FILETIME system_time; // current system time

i

struct FINGERPRINT_INFO2{

uint32_t geocode; // geocode of the victim country

wchar_t computer_name[16]; // victim computer name

wchar_t user_name[258]; // victim username

uint32_t system_ip[54]; // victim h_addr_list in network byte order
int64_t system_uptime; // victim system uptime in milliseconds
ULONG os_info[4]; // victim os info

i

DarkVision RAT then creates a new socket and sends its unique bot ID to the server. The server
responds with an ACK packet. The client then sends an ACK packet in return, and the server replies
with another ACK packet. After this exchange, the RAT client waits for commands from the C2 server.

7/14

Commands supported by DarkVision RAT

The command's opcode, function address, and other related data are stored as an array of 12 elements
(12 commands). Each element is a struct of size 0x28, which we will refer to as a COMMAND_STRUCT.

If the opcode matches the data received from the server, the corresponding func_address is executed
by creating a thread. The COMMAND_STRUCT is shown below.

struct COMMAND_STRUCT{

uint64_t opcode; // opcode of the command

uint64_t event_handle; // handle of event created when the command is run
uint64_t thread_handle; // handle of thread created which executes func_address
void *func_address; // address of the function to be executed

uint64_t socket; // socket descriptor of the socket

i

The table below lists the commands supported by DarkVision RAT.

Opcode Description

0x2BD Writes the RAT file content stored in the Windows registry to the RAT's file path.

O0x2BE Writes the RAT file content stored in the Windows registry to the RAT's file path and
executes it.

0x2BF Receives a file from the C2 server via socket, writes it to disk, executes it, and then deletes
all RAT artifacts, including persistence entries from the registry and file system.

0x2CO0 Deletes all RAT artifacts, including persistence entries from the registry and files from the
disk.

0x2CA1 Runs the RAT executable as an administrator using the runas verb. If this attempt fails,
create a RAT process that does not require administrator permissions.

0x2C2 Performs DLL hijacking via winSAT.exe and DXGI.DLL to achieve auto-elevation.

0x2C3 Receives a URL and user agent from the C2 server via socket. Downloads the file from the
URL using the user agent provided, writes the file to disk, executes it, and then deletes all
RAT artifacts.

0x519 Receives a compressed plugin from the C2 server, decompresses it using LZNT1, and
loads it into memory. Encrypts the plugin with Salsa20 (the key and nonce are hardcoded)
and writes it to disk. The C2 server sends data in the following order: plugin ID, plugin
compressed size, and plugin data in compressed form.

0x51A Unloads the specified plugin ID. The plugin ID follows the data received from the C2 server

after the opcode.

8/14

Opcode Description

0x51B Retrieves the status of all plugins (whether loaded or not).

0x51C Deletes the encrypted plugin from the disk and registry based on the data received from
the C2 server. If the data received is the value 1, deletes all plugins. Otherwise, the RAT
deletes the specified plugin ID received from the C2 server.

0x51D Receives the specified plugin ID from the C2 server. Encrypts it using Salsa20 (using the
same hardcoded key and nonce used in opcode 0x519), then writes it to both the registry
and the disk.

Table 1: Commands implemented by DarkVision RAT.

There is another set of commands used to execute plugin ordinals. For all previously mentioned
commands, the upper 16 bits are set to 0, and the lower 16 bits contain the opcode ID of the command
to be executed. In the next set of commands, the upper 16 bits contain the plugin ID to be executed,
while the lower 16 bits contain the ordinal number to be executed.

Plugins available in DarkVision RAT

Most of the DarkVision RAT's features are implemented through plugins. These plugins remain as plain
text only in memory, while they are stored as encrypted data on disk and in the registry. When a plugin is
loaded, ordinal 0x65 of the plugin is executed using a thread. The thread takes a struct as an argument,
which contains important information about the plugin. Below is the structure used for this purpose.

struct PLUGIN_STRUCT{
wchar_t plugin_parent_folder[0x8000]; // folder containing all plugin sub folders

wchar_t plugin_filename[0x8000]; // plugin file name

wchar_t plugin_filepath[0x8000]; // plugin file path

void *plugin_base_address; // plugin base address in memory
int32_t plugin_size; // size of plugin

void *rat_folder; // RAT folder

void *plugin_array; // array containing all plugin id's
}

The plugins are executed in the same manner as the initial set of commands. The table below shows
the plugin ID and its description.

Plugin

ID Plugin Description

0x1 Captures webcam footage.

0x2 Displays messages using MessageBox.

0x3 Retrieves the process list and terminates processes based on PID.

9/14

Plugin

ID Plugin Description

Ox4 Edits the registry.

0x5 Provides file system access.

0x6 Views victim screen via screenshots.

0x7 Lists and manages system windows.

0x8 Performs system control activities such as locking the workstation, shutting down, or
restarting.

0x9 Retrieves and sets desktop wallpaper.

0xD Establishes a reverse proxy using SOCKS.

OxE Acts as a dropper to download a file from a URL and write it to disk.

OxF Open a remote shell.

0x10 Captures microphone audio.

0x11 Records keystrokes live (live keylogger).

0x12 Steals passwords.

0x13 Provides remote access using VNC.

0x14 Provides remote access using hVNC.

0x15 Records keystrokes offline (offline keylogger).

0x16 Locks the workstation or shut downs the system for protection when the victim is away from
the keyboard.

0x17 Retrieves the process list and creates a minidump of processes based on PID.

Table 2: Plugins loaded by DarkVision RAT.

