
1/34

October 3, 2024

perfctl: A Stealthy Malware Targeting Millions of Linux
Servers

aquasec.com/blog/perfctl-a-stealthy-malware-targeting-millions-of-linux-servers/

In this blog post, Aqua Nautilus researchers aim to shed light on a Linux malware that, over
the past 3-4 years, has actively sought more than 20,000 types of misconfigurations in order
to target and exploit Linux servers. If you have a Linux server connected to the internet, you
could be at risk. In fact, given the scale, we strongly believe the attackers targeted millions
worldwide with a potential number of victims of thousands, it appears that with this malware
any Linux server could be at risk.

We discovered numerous incident reports in community forums, all describing indicators of
compromise linked to this malware. The community has widely referred to it as the “perfctl
malware,” and we have adopted this name.

This post will explore the malware’s architecture, components, defense evasion tactics,
persistence mechanisms, and how we managed to detect it. Perfctl is particularly elusive and
persistent, employing several sophisticated techniques, including:

It utilizes rootkits to hide its presence.

When a new user logs into the server, it immediately stops all “noisy” activities, lying
dormant until the server is idle again.

It utilizes Unix socket for internal communication and TOR for external communication.

https://www.aquasec.com/blog/perfctl-a-stealthy-malware-targeting-millions-of-linux-servers/
https://www.aquasec.com/cloud-native-academy/cloud-attacks/defense-evasion/

2/34

After execution, it deletes its binary and continues to run quietly in the background as a
service.

It copies itself from memory to various locations on the disk, using deceptive names.

It opens a backdoor on the server and listens for TOR communications.

It attempts to exploit the Polkit vulnerability (CVE-2021-4034) to escalate privileges.

In all the attacks observed, the malware was used to run a cryptominer, and in some cases,
we also detected the execution of proxy-jacking software. During one of our sandbox tests,
the threat actor utilized one of the malware’s backdoors to access the honeypot and started
deploying some new utilities to better understand the nature of our server, trying to
understand what exactly we are doing to its malware.

Elusive Malware Dominates Developer Forums

Our story begins with an attack we monitored on one of our honeypots. Typically, we check if
anyone has already documented the attack, as this allows us to analyze it more thoroughly
and compare our findings with those of other researchers. However, in this case, we found
no report about the malware that had targeted our honeypot.

What we did find, though, were numerous references to a perfctl malware, this immediately
drew our attention, as this was one of the names of our malware. These are in various
languages across several developer communities and forums, we carefully reviewed these
posts and found that the indicators of compromise mentioned in them are the same as the
ones we’ve seen in our attack. Usually in some of these posts you can find replies with links
to reports about the malware written by researchers. But in this case, however, none of these
had links to such reports. Here are some of the posts we came across: Reddit, freelancer,
Stack Overflow (Spanish), forobeta (Spanish), brainycp (Russian), natnetwork (Indonesian),
Proxmox (Deutsch), Camel2243 (Chinese), svrforum (Korean), exabytes, virtualmin,
serverfault and many others.

The name perfctl comes from the cryptominer process that drains the system’s resources,
causing significant issues for many Linux developers. By combining “perf” (a Linux
performance monitoring tool) with “ctl” (commonly used to indicate control in command-line
tools), the malware authors crafted a name that appears legitimate. This makes it easier for
users or administrators to overlook during initial investigations, as it blends in with typical
system processes.

Towards the end of our research, we saw the first report covered by the researchers of Cado
Security, but they only tell a very small part of the story of perfctl malware.

The Attack Flow

https://www.reddit.com/r/CentOS/comments/12ef76l/need_help_in_removal_perfcc_and_perfctl_coin/
https://www.freelancer.com/projects/linux/remove-perfctl-malware-from-vps
https://es.stackoverflow.com/questions/580957/perfctl-usa-el-100-de-los-recursos-del-cpu
https://forobeta.com/temas/como-eliminar-el-malware-perfctl-del-servidor-vps-ubuntu-20-04.961444/?amp=1
https://community.brainycp.com/viewtopic.php?t=5264
https://www.natanetwork.com/portal/knowledgebase/383/Menghapus-maleware-perfctl-di-VPS-Linux.html?language=english
https://forum.proxmox.com/threads/cpu-auslastung-bei-100-trotz-niedriger-last.125196/
https://blog.camel2243.com/posts/security-perfctl-malware-cpu-memory/
https://svrforum.com/software/1680420
https://support.exabytes.co.id/en/support/solutions/articles/14000146571-guide-on-how-to-remove-perfctl-maleware-on-linux-vps
https://forum.virtualmin.com/t/perfctl-uses-100-cpu-usage/117873
https://serverfault.com/questions/1095192/100-cpu-load-caused-by-service-perfctl
https://www.cadosecurity.com/blog/from-automation-to-exploitation-the-growing-misuse-of-selenium-grid-for-cryptomining-and-proxyjacking

3/34

After exploiting a vulnerability (as in our case) or a misconfiguration, the main payload is
downloaded from an HTTP server controlled by the attacker.

