
1/11

Emansrepo Infostealer - PyInstaller, Deobfuscation and
LLM

nikhilh-20.github.io/blog/emansrepo_deobfuscation/

Metadata

SHA256: ae2a5a02d0ef173b1d38a26c5a88b796f4ee2e8f36ee00931c468cd496fb2b5a

Table of Contents

Introduction

Emansrepo is a Python-based information stealer reported by Fortinet last month. The
variant we will examine in this blog is packaged with PyInstaller, enabling it to run on a
computer without requiring Python to be installed.

The primary focus of this blog is to extract the Python script from the PyInstaller-based
sample and then deobfuscate it to reveal the actual malware code. Finally, I will offer some
hypotheses linking Emansrepo to LLMs.

Extracting the Python Code

PyInstaller Detection

The introduction to PyInstaller is best given from their documentation:

PyInstaller bundles a Python application and all its dependencies into a single
package. The user can run the packaged app without installing a Python interpreter or
any modules. It is not a cross-compiler; to make a Windows app you run PyInstaller on
Windows, and to make a Linux app you run it on Linux, etc.

Since PyInstaller-based packages are self-contained, the file size is expected to be larger
than that of typical C/C++-based malware. This is evident in the VirusTotal detections
snapshot at the beginning of this blog, with the sample size being ~22 MB.

https://nikhilh-20.github.io/blog/emansrepo_deobfuscation/
https://www.fortinet.com/blog/threat-research/emansrepo-stealer-multi-vector-attack-chains
https://pyinstaller.org/en/stable/


2/11

Detect It Easy can identify a PyInstaller-based package. Additionally, by examining the
printable strings (such as _MEIPASS), you can determine not only that the package is
PyInstaller-based but also the Python version used, as shown in Fig. 1. The sample uses
Python 3.11.

Fig. 1: PyInstaller and Python Version Detection

PyInstaller bundles compiled Python scripts instead of source code. In the following sections,
we will examine how to go from a PyInstaller executable to Python source code.

Extracting the Compiled Python Script

pyinstxtractor-ng can be used to extract the compiled Python scripts from the PyInstaller-
based sample.

https://github.com/horsicq/Detect-It-Easy
https://pyinstaller.org/en/stable/operating-mode.html#hiding-the-source-code
https://github.com/pyinstxtractor/pyinstxtractor-ng


3/11

.\pyinstxtractor-ng.exe.lnk 
C:\Users\Ashura\Desktop\ae2a5a02d0ef173b1d38a26c5a88b796f4ee2e8f36ee00931c468cd496fb2
b5a\ae2a5a02d0ef173b1d38a26c5a88b796f4ee2e8f36ee00931c468cd496fb2b5a

[+] Processing 
C:\Users\Ashura\Desktop\ae2a5a02d0ef173b1d38a26c5a88b796f4ee2e8f36ee00931c468cd496fb2
b5a\ae2a5a02d0ef173b1d38a26c5a88b796f4ee2e8f36ee00931c468cd496fb2b5a

[+] Pyinstaller version: 2.1+

[+] Python version: 3.11

[+] Length of package: 22339020 bytes

[+] Found 163 files in CArchive

[+] Beginning extraction...please standby

[+] Possible entry point: pyiboot01_bootstrap.pyc

[+] Possible entry point: pyi_rth_inspect.pyc

[+] Possible entry point: pyi_rth_pkgutil.pyc

[+] Possible entry point: pyi_rth_multiprocessing.pyc

[+] Possible entry point: pyi_rth_setuptools.pyc

[+] Possible entry point: pyi_rth_pkgres.pyc

[+] Possible entry point: pyi_rth_win32comgenpy.pyc

[+] Possible entry point: pyi_rth_pywintypes.pyc

[+] Possible entry point: pyi_rth_pythoncom.pyc

[+] Possible entry point: one.pyc

[+] Found 782 files in PYZ archive

[+] Successfully extracted pyinstaller archive: 
C:\Users\Ashura\Desktop\ae2a5a02d0ef173b1d38a26c5a88b796f4ee2e8f36ee00931c468cd496fb2
b5a\ae2a5a02d0ef173b1d38a26c5a88b796f4ee2e8f36ee00931c468cd496fb2b5a


You can now use a python decompiler on the pyc files within the extracted directory


As expected, pyinstxtractor-ng also reported the Python version as 3.11. Multiple
potential entry points were identified, but one.pyc appears to be the most relevant. We will
decompile it next.

