
1/7

Process Injection in BugSleep Loader
nikhilh-20.github.io/blog/inject_bugsleep/

Metadata

SHA256:
73c677dd3b264e7eb80e26e78ac9df1dba30915b5ce3b1bc1c83db52b9c6b30e

Table of Contents

Introduction

The BugSleep backdoor was recently reported on by both Check Point and Sekoia. It has
typical backdoor capabilities, such as establishing persistence, communicating with the C2
and executing commands, among others. BugSleep is attributed to the MuddyWater group
which indulges in cyber espionage.

The primary focus of this analysis is on the process injection aspect of the execution flow.
The BugSleep loader injects shellcode that subsequently loads the BugSleep backdoor.
Process injection can be leveraged for both privilege escalation (for example, injecting into a
privileged process) and/or for defense evasion (for example, blending in by injecting into a
legitimate process).

Strings Decryption

Before we get into process injection, we’ll take a look at a very simple string encryption
algorithm employed by the BugSleep loader.

The decryption algorithm involves subtracting a number (aka key), k from the ASCII code of
each character in the encrypted string. The sample leverages multiple values of k, such as 5
and 8, among others. This is shown below in Fig. 1. This encryption technique is a type of
substitution cipher where each unit of the plaintext is replaced with ciphertext with the help of
a key.

https://nikhilh-20.github.io/blog/inject_bugsleep/
https://research.checkpoint.com/2024/new-bugsleep-backdoor-deployed-in-recent-muddywater-campaigns/
https://blog.sekoia.io/muddywater-replaces-atera-by-custom-muddyrot-implant-in-a-recent-campaign/
https://attack.mitre.org/groups/G0069/
https://en.wikipedia.org/wiki/Substitution_cipher

2/7

Fig. 1: String Decryption Algorithm

For the occasional string decryption, it is straightforward to use CyberChef as shown in Fig.
2.

https://gchq.github.io/CyberChef/

3/7

Fig. 2: String Decryption using CyberChef

If you need a Python script, then the below one-liner decode_string function is sufficient.

def decode_string(encoded_string, k):
 return "".join(chr(ord(s) - k) for s in encoded_string)

In [2]: print(decode_string("QtfiQngwfw~F", 5))
LoadLibraryA

In [3]: print(decode_string("KBdXzwoziuLi|idXiksiomUiviomz", 8))
C:\ProgramData\PackageManager

Process Injection

4/7

At a high level, process injection is a technique to insert code into the memory region of a
process. If the malware injects into a newly created process of itself, it is called self-injection.
If the malware injects into a foreign process, it is called remote injection. While there are
multiple ways to perform process injection (see sub-techniques in MITRE ATT&CK), this blog
looks at Portable Executable Injection which the BugSleep loader implements.

Walking the PEB

The BugSleep loader walks the PEB to dynamically load functions, such as
CreateRemoteThread and WriteProcessMemory, among others. These functions are then
used to perform process injection. I have previously blogged about this obfuscation
technique, i.e., walking the PEB, so I will not get into it here.

Finding a Running Process to Inject Into

Earlier, I mentioned that one of the objectives of process injection is defense evasion. The
BugSleep loader tries to achieve this by injecting into a legitimate running process. Fig. 3
shows that the loader picks, in order, from the following running processes to inject into:

1. msedge.exe: Microsoft Edge browser
2. opera.exe: Opera browser
3. chrome.exe: Google Chrome browser
4. anydesk.exe: AnyDesk remote desktop
5. Onedrive.exe: Microsoft OneDrive
6. powershell.exe: PowerShell
7. svchost.exe: Service Host

https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1055/002/
https://nikhilh-20.github.io/blog/peb_phobos_ransomware/

5/7

Fig. 3: Finding Running Processes to Inject Into

Process injection can be risky. If the injected code is poorly written; for example, if it does not
handle exceptions, or if the injected code interferes with critical memory regions (PEB,
executable sections, stack, etc.) of the target process, then there is a risk of crashing the
target process. Besides stopping the malware execution flow from moving on to the next
stage, process crashes will also result in Windows events being generated. Such events may
be interpreted by security solutions, such as EDRs, as an indicator of compromise or attack.

The order of processes to inject into suggests that the threat actor deprioritized processes
whose crash may have system-wide consequences or seem very abnormal. For example, if
injection into msedge.exe goes wrong then only the Microsoft Edge browser will crash.
However, svchost.exe is responsible for running important Windows services and is
generally stable. If faulty injection occurs, a svchost.exe process crash will look especially
abnormal to EDRs or may even result in more severe consequences for system stability.

Fig. 4 shows the decompiled code used to find a running process with a given substring (see
procname variable) in its file name. When such a process is found, a handle to it is opened
(via OpenProcess) and read-write memory is allocated in it (via VirtualAllocEx).

6/7

Fig. 4: Decrypt Shellcode and Inject

A given process cannot simply access any other process on the system. It can only access
other processes from the same user unless it has SeDebugPrivilege enabled. This privilege
is assigned disabled (default action) to all Administrator-owned processes and they have to
explicitly enable it, if required. Other user-owned processes do not have this privilege
assigned (but it can be given through Group Policy). The BugSleep loader does not enable
SeDebugPrivilege, but it still attempts to access the memory of svchost.exe, a privileged
process, which results in an Access Denied error as expected.

Fig. 5: svchost.exe Access Denied

7/7

Portable Executable Process Injection

Assuming that the BugSleep loader was able to allocate memory in the target process, it
performs the following operations:

1. Decrypt the shellcode in the same manner as the previously described string
decryption algorithm.

2. Write it into the allocated memory in the target process (via WriteProcessMemory) and
mark it as executable (via VirtualProtectEx).

3. Create a thread in the target process (via CreateRemoteThread) with the previously
injected shellcode as the start address.

Fig. 6: Decrypt Shellcode and Inject

Windows APIs like WriteProcessMemory and CreateRemoteThread internally call
NtWriteVirtualMemory and NtCreateThreadEx respectively from ntdll.dll. These
functions are generally hooked by EDRs, i.e., calls to these functions will be inspected and
blocked, if appropriate.

Summary

In this blog, we looked at the BugSleep loader which has a trivial execution flow to load the
next stage. It implements a simple string decryption algorithm, finds a relevant running
process to inject into, and then uses high-level Windows APIs to perform portable executable
process injection.