In our case, the main payload was named httpd, and it demonstrated multiple layers of
execution, showcasing a deliberate design to ensure persistence and evade detection. Once
executed, the main payload copies itself from memory to a new location in the ‘/tmp’
directory, runs the new binary from there, terminates the original process, and then deletes
the initial binary to cover its tracks.

The main payload is now executed from the /tmp directory under a different name. Based on
what we’ve seen the malware chose the name of the process that originally executed it, thus
it looks less suspicious, if the system is examined.

In our case the malware was executed by sh, thus the name of the malware was changed
from httpd to sh. At this point, it functions as both a dropper and a local command-and-
control (C2) process. The malware contains an exploit to CVE-2021-4034, which it is trying
to run in order to gain root privilege on the server.

The malware continues to copy itself from memory to half a dozen other locations, with
names that appear as conventional system files. It also drops a rootkit and a few popular
Linux utilities that were modified to serve as user land rootkits (i.e. ldd, lsof). A cryptominer is
also dropped and in some executions, we also observed some proxy-jacking software
transferred from a remote server and executed.

As part of its command-and-control operation, the malware opens a Unix socket, creates two
directories under the /tmp directory, and stores data there that influences its operation. This
data includes host events, locations of the copies of itself, process names, communication
logs, tokens, and additional log information. Additionally, the malware uses environment
variables to store data that further affects its execution and behavior.

All the binaries are packed, stripped, and encrypted, indicating significant efforts to bypass
defense mechanisms and hinder reverse engineering attempts. The malware also uses
advanced evasion techniques, such as suspending its activity when it detects a new user in
the btmp or utmp files and terminating any competing malware to maintain control over the
infected system.

Below is the complete attack flow:

https://www.aquasec.com/cloud-native-academy/cspm/cloud-misconfiguration/

4/34

Figure 1: The entire attack flow

As noted earlier, numerous files are written to disk or modified, primarily in the /tmp, /usr,
and /root directories, as shown in the diagram below.

Figure 2: Files dropped or written to disk

In this blog and its appendices, we will explain the purpose of these files and the role each
plays in the attack flow.

Perfctl Attack Highlights

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_1-3.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_2-1.jpg

5/34

The main binary httpd is a packed, stripped and obfuscated ELF (MD5:
656e22c65bf7c04d87b5afbe52b8d800). If you type the download url in the browser the
integer 1 is printed to screen. If you try downloading the .php file without a specific user
agent, you will receive a file with the integer 1. This response indicates that this file is
completely innocent. But if you use the correct user agent it will drop the malware (size of
~9mb). This is a clever way to conceal the malware.

After it is downloaded and executed the malware copies itself from memory using another
running process name, and it saves the process ID of that running process under
/tmp/.apid.

Figure 3: httpd is copying itself from memory

Httpd then stops and deletes itself. This technique is called ‘process masquerading’ or
‘process replacement’ and it’s done for defense evasion and obfuscation. It can make
security researchers life a bit harder to follow the malware execution flow.

The new Httpd binary is now saved in the /tmp directory under the name of the process that
executed it sh in our case, but we’ve also seen other names when we used other processes
to run it. The binary sh is also copying itself from memory to various locations, as it saves
itself as libpprocps.so and also as /root/.config/cron/perfcc, /usr/bin/perfcc, and
/usr/lib/libfsnkdev.so. In annex 3 – The main payload below, we discuss in detail about
this and explain our hypothesis to why the threat actor chose these names. This shows of a
thought in regard to persistence as the malware author creates a lot of locations to which the
malware is copied.

Persistence

The attacker modifies the ~/.profile script, which sets up the environment during user
login. This script is designed to execute the malware first, followed by the legitimate workload
expected to run on the server. It checks if /root/.config/cron/perfcc is an executable file,
and if so, it runs the malware.

Additionally, the script ensures that in Bash environments, the ~/.bashrc file is executed,
applying user-specific configurations such as aliases and environment variables—likely to
maintain normal server operations while the malware runs. Finally, the script suppresses
mesg errors to avoid any visible warnings during execution.