Decompile into Python Script

My first choice for a Python decompiler is pycdc. However, it wasn’t able to decompile
one.pyc due to an assertion error, as shown in Fig. 2. Multiple other issues (see #230, #262,
#298, #405) also reference this error. Perhaps some Python bytecode implementations have
not yet been covered.

https://github.com/zrax/pycdc
https://github.com/zrax/pycdc/issues/230
https://github.com/zrax/pycdc/issues/262
https://github.com/zrax/pycdc/issues/298
https://github.com/zrax/pycdc/issues/405


4/11

Fig. 2: Error with pycdc

In situations like these, I turn to PyLingual, having had a good experience with the tool.
However, note that any submissions to PyLingual will be used by their team for R&D
purposes. If you have a sample that you cannot share, avoid using PyLingual.

Fig. 3 shows a snippet of the decompiled code, revealing a significant amount of junk code.
Out of the 1282 lines of decompiled code, most are junk, with the relevant code interspersed
between them.

https://pylingual.io/


5/11

Fig. 3: Decompilation with PyLingual

Deobfuscating the Python Code



6/11

Deobfuscating the First Stage

Fig. 3 showed the decompiled Python code of the sample, marking the first stage of its
infection flow. The obfuscation technique is simple - insert junk code that follows specific
patterns. Notepad++ is sufficient for deobfuscating the code. Fig. 4 demonstrates that using
just three patterns to remove the junk code reduces the script from 1282 lines to only 45.

Fig. 4: Deobfuscated First Stage

The code base64-decodes a string and then executes it using exec.

CyberChef can be used to base64-decode the string, as shown in Fig. 5. This reveals the
obfuscated second stage. You may notice that the obfuscation technique is identical to the
one used in the first stage.

https://notepad-plus-plus.org/
https://gchq.github.io/CyberChef/


7/11

Fig. 5: Obfuscated Second Stage

Deobfuscating the Second Stage

The deobfuscation in the second stage can be removed in the same way as in the first stage.
Fig. 6 shows the deobfuscated code.

Fig. 6: Deobfuscated Second Stage



8/11

The code base64-decodes a string and then decrypts it using the Fernet cipher with the key
cNXzShHJ02wQEYspi_fi817tN-a16yUZUYFeDCO88x0=. The decrypted code is then executed
using exec.

The Third and Final Stage

The second stage Python code can be slightly modified to write the decrypted third stage to
disk instead of executing it, as shown in Fig. 7. Upon execution, we obtain the final stage:
Emansrepo.

https://isc.sans.edu/diary/30146


9/11

Fig. 7: Deobfuscated Third Stage

Emansrepo and LLM



10/11

I have chosen not to dive into the infostealer aspect of the code, as its scope is limited to
stealing data stored in browsers. Additionally, it is a simple Python script, so interested
analysts can easily analyze it themselves.

However, upon reviewing the code, I have some observations to make:

1. When I first looked at the code, I noticed unnecessary line breaks. In my experience, I
sometimes encounter these when I copy and paste text from one location to another,
such as when copying text from the Ubuntu terminal into a GitHub PR description.
Perhaps this malware code was copy-pasted from somewhere.

2. The code is extremely readable, with great variable names, function names, and
comments. The control flow is easy to follow as well. I’ve encountered such readable
code generated by LLMs like ChatGPT or Claude. Perhaps this malware code was
generated with the help of an LLM, which could also explain the copy-pasting.

Fig. 8: Well-Written Emansrepo Code



11/11

Summary

In this blog, we examined the Emansrepo information stealer, focusing on a variant with
capabilities limited to stealing data from browsers. Our primary emphasis was on extracting
the Python code from the PyInstaller-based sample and deobfuscating it by removing junk
code. Additionally, we hypothesized that Emansrepo may have been developed with the
assistance of an LLM, highlighting their potential to lower the barrier to entry into the
cybercrime world.


