
1/14

September 24, 2024

Malware Analysis - Lumma Stealer
0xmrmagnezi.github.io/malware analysis/LummaStealer/

4 minute read

Sample:

https://ch3[.]dlvideosfre[.]click/human-verify-system[.]html 

Background

https://0xmrmagnezi.github.io/malware%20analysis/LummaStealer/


2/14

Lumma Stealer (aka LummaC2 Stealer) is an information stealer that has been available
through a Malware-as-a-Service (MaaS) model on Russian-speaking forums since at least
August 2022. Once the targeted data is obtained, it is exfiltrated to a C2 server.

Static Analysis - Stage 1

This relatively new phishing technique, known as ‘self-pawn,’ uses social engineering to lure
users into executing malicious commands by prompting them to click ‘I’m not a robot as
shown in Figure 1.

 

After pressing the button, it instructs the user to use the Run feature in Windows.

Screenshot1 
 

After further inspection and using F12 to view the page source, I found a script section that
contained Powershell code, as shown in Figure 2.

Figure 1: I'm not a robots button

Figure 2: After Pressing The Button



3/14

 

Then, I took the Base64-encoded string and decoded it using CyberChef. The output was a
‘mshta’ command that pointed to a new URL.

 

As shown in Figure 4, I used curl to download the file it attempts to run.

 

Figure 3: F12 To View Page Source

Figure 4: CyberChef Decoding

Figure 5: Curling To The New URL



4/14

Static Analysis - Stage 2

After downloading the file, I conducted basic triage and static analysis on it.

 

 

Figure 6: Using Detect It Easy

Figure 7: Using PEStudio



5/14

 

This part made me suspicious that there was much more in the executable than I initially
noticed. Using the strings command, I found one extremely large string. With a hex editor, I
was able to locate it, as shown in Figure 9.

Figure 8: Using CAPA To Find Capabilities



6/14

 

 
Figure 9: Using HxD



7/14

As marked in Figure 9, it contained a “script” tag. This script was extracted for further
investigation.

This script used a relatively simple obfuscation technique that replaced strings with
characters and then converted them using the fromCharCode function.

 

For the next part, I wrote a simple PowerShell script to output what this function executes,
without the risk of it being executed.

 

Using this script, I was able to print the executed code to the console. It appears to be
another layer of obfuscated code that requires further investigation.

Figure 10: Marking The Critical Replacement

Figure 11: PS Script To Print The Output



8/14

 

 

As marked in Figure 13, this is the function being used for decoding. After understanding the
code, I disarmed it and used WScript.Echo to print the output to the console.

 

I used CScript to output the contents of the two variables.

Figure 12: Output Of The PS To The Console

Figure 13: Cleaned JS Code

Figure 13: Disarmed Code With Echo



9/14

 

The output was copied to Notepad for further investigation and to make sense of the code.

 

As marked in Figure 15, AES cryptography is applied to the ‘fALRGP’ variable. I used
CyberChef to decrypt this variable using the provided Key and IV.

Figure 14: Output Using CScript

Figure 15: Cleaned PS Script



10/14

 

The output from CyberChef was another obfuscated PowerShell code. The script was
modified slightly and disarmed to output three key variables.

 

 

 

Static Analysis - Stage 3

Using the Curl command, I was able to download the two zip files for further inspection.

Figure 16: CyberChef Recipe

Figure 17: Modified PS Code

Figure 18: Output Of The Modified PS Code



11/14

 

Inside the first zip file, there were five legitimate DLLs, while the second zip file contained a
single EXE, which I focused on for analysis.

 

The output from PeStudio indicates that there may be some form of process injection due to
the presence of VirtualAlloc.

Figure 19: Using Curl

Figure 20: Using PEStudio



12/14

 

Dynamic Analysis - Stage 3

While running the malware with ProcMon in the background, it was observed that, as
suspected, the malware injects itself into ‘BitLockerToGo.exe,’ a legitimate file.

Figure 21: Using CAPA



13/14

 

In addition, as shown in Figure 23, there was a long sleep period of about 2 minutes after
execution before the malware began its activity.

 

While running the malware in an isolated environment, numerous DNS requests to the
attacker’s C2 server were observed, as shown in Figure 24.

Figure 22: Process Tree

Figure 23: ProcMon Long Sleep Period



14/14

 

IOCs

Hash:

fea50d3bb695f6ccc5ca13834cdfe298 
83ae58dd03f33d1fae6771e859200be6 
7b1f43deed8fc7e35f8394548e12dd81 
c39f64a31e9f15338f83411bb9fc0942 
b832096cf669ff4d66e04b252cb1a1dc 

URL:

https://ch3[.]dlvideosfre[.]click/human-verify-system[.]html 
https://verif[.]dlvideosfre[.]click/2ndhsoru 
https://verif[.]dlvideosfre[.]click/K1[.]zip 
https://verif[.]dlvideosfre[.]click/K2[.]zip 
https://verif[.]dlvideosfre[.]click 
celebratioopz[.]shop 
writerospzm[.]shop 
deallerospfosu[.]shop 
bassizcellskz[.]shop 
mennyudosirso[.]shop 
languagedscie[.]shop 
complaintsipzzx[.]shop 
quialitsuzoxm[.]shop 

Figure 24: Using WireShark To Capture Network Traffic