The binary wizlmsh is dropped to /usr/bin (MD5: ba120e9c7f8896d9148ad37f02b0e3cb). It
is a very small binary (12kb), that runs as a service in the background. Initially, it receives
argc, and argv, and verify the execution of main payload (httpd) after it is written into /tmp
either as sh or bash or any other name. It is responsible for the persistence of perfctl
malware.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_3-1.jpg

6/34

Figure 4: wizlmsh main function

Defense Evasion

The rootkit has several purposes. One of the main purposes is to hook various functions and
modify their functionality. The rootkit itself is an ELF 64-bit LSB shared object (.so) file named
libgcwrap.so (MD5: 835a9a6908409a67e51bce69f80dd58a). The rootkit is using
LD_PRELOAD to load itself before other libraries.

Figure 5: The revised LD_Preload content

It does various interesting manipulations, including hooking to Libpam symbols. Specifically,
to the function pam_authenticate, which is used by PAM to authenticate users. Hooking or
overwriting this function could allow unauthorized actions during the authentication process,
such as bypassing password checks, logging credentials, or modifying the behavior of
authentication mechanisms.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_4-1.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_5-1.jpg

7/34

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_6-1.jpg

8/34

Figure 6: Functions the rootkit hooks

In addition, the rootkit is also designed to hook Libpcap symbols, specifically to the function
pcap_loop, which is widely used for capturing network traffic. This is used to prevent
recording of the malware traffic.

The threat actors are also using a few user land rootkits. They drop a few legitimate utilities
such as ldd. These utilities were modified to hide specific attack elements. So, if the rigged
crontab is used, for instance, it won’t show cron jobs created during the attack.

In the first step the malware replaces the /etc/profile so the path will be set on
/bin/.local/bin:$PATH. In this path the threat actor is bypassing the directory where the
utilities are called from. We’ve seen in some malware runs 2 binaries and in other 4 binaries,
depending on which utilities exist originally on the server.

In our attacks the malware dropped crontab, lsof, ldd and top. These tweaked binaries will
hide malicious activities, in case someone is using them.

Figure 7: The new content inserted by the threat actor to ‘/etc/profile’

In appendix 5 – User land rootkits we explain in detail why we think these utilities were
chosen by the threat actor.

Main Impact

The main impact of the attack is resource hijacking. In all cases we observed a monero
cryptominer (XMRIG) executed and exhausting the server’s CPU resources. The cryptominer
is also packed and encrypted. Once unpacked and decrypted it communicates with
cryptomining pools.

As reflected in Figure 8 below, the cryptomining pools are accessed via TOR.

Figure 8: Cryptomining traffic

Moreover, in some of the attacks we’ve seen proxy-jacking via various vendors. We’ve
seen the communication with the following domains: bitping.com, earn.fm,
speedshare.app, and repocket.com.

The domain repocket.com, for instance, is associated with the Repocket platform, which is a
service that allows users to earn money by sharing their unused internet bandwidth.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_7-1.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_8-1.jpg
https://www.aquasec.com/blog/cryptojacking-cloud-network-bandwidth/

9/34

In addition, we can observe the usage of the bitping daemon usage, which provide similar
bandwidth payment services.

Figure 9: Logging in to bitping

TOR communication

The binary sh is also initiating communication via Tor with few servers (i.e. 80.67.172.162,
176.10.107.180, 78.47.18.110, 95.217.109.36, 145.239.41.102).

While the communication is encrypted, you can observe the TOR log left on our honeypot.

Figure 10: TOR sessions log

Additional Threat Intelligence

We recorded several dozen attacks of perfctl. We saw 3 download servers involved in these
attacks (46.101.139.173, 104.183.100.189 and 198.211.126.180).

The first two IP addresses seem to be linked to vulnerable servers that were previously
hacked by the threat actor and the third one could be owned by the threat actor. All 3 IP
addresses store and hide artifacts used in this campaign.

In most of the attacks we see that the binaries were dropped from IP address
46.101.139.173. An inspection of this IP address showed that this is a compromised
webserver.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_9-1.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_10-1.jpg

10/34

Figure 11: Compromised website serves as download server

Iterating over this download server, we see a compromised site on a server in Germany.

We noticed some artifacts, well-hidden between the site’s scripts. We see 3 main payloads.
One is avatar.php, which was used as part of the attack on our honeypot. When using the
browser to reach to the webpage with avatar.php or downloading it without a specific user
agent leads to 1 being displayed of screen or a .php file with the digit 1.