10/14

Conclusion

In conclusion, DarkVision RAT represents a potent and versatile tool for cybercriminals, offering a wide
array of malicious capabilities, from keylogging and screen capture to password theft and remote
execution. This versatility, combined with its low cost and availability on Hack Forums and their website,
has made DarkVision RAT increasingly popular among attackers. The recent campaign uncovered by
ThreatLabz, where DarkVision RAT is paired with PureCrypter, showcases how threat actors leverage
malware families together to bypass security software. By shedding light on the inner workings of
DarkVision RAT, this analysis aims to equip security teams with the insights they need to defend against
these evolving threats.

The Zscaler Cloud Sandbox has consistently detected this campaign with high accuracy. Zscaler
ThreatLabz will continue to monitor and track both PureCrypter and DarkVision RAT, sharing any new
findings with the wider security community.

Zscaler Coverage

Zscaler’s multilayered cloud security platform detects indicators related to DarkVision RAT at various
levels. The figure below depicts the Zscaler Cloud Sandbox, showing detection details for DarkVision
RAT.

SANDBOX DETAIL REPORT L &
Report ID (MDS5): 062ED4GASAEBA3IBESE2TTASESEFEBFE Analysis Performed : 7/25/2024 11:54:51 PM File Type: exsbd

CLASSIFICATION MITRE ATTACK s VIRUS AND MALWARE

Class Type Theeat Scor This report contains 18 ATTECK techniques mapped to & tactics

gary N known Matware found

NETWORKING - STEALTH

SPREADING NFORMATION LEAKAGE EXPLOITING

No suspicious activity detects d No suspicious activity detected Mo suspicious activity detected

@ zscaler | ThreatLabz

Figure 5: Zscaler sandbox report for the DarkVision RAT sample.

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects indicators
related to this campaign at various levels with the following threat names:

Indicators Of Compromise (IOCs)

Host Indicators

Type Indicator Description

11/14

Type Indicator

SHA256 cd64122c8ee24eaf02e6161d7b74dbe79268f3b7ffb7a8b0691a61ff409f231d

Description

The first
stage of the
campaign is
protected
with .NET
Reactor to
decrypt and
inject Donut
loader.

SHA256 6e3346d47044d6df85a07aeda745d88f9cd46b20d22028d231add555bf00bf41

Donut
loader
shellcode
used as the
second
stage.

SHA256 27ccb9f336282e591e44c65841f1b5bc7f495e8561349977680161e76857bebd

PureCrypter
is used as a
third stage
loader.

SHA256 7aa49795bbe025328e0aa5d76e46341a95255e13123306311671678fdeabb617

Network Indicators

Indicator Description

Type

URL nasyiahgamping[.Jcom/yknoahdrv.exe The URL which hosts the first stage.

Domain severdops.ddns[.]net:8120 DarkVision C2 server

MITRE ATT&CK Techniques

DarkVision
RAT

ID Technique Name Description

T1053.005 Scheduled Task
tasks.

DarkVision RAT uses ITaskService interface to create scheduled

T1547.001 Registry Run Keys /

Startup Folder

DarkVision RAT uses autorun keys and the startup folder for
persistence. PureCrypter uses autorun keys for persistence.

12/14

https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/techniques/T1547/001/

ID Technique Name Description
T1055 Process Injection DarkVision RAT uses the NtCreateSection
and NtMapViewOfSection APIs to perform process injection.

T1140 Deobfuscate/Decode The strings used in DarkVision RAT are XOR encoded.
Files or Information

T1562.001 Disable or Modify DarkVision RAT and PureCrypter have functionalities to add
Tools Windows Defender exclusions.

T1539 Steal Web Session Password stealer plugin steals cookies from browsers.
Cookie

T1010 Application Window Windows list plugin lists and manages windows in the system.
Discovery

T1057 Process Discovery Multiple plugins retrieve the process list.

T1082 System Information DarkVision RAT collects system information and sends it to the
Discovery C2 server.

T1083 File and Directory File Explorer plugin performs file and directory discovery.
Discovery

T1123 Audio Capture Microphone capture plugin performs audio capture.

T1125 Video Capture Webcam capture plugin performs video capture.

T1113 Screen Capture Screen capture plugin performs screen capture.

T1056.001 Input Capture: Darkvision RAT supports live and offline keylogging.
Keylogging

T1219 Remote Access Darkvision RAT uses VNC and hVNC for remote access.
Software

T1571 Non-Standard Port C2 communications are through a non-standard port.

T1529 System System control plugin performs system shutdown/reboot.
Shutdown/Reboot

13/14

https://attack.mitre.org/techniques/T1055
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1562/001/
https://attack.mitre.org/techniques/T1539/
https://attack.mitre.org/techniques/T1010
https://attack.mitre.org/techniques/T1057
https://attack.mitre.org/techniques/T1082
https://attack.mitre.org/techniques/T1083
https://attack.mitre.org/techniques/T1123/
https://attack.mitre.org/techniques/T1125/
https://attack.mitre.org/techniques/T1113/
https://attack.mitre.org/techniques/T1056/001/
https://attack.mitre.org/techniques/T1219/
https://attack.mitre.org/techniques/T1571/
https://attack.mitre.org/techniques/T1529/

Thank you for reading

Was this post useful?

Yes, very!Not really

Get the latest Zscaler blog updates in your inbox

By submitting the form, you are agreeing to our privacy policy.

14/14

https://www.zscaler.com/privacy/company-privacy-policy