In addition, there is another file named aoip, which was uploaded 2 months later and two
others dark.css and csdark.css which were uploaded later.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_12-1.jpg

11/34

Figure 12: Files hosted on the webserver

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_13-1.jpg

12/34

Figure 13: Files hosted on the webserver

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_14-1.jpg

13/34

Figure 14: Files hosted on the webserver

The binary aoip is a replication of the main payload (sh/httpd).

Csdark.css and dark.css weren’t analyzed during this research but look very interesting.

On IP address 198.211.126.180 we found just the file checklist.php which is the main
payload (sh/httpd).

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_15.jpg

14/34

Figure 15: Compromised website serves as download server

On IP address 104.183.100.189 we found another innocent compromised website.

Figure 16: Compromised website serves as download server

It looks like this website stores this XML file which when decoded (base64) is actually the
rconf script.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_16.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_17.jpg

15/34

Figure 17: malicious XML

From what we see on these websites, there are few artifacts used to execute the exploitation
of misconfigured and vulnerable (in our recorded attacks) Linux servers. We identified a very
long list of almost 20K directory traversal fuzzing list, seeking for mistakenly exposed
configuration files and secrets. There are also a couple of follow-up files (such as the XML)
the attacker can run to exploit the misconfiguration. In the table below you can see the
analysis of the paths, which shows that perfctl is mainly looking to exploit misconfigurations.

Category Count
of
Paths

Example Paths Potential Vulnerability

Credentials 1,717 /access_credentials.json,
/access_keys.json,
/accesskeys.php

Potential for unauthorized access
to credentials, sensitive token or
key exposure

Configuration 12,196 Typical files include .conf,
.ini, .json, .xml
configurations

Misconfigurations could lead to
security weaknesses

Login 1,362 Paths include login, auth,
signin, admin related files

Risks of unauthorized access
through login interfaces

Unknown 4,647 Paths not fitting the above
categories

Unknown, requires further
investigation

Detection of “Perfctl” Malware

To detect Perfctl malware you look for unusual spikes in CPU usage, or system slowdown if
the rootkit has been deployed on your server. These may indicate cryptomining activities,
especially during idle times.

Monitoring Suspicious System Behavior

1. Inspect /tmp, /usr, and /root directories for suspicious binaries, especially hidden or
masquerading as system files (e.g., perfctl, sh, libpprocps.so, perfcc,
libfsnkdev.so). Inspect your /home directory, look for /.local/bin directory with
various utilities installed such as ldd, top etc.

2. Monitor processes for high resource usage, such as binaries like httpd or sh behaving
unusually or running from unexpected locations like /tmp.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_18.jpg

16/34

3. Check system logs for modifications to ~/.profile, and /etc/ld.so.preload files.

Network Traffic Analysis

1. Capture network traffic to detect TOR-based communication to external IPs like
80.67.172.162, 176.10.107.180, etc.

2. Look for outbound connections to cryptomining pools or proxy-jacking services.
3. Monitor traffic to known malicious hosts or IPs (e.g., 46.101.139.173,

104.183.100.189, and 198.211.126.180).

File and Process Integrity Monitoring

Detect modifications in key system utilities like ldd, top, lsof, and crontab, which might
have been replaced with trojanized versions.

Log Analysis

Review logs for unauthorized use of system binaries, presence of suspicious cron jobs, and
errors in mesg to detect possible tampering.

Detection of “Perfctl” Malware with Aqua Security

First, we can see some runtime incidents. Below you can see alerts indicating some new
binaries were dropped and executed, meaning a drift in our container, in addition to shared
object dropped during runtime. These are the additional httpd malware files and the rootkit.

Figure 18: Incidents screen on Aqua Security Platform

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_19.jpg

17/34

We can continue the investigation of this attack by examining the audit logs of these
incidents. During this incident there were above 22K audit events, thus we will need to
search for specific events, namely, to investigate the attack.

Figure 19: Audit logs screen on Aqua Security Platform

We can filter on specific hosts, containers, enforce groups, cloud resources or even pods.
We decided to search for specific events based on the MITRE framework. We used the
masquerading technique which is used to describe dropped and executed events. There
were 465 incidents, we can now go over all the files that were dropped (or modified) during
the attack.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_19a.jpg

18/34

Figure 20: Audit logs screen on Aqua Security Platform

We can learn for instance about the swapping of some binaries with user land rootkits.

Figure 21: Audit logs screen on Aqua Security Platform

You can also learn about inbound traffic or setting up port listening.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_19b.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_19c.jpg

19/34

Figure 22: Audit logs screen on Aqua Security Platform

Mitigation of “Perfctl” Malware

1. Patch Vulnerabilities: Ensure that all vulnerabilities are patched. Particularly internet
facing applications such as RocketMQ servers and CVE-2021-4034 (Polkit). Keep all
software and system libraries up to date.

2. Restrict File Execution: Set noexec on /tmp, /dev/shm and other writable directories to
prevent malware from executing binaries directly from these locations.

3. Disable Unused Services: Disable any services that aren’t required, particularly those
that may expose the system to external attackers, such as HTTP services.

4. Implement Strict Privilege Management: Restrict root access to critical files and
directories. Use Role-Based Access Control (RBAC) to limit what users and processes
can access or modify.

5. Network Segmentation: Isolate critical servers from the internet or use firewalls to
restrict outbound communication, especially TOR traffic or connections to cryptomining
pools.

6. Deploy Runtime Protection: Use advanced anti-malware and behavioral detection tools
that can detect rootkits, cryptominers, and fileless malware like perfctl.

Appendices

Appendix 1: Initial Access

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_19d.jpg

20/34

CVE-2023-33246 is a vulnerability found in RocketMQ, which is a software that manages
messages. This vulnerability allows unauthorized execution of commands on systems where
RocketMQ is installed. This issue occurs because RocketMQ does not adequately check who
is trying to access it, which means anyone, even without permission, can make changes or
execute commands. The problem is made worse because the parts of RocketMQ that handle
storing and delivering messages were not designed to be directly accessible over the
internet, and they don’t require authentication for performing sensitive operations like
updating settings. This makes it relatively easy for attackers to exploit this vulnerability.

The initial access was gained via this vulnerability (CVE-2023-33246), led to download and
execution of the shell script rconf with the following command:

Figure 23: Execution script

In Figure 24 below, you can observe the entire rconf script, next we will do a breakdown and
explanation of the content.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_20.jpg

21/34

Figure 24: The rconf script

Appendix 2: Execution Script Analysis

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_21.jpg

22/34

As depicted in Figure 25 below, the script starts with a function that appears to perform a
simplified HTTP GET request using a TCP socket directly, mimicking some basic behavior of
the curl command. The threat actor is using this, in case the targeted server doesn’t contain
curl or wget.

Figure 25: A snippet from the rconf script, illustrating implementation of a HHTP get request
command

As you can see in Figure 26 below, the script continues with a simple if condition, that will
ensure that the targeted attacked server OS architecture is x86_64. This shows that the
threat actor is targeting specific architecture and won’t run on arm for instance.

Figure 26: A snippet from the rconf script, illustrating inspection of the targeted host architecture

Next, the threat actor verifies that the /tmp directory exists and has read, write, and execute
permissions. This directory will be used later to store logs, which the malware will update and
from which the malware will read instructions or system status.

Figure 27: A snippet from the ‘rconf’ script, illustrating inspection the ‘/tmp’ path

As illustrated in Figure 28 below, the threat actor also verifies that the /tmp directory is
mounted with executable permissions. If the noexec option is found in the mount options (no
execution permissions), it remounts /tmp with the exec option, allowing execution of binaries
from the /tmp directory. This might be necessary for scripts or applications that require
executing temporary files stored in /tmp.

Figure 28: A snippet from the ‘rconf’ script, illustrating further inspection of the ‘/tmp’ directory

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_22.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_23.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_24.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_25.jpg

23/34

In addition, the threat actor is creating two directories under /tmp path, which will be used
later as auxiliary when running the main payload.

Figure 29: A snippet from the ‘rconf’ script, illustrating creation of directories under the ‘/tmp’ path

Next the threat actor is setting the environment variable A2ZNODE to localhost, if it is not
already defined.

Figure 30: A snippet from the ‘rconf’ script, illustrating inspection of the environment variables

In addition, the threat actor is also setting the environment variable VEI to rmq which can
stand for vulnerability exploited index to RocketMQ or something similar. Next, this script
processes the /tmp/.xdiag/vei file by appending the value of the VEI variable (rmq) to it. If
the file /tmp/.xdiag/vei does not exist or is empty, it checks if a secondary file
/tmp/.xdiag/vei.1 exists. If it does, the script processes the contents of /tmp/.xdiag/vei,
sorts and removes duplicates, and appends the value of VEI. If /tmp/.xdiag/vei.1 does not
exist, it directly writes the value of VEI to /tmp/.xdiag/vei. Finally, it unsets the VEI
variable

Figure 31: A snippet from the ‘rconf’ script, illustrating preparation of the ‘/tmp’ directory for the
malware operation and logging

Finally, this script manages the installation of the main payload by ensuring no other
instances are running, downloading the necessary file, and starting a web server. It uses
either curl, wget, or the custom download function (mentioned above), verifies the
downloaded file, and runs it if valid. The script also includes safeguards to prevent multiple
installations from occurring simultaneously. This is important because the initial curl of this
script rconf runs iteratively various times throughout the attack.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_26.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_27.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_28.jpg

24/34

Figure 32: A snippet from the ‘rconf’ script, illustrating download and installation of the malware under
the name ‘httpd’

Now the main payload avatar.php was downloaded, renamed to httpd and executed, we
can focus on this binary.

Appendix 3: The main payload (‘httpd’ and ‘sh’) analysis

Analysis of httpd

The binary httpd is a packed ELF (MD5: 656e22c65bf7c04d87b5afbe52b8d800) bears many
detections in VirusTotal, including general Linux Trojan, Coinminer, Exploitation tool for CVE-
2021-4034, malware dropper etc.

Our analysis shows that in a way all these detections are correct, as in a nutshell this is a
multipurpose malware-dropper that contains all the above. Its operation is very interesting as
it incorporates dozens of techniques to remain hidden and persistent. Based on our analysis
below we speculate the campaign with this malware started about a year ago, and it
remained quite anonymous and undetected.

As per the main payload, it is named in the download server as avatar.php, after it is
downloaded, it’s renamed to httpd. The machine is fingerprinted by various commands such
as uname −a, then it starts unpacking itself.

Next, the httpd executable is copied from the running process into to /tmp directory, as
illustrated in Figure 33 below. What’s interesting is that it finds the name of the process name
that ran it, and saves itself under the /tmp directory with the same name. It also saves the
pid under the /tmp/.apid. Lastly, httpd deletes itself.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_29.jpg

25/34

Figure 33: httpd copies itself from memory

This technique is called “process masquerading” or “process replacement”. It is often done
for the following reasons:

1. Defense Evasion: By deleting the original binary and copying itself to another location,
the malware avoids detection from static file-based security measures that might be
monitoring the original location. The /tmp directory is a common target because it is
typically writable and frequently used for temporary files, making it less suspicious.

2. Obfuscation: Deleting the original binary and killing itself can make it harder for
security analysts to trace back the activity to the original payload, thereby complicating
forensic analysis.

Analysis of sh

The binary sh (MD5: 656e22c65bf7c04d87b5afbe52b8d800) is an exact copy of httpd. After
sh is executed, it sleeps for 10 minutes. Next it collects information about the OS.

Next, sh drops nine binaries. Four are exact duplication of sh/httpd. A cryptominer and a
rootkit (discussed below in ‘The Rootkit’ section). There are 3 lean binaries ldd, top and
wizlmsh. The first 2 are user land rootkits, in some executions we also saw lsof and
crontab. Wizlmsh is used to ensure the malware is running.

The malware opens a Unix socket to communicate with all the process it will run in the
future. Via /tmp/.xdiag/int/.per.s, it writes logs, which will later be used by other dropped
components as part of the attack.

The malware is also running various operations such as shutting down security controls, as
seen in the example below:

Figure 34: Shutting down security controls

The binary sh is also copying itself from memory to various location, as illustrated below it
saves itself as libpprocps.so and also as /root/.config/cron/perfcc, /usr/bin/perfcc,
and /usr/lib/libfsnkdev.so.

Figure 35: sh copying itself from memory

This is a tactic used for persistence, stealth, and possibly for privilege escalation. Below we
discuss the various path chosen:

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_30.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_31.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_32.jpg

26/34

1. The path /root/.config/cron/perfcc: This path is quite deceptive because it mimics
a configuration directory under the root user, which might be overlooked by security
scans assuming it’s a legitimate config file. The inclusion of cron in the path suggests
an attempt to associate the malware with cron jobs.

2. The path /usr/bin/perfcc: The path /usr/bin is a standard directory for executable
programs accessible to all users. Placing malware here could allow it to be executed
like a normal system command, making detection harder. Naming the malware
perfcc might be an attempt to masquerade as a legitimate system utility or command,
reducing suspicion.

3. The binaries /usr/lib/libpprocps.so and /usr/lib/libfsnldev.so: These paths
suggest the malware is impersonating shared libraries. /usr/lib is commonly used for
storing shared libraries required by installed applications. The path libpprocps.so
might be intended to appear related to the legitimate procps, a library and set of
commands that includes utilities like ps, top, etc., which are used to display information
about currently running processes.

The choice of these paths generally reflects a strategy to blend in with normal system
operations, either by appearing as a utility or library that might regularly be executed or
loaded by other processes.

Appendix 4: The main rootkit (libgcwrap.so)

The rootkit has several purposes. One of the main purposes is to hook various functions and
modify their functionality. The rootkit itself is an ELF 64-bit LSB shared object (.so) file
named libgcwrap.so. The rootkit is using LD_PRELOAD to load itself before other libraries.

As illustrated in Figure 36 below, the rootkit strings are encrypted with XOR and this function is
iterating through an array, while performing XOR decryption on each element in the array.

27/34

Figure 36: XOR decrypt array

You can see in Figure 37 below the xor_decrypt function responsible to decrypt a string by
iterating over each byte of the input string, doing XOR with the key 0xAC.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_33.jpg

28/34

Figure 37: XOR decrypt

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_34.jpg

29/34

It does various interesting manipulations, including hooking to Libpam symbols. Specifically,
to the function pam_authenticate, which is used by PAM to authenticate users. Hooking or
overwriting this function could allow unauthorized actions during the authentication process,
such as bypassing password checks, logging credentials, or modifying the behavior of
authentication mechanisms.

In addition, the rootkit is also designed to hook Libpcap symbols, specifically to the function
pcap_loop, which is widely used for capturing network traffic.

Below we discuss what the attacker is trying to do with these hookings:

1. Network Traffic Manipulation: By hooking pcap_loop, an attacker could alter the
behavior of applications that rely on libpcap for capturing network traffic. This could
include security monitoring tools, network analyzers, and other systems that perform
packet analysis. Manipulating this function could lead to missed detections, altered
traffic logs, or leakage of sensitive data.

2. Data Eavesdropping: The hooked function might be modified to stealthily copy certain
data passing through the network to a location controlled by an attacker, effectively
creating a data exfiltration pathway.

3. Persistence and Evasion: Placing malicious code in /tmp and hooking critical
functions like pcap_loop can be part of a strategy to maintain persistence on a host
with minimal detection. This setup allows an attacker to continue malicious activities
even after primary payloads are detected and removed.

Appendix 5: User Land Rootkits ‘top’, ‘ldd’, ‘crontab’ and ‘lsof’

The malware Perfctl is dropping in the path /home/???/.local/bin/ 4 binaries. In our case
top, ldd, lsof and crontab.

Below is the snippet executing top:

Figure 38: top execution

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_36.jpg

30/34

As seen in Figure 38 above, in the first row the script checks if the environment variable
ABWTRX is set, if it exists this shell script won’t run. This is probably to check if the binary
originally exists on the server or not.

Next the variables r and m are defined as top and perfctl accordingly. We assume that
perfctl in this case is the object to hide which is the cryptominer.

Next the script iterates over the /.local/bin binaries to save them in the environment variable
PATH. Now the script checks if the environment variable AAZHDE is set. Just a reminder. The
initial script, when the server is first compromised, sets the environment variable AAZHDE.
This is an inspection to verify that the “normal” course of the execution of this malware
remains. Probably to evade sandbox execution.

If AAZHDE is set, the binary top is executed passing all the arguments that were passed
during the script execution.

If AAZHDE isn’t set, the script executes various commands. Including, 2 trap commands.
These trap commands execute deletion of the directory /tmp/smpr when the script exists or
if it is interrupted by a user. It then recreates /tmp/smpr than it sets the environment variable
AAZHDE as 1.

Next, the cryptominer is stopped, and the file /tmp/.apid is deleted. Finally, AAZHDE is unset
and top is executed.

Lastly, the environment variable AAZHDE is unset and the binary top is executed.

Below is the snippet executing ldd:

Figure 39: ldd execution

This snippet is very similar to the one of top. As seen in Figure 37 above, in the first row the
script checks if the environment variable ABWTRX is set, if it exists this shell script won’t run.
This is probably to check if the cryptominer is running or not (we will get to that next), if the
cryptominer is running this script exits, otherwise it runs and executes the cryptominer.

The binary top receives 2 parameters, as pointer to an executable and a pointer to the argv.
It performs multiple steps including initialization, environment setup, cryptographic
operations, data manipulation, and eventually executing another program. It also runs infinite

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_37.jpg

31/34

loop to keep the process running in the background.

Figure 40: top binary

You can see two functions modify_lookup_table_with_offset and libc_xor_cipher,
which are used to de-obfuscate various sections in memory. Next, there are several checks
of the environment variables and errors.

Lastly, if all conditions are met, we see and execution of a binary (provided as argument
during top execution).

Figure 41: top binary

Top is used for real-time monitoring of system performance and processes. Thus, if a
developer encounters a slowdown in the system corresponding to cryptomining activity and
asks to check the cpu of all running processes, the new tempered with top will not show the
cryptominer’s cpu consumption.

Ldd is used to display the shared libraries (dynamic dependencies) required by an
executable or a shared library. It shows which libraries an application depends on, as well as
the paths to those libraries. The threat actor wants to hide malicious libraries and
dependencies used by the malware, preventing detection during inspections.

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_38.jpg
https://www.aquasec.com/wp-content/uploads/2024/09/Figure_39.jpg

32/34

Crontab is used to schedule and manage recurring tasks (cron jobs) to run at specified times
on Linux/Unix systems.

lsof Lists open files and shows which processes are using them, including files, sockets, and
network connections.

This makes perfect sense that the threat actor is trying to modify the results of these utilities
as they may be used by developers or security engineers to evaluate the server and
understand what is attacking the machine.

Appendix 6: Unix Socket Communication

The binary sh is opening a Unix socket to write and read from various files in the
/tmp directory.

In the table below we review these files:

Path Use

1 /tmp/.xdiag/cp Malware pathname

2 /tmp/.xdiag/exi victim’s IP address

3 /tmp/.xdiag/p Malware Int marker

4 /tmp/.xdiag/elog Events log

5 /tmp/.xdiag/ver Malware version (string)

6 /tmp/.xdiag/uid User ID

7 /tmp/.xdiag/int/.e.lock Malware Int marker

8 /tmp/.xdiag/hroot/cp Malware pathname

9 /tmp/.xdiag/hroot/hscheck Heartbeat check

10 /tmp/.xdiag/tordata/control_auth_cookie.tmp Cookie

11 /tmp/.xdiag/tordata/cached-certs.tmp Certificates cache

12 /tmp/.xdiag/tordata/cached-microdesc-consensus.tmp Tor data

13 /tmp/.xdiag/tordata/state.tmp State of TOR logs

For instance, as illustrated in Figure 40 below, in the file below the malware inserted the
result of ls on the /tmp directory.

33/34

Figure 42: lgctr file content

Appendix 7:

Indications of Compromise (IOCs)

Type Value Comment

IP Addresses

IP Addresses 211.234.111.116 Attacker IP

IP Addresses 46.101.139.173 Download server

IP Addresses 104.183.100.189 Download server

IP Address 198.211.126.180 Download server

Domains

Domains bitping.com Proxy-jacking service

Domains earn.fm Proxy-jacking service

Domains speedshare.app Proxy-jacking service

Domains repocket.com Proxy-jacking service

Files

Binary file MD5: 656e22c65bf7c04d87b5afbe52b8d800 Malware

Binary file MD5: 6e7230dbe35df5b46dcd08975a0cc87f Cryptominer

Binary file MD5: 835a9a6908409a67e51bce69f80dd58a Rootkit

Binary file MD5: cf265a3a3dd068d0aa0c70248cd6325d Idd

Binary file MD5: da006a0b9b51d56fa3f9690cf204b99f top

https://www.aquasec.com/wp-content/uploads/2024/09/Figure_40.jpg

34/34

Type Value Comment

Binary file MD5: ba120e9c7f8896d9148ad37f02b0e3cb wizlmsh

Assaf Morag

Assaf is the Director of Threat Intelligence at Aqua Nautilus, where is responsible of
acquiring threat intelligence related to software development life cycle in cloud native
environments, supporting the team's data needs, and helping Aqua and the broader industry
remain at the forefront of emerging threats and protective methodologies. His research has
been featured in leading information security publications and journals worldwide, and he
has presented at leading cybersecurity conferences. Notably, Assaf has also contributed to
the development of the new MITRE ATT&CK Container Framework.

Assaf recently completed recording a course for O’Reilly, focusing on cyber threat
intelligence in cloud-native environments. The course covers both theoretical concepts and
practical applications, providing valuable insights into the unique challenges and strategies
associated with securing cloud-native infrastructures.

Idan Revivo
Idan is the Head of Security Research at Aqua Security. He manages a team of researchers
who are focused on threat hunting and vulnerability research in containers, serverless, and
cloud native technologies.

https://www.aquasec.com/authors/assaf-morag/
https://www.aquasec.com/authors/idan-revivo/

